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Preface

As was said in the preface to the predecessor of this book (200 Puzzling Physics
Problems, Cambridge University Press, 2001), an understanding of the laws of
physics is best acquired by applying them to practical problems. Many of the
corresponding solutions, however, require routine, but perhaps long and boring,
calculations, which tend to deter even the most curiosity-driven students of the
subject. This book, like its antecedent, aims to show that not all physics problems
are like that, and that a bit of careful thought, a little ingenuity and a flash of insight
can go a long way.

Although we have aimed to place as many problems as possible in settings that
will be familiar to, and easily understood by, most people (not just physics students
and their professors), some have had to be somewhat artificially constructed in
order to bring the physics involved to the fore. However, that said, many of these
contrived situations can be set up in a laboratory, and theory can be tested against
experiment. Even so, some ‘test areas’, especially those in outer space, and some
apparatus, in particular a copious supply of infinitely long rods, were beyond the
resources available to us!

Nevertheless, we hope that you will be intrigued by questions such as:

• How do you maximise the gravitational effect of a lump of plasticine?

• How does a spoked wheel appear in a photo-finish picture?

• What happens when a suspended Slinky is suddenly released?

• How can your square-on reflection in a plane mirror show your closed eye,
but not your open one?

• How long is it before Santa Claus is discharged?

• Does an electromagnetic field carry angular momentum?

• What is the path of a ball rolled onto a rotating turntable?

• How much charge flows when a magnet is dropped through a metal loop?

• Where should you park your car to avoid a frosted windscreen?

ix
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• How large is the force between end-to-end solenoids?

• How do you bring about ‘the parting of the waters’ in a Florence flask?

• When does an Euler strut go phut?

• What is the pressure produced by a neutron in a box?

• How long is an ‘infinite electronic chain’? Does it matter?

• How much harder is it to steer a car with flat tyres?

• What is the maximum speed with which a comet could hit the Earth?

• How do you get into shape for a ‘free-wheel bike race’?

• Why do icebergs floating in the open ocean last so long?

These, those on the book cover and some 170 others are problems that can be
solved elegantly by an appropriate choice of variables or coordinates, an unusual
way of thinking, or some cunning idea or analogy. Of course, when such a eureka
moment arrives, and the solution is then found with a minimum of effort, the reader
will, quite justifiably, have every reason to be pleased with him- or herself.

However, it needs to be said that inspiration of the kind needed to produce such
insights is most unlikely to come to anybody who does not have a sound knowledge
and understanding of the basic laws of physics. The vast majority of the problems
are based on classical physics, of the kind taught in sixth forms and the early
years of university. And even the ‘modern’ physics questions demand little beyond
elementary relativity – there is not a single quantum mechanical wavefunction
in sight! This is readily understandable, as real intuition in the field of quantum
physics – which often comes in the form of counter-intuition – usually merits a
Nobel prize.

Although essentially correct solutions to the problems are clearly the principal
goal, we should add that success is not measured by this alone. Whatever help
you, the reader, may seek, and whatever stage you may reach in the solution to
a problem, we hope that it will bring you both enlightenment and satisfaction, as
well as increase your capacity to think in novel ways.

The 200, hopefully interesting, problems contained in this book have been col-
lected by the authors over the course of many years. Some were invented by us,
and the rest are, for the most part, taken from the Hungarian Mathematical and
Physical Journal for Secondary Schools, covering a span of more than 100 years,
or from other Hungarian physics contests. We have selected a few very challenging
questions from the Boston Area Undergraduate Physics Competition (BAUPC).
We have also been guided by the suggestions and remarks of our colleagues. It
is impossible to determine the original authors of most of the physics problems
appearing in the international ‘ideas market’. Nevertheless, some of the inventors
of the most puzzling problems deserve our special thanks. They include Zsolt
Bihary, András Bodor, László Holics, Jaan Kalda, Frederick Károlyházy†, Gyula
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Radnai, Géza Tichy, István Varga† and Károly Vladár. We thank them and the other
people, known and unknown, who have authored, elaborated and improved upon
‘puzzling’ physics problems.

Péter Gnädig, Gyula Honyek, Máté Vigh





How to use this book

This book has a two-fold objective: to teach and train students, and to intrigue
and entertain everybody who likes physics and puzzles. The first chapter contains
the 200 problems. If the reader’s main objective is to use the book as a basis
for studying physics, we recommend that the problems are tackled in the order
they appear, though this does not necessarily represent their order of difficulty. Of
course, if the reader is using the book for fun or as a challenge, he or she can freely
‘cherry-pick’ the questions.

It is an essential part of a physicist’s skill to be able to recognise the type of
problem in front of them, and to identify which areas of science and mathematics
will need to be called upon. Almost needless to say, some of the problems could not
be unambiguously assigned to, say, mechanics or gravitation or electromagnetism.
Nature’s secrets are not revealed according to the chapter titles of a textbook,
but rather draw on ideas from various areas, and usually in a complex manner.
However, after the present section, for information, we have included a list of
topics, and the numbers of the problems that more or less belong to those topics.
Some problems are listed under more than one heading. A list of symbols and
numerical values for the principal physical constants, as well as several tables
of material and astronomical data, not all of which will be needed, are provided
in the Appendix at the end of the book. The Appendix also contains many stan-
dard mathematical results, drawn from the areas of vector algebra, conic sections,
trigonometry, calculus and solid geometry.

The majority of the problems are not easy; some of them are definitely difficult.
You, the reader, are naturally encouraged to try to solve them on your own and,
obviously, if you do you will get the greatest satisfaction. If you are unable to
achieve this, you should not give up, but turn to the relevant page of the hints in
the short second chapter. In most cases this will help, though it will not give the
complete solution, and the details will still have to be worked out. Once you have

xiii
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done this and want to check your result (or if you have given up and just want to
see the solution) the final chapter should be consulted.

If a particular problem relates to another one elsewhere in this book, you will
find a page reference (rather than a problem number reference) in the relevant
hint or solution. Sometimes this may only be a few pages away, but on other
occasions it is far removed. In a few places, reference is made to this book’s
predecessor (200 Puzzling Physics Problems, Cambridge University Press, 2001),
but the hint or solution can be followed without having to consult this external
source. Problems whose solutions require especially difficult reasoning or more
demanding mathematical calculations are marked by one or two asterisks – and
one problem has earned itself a three-star rating!

There are some problems whose solutions raise questions that are beyond the
scope of this book. Points or issues worth further consideration, as well as outlines
of possible alternative solution methods, are indicated in Notes at the end of the
relevant main solution, but answers are not usually given.



Thematic order of problems

Kinematics: 1, 2, 3, 4∗, 5, 7∗, 8, 9, 10∗, 11∗, 12, 13∗, 14∗∗, 92.
Dynamics: 6∗, 15, 16, 17∗, 18, 19∗, 20, 21∗, 22∗∗, 23∗∗, 24∗, 25, 27∗, 37∗,

38∗∗, 39∗∗, 40∗, 45∗, 130, 164∗, 165∗, 166∗, 167∗∗, 177, 186∗.
Gravitation: 28∗, 29∗∗, 30, 31, 32, 33, 34, 35∗∗, 36∗∗, 37∗, 38∗∗, 39∗∗, 40∗.
Mechanical energy: 7∗, 8, 23∗∗, 25, 26, 36∗∗, 38∗∗, 41, 48∗, 64∗, 65∗, 69, 71,

80∗, 84∗.
Collisions: 35∗∗, 36∗∗, 42∗, 43, 44∗∗, 45∗, 52, 196∗.
Rigid-body mechanics: 38∗∗, 46, 47∗, 48∗, 49, 50∗∗, 51∗, 52, 53∗, 54∗∗,

55∗∗, 56∗, 57∗∗.
Elasticity: 24∗, 58, 59∗, 60∗, 61∗∗, 62∗∗, 63∗, 64∗, 65∗, 66, 67∗∗.
Statics: 68∗, 69, 70, 71, 72, 73, 74∗∗, 76∗, 78∗∗, 79∗, 80∗.
Ropes and chains: 75, 76∗, 77, 78∗∗, 79∗, 80∗, 81∗∗, 82∗, 83∗∗.
Liquids and gases: 11∗, 85, 86, 87, 88, 89∗, 90, 91∗, 92, 93∗∗, 95∗, 142∗.
Surface tension: 67∗∗, 91∗, 94∗, 96, 97∗, 98∗, 99∗, 142∗.
Thermodynamics: 32, 44∗∗, 84∗, 93∗∗, 100∗, 101∗, 102∗, 103∗, 104, 105∗,

106∗∗, 107∗∗, 108, 109∗, 198∗.
Phase transitions: 93∗∗, 110, 111, 112, 113∗, 114∗, 115, 116∗.
Optics: 107∗∗, 117∗∗, 118∗∗, 119, 120∗, 121∗, 122∗, 123∗, 124∗, 125, 126∗,

127∗, 128∗∗.
Electrostatics: 129∗, 130, 131∗, 132∗, 133∗, 134, 135, 136∗, 137∗, 138∗∗,

139∗, 140∗∗, 141∗, 142∗, 143, 144, 145∗∗, 146∗, 147∗, 148∗∗, 149∗∗, 150∗,
151, 152∗, 153∗, 154∗∗, 160∗∗, 172∗.

Magnetostatics: 155, 156∗, 157∗, 158∗, 159∗∗, 160∗∗, 162∗, 163∗, 164∗,
165∗, 166∗, 167∗∗, 172∗, 197.

Electric circuits: 106∗∗, 161∗∗∗, 168, 169∗, 170, 171∗∗, 172∗, 173∗, 174∗,
175, 176∗, 183∗, 184∗, 185∗∗.

xv
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Electromagnetism: 177, 178, 179, 180∗, 181∗, 182, 183∗, 184∗, 185∗∗,
186∗, 187∗, 188∗, 189∗, 190∗∗, 191∗.

Relativity and particles: 192, 193, 194∗, 195∗, 196∗, 197, 198∗, 199.
Dimensional analysis: 61∗∗, 97∗, 141∗, 198∗, 200.

∗ Asterisks indicate problems that require more difficult reasoning or somewhat more advanced mathematics.

Many problems warrant two asterisks and one warrants three.



Problems

P1 The trajectories of two bodies moving with non-relativistic constant speeds
are parallel in a particular inertial reference frame.

a) Is it possible to choose another inertial frame of reference in which the two
trajectories cross each other?

b) If such a frame can be found, and the bodies are started with suitable initial
conditions, then it could be arranged that they reach the crossing point at the same
time. How can this be consistent with the parallel trajectories observed in the first
frame of reference?

P2 Ann is sitting on the edge of a carousel that has a radius of 6 m and is
rotating steadily. Bob is standing still on the ground at a point that is 12 m from the
centre of the carousel. At a particular instant, Bob observes Ann moving directly
towards him with a speed of 1 m s−1. With what speed does Ann observe Bob to
be moving at that same moment?

P3 A cart is moving on a straight road with constant velocity v. A boy, standing
in an adjoining meadow, spots the cart and hopes to get a ride on it. In which
direction should he run to catch the cart? Solve the problem generally: denote the
speed of the cart by v, the maximal speed of the boy by u, and take the initial
positions of the cart and boy to be as shown in the figure.

1
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P4∗ A group of Alaskan gold prospectors reach a wide straight river that flows
with uniform speed v. What immediately catches all their eyes is a huge gold
nugget lying on the further bank, directly across the river. The laws governing
prospecting in Alaska state that the first person to reach any particular place has
the right to establish a mine there; speed is of the essence!

Joe, one of the prospectors, has a canoe, which he can paddle in still water at
the same speed u as he can hike along a river bank. What course of action should
he take if u/v is (a) smaller than or (b) larger than a certain critical value? Assume
that Joe first paddles across the river (in a straight line) and then, if necessary, hikes
along the bank to reach the nugget.

P5 The top surface of a horizontal laboratory table is a square of side
3d = 3 m. Running centrally across the table, and parallel to one of its sides,
is a conveyor belt consisting of an endless rubber band of width d = 1 m, which
moves with a constant velocity V = 3 m s−1. The height of the belt’s upper surface
exactly matches that of the static part of the table.

A small, flat disc is placed at the middle of one of the edges of the table (at the
point A shown in the figure), and the disc is hit so that it starts sliding with velocity
v0 = 4 m s−1 at right angles to the belt. The friction between the disc and the static
part of the table is negligible, while the coefficient of kinetic friction between the
disc and the rubber band is μ = 0.5.

Where does the disc leave the table?

P6∗ A boy is running north, with a speed of v = 5 m s−1, on the smooth ice
cover of a large frozen lake. The coefficient of friction (both kinetic and static)
between the tread of his trainers and the ice is μ = 0.1. For the sake of simplicity,
assume that the normal force he exerts on the ice, which in reality changes with
time, can be substituted by its average value.
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a) What is the minimal time that he needs to change direction, so that he is
running east with the same speed v?

b) Find the boy’s trajectory during the turn in this optimal case.

P7∗ A simple pendulum is released from rest with its string horizontal. What
kind of curve is the locus of the end of its acceleration vector?

P8 A simple pendulum is released from rest with its string horizontal. Which
of the two arcs, AP and PB as defined in the figure, will its bob cover in a shorter
time?

P9 The trajectory of a projectile with initial speed v0 is parabolic in a vacuum
(e.g. on the Moon). How far is the focus of this parabola from the launch point?
What initial angle of elevation of the projectile is needed if the focus is to be at the
same altitude as the launch point?

P10∗ Point-like objects are thrown with an initial speed of v0 in various direc-
tions from the top of a tower of height h. If the air resistance is negligible, what is
the maximum distance from the foot of the tower that they can reach?

P11∗ At the top of a long incline that makes an angle θ with the horizontal,
there is a cylindrical vessel containing water to a depth H. A hole is to be drilled
in the wall of the cylinder, so as to produce a water jet that lands a distance d down
the incline. How far, h, from the bottom of the vessel should the hole be drilled in
order to make d as large as possible? What is this maximum value of d?

P12 Because of the finite exposure needed, in a side-on photograph of the front
wheel of a moving bicycle, the spokes seem blurred. However, there will be some
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apparently sharp points in the picture. Where are these sharp points? For the sake
of simplicity, suppose that the bicycle spokes are radial.

P13∗ Investigate the form of the image of a spoked bicycle wheel as recorded
by a photo-finish camera. Such cameras use very narrow strip photography, elec-
tronically capturing a vertical cross-section of the sequence of events only on the
finish line; every part of each body is shown as it appeared at the moment it crossed
the finish line. The horizontal axis of the image represents time; anything stationary
on the finish line appears as a horizontal streak. In a conventional photograph, the
image shows a variety of locations at a fixed moment in time; strip photography
swaps the time and space dimensions, showing a fixed location at a variety of times.
For the sake of simplicity, suppose that the spokes of the bicycle are radial.

P14∗∗ A cartwheel of radius 50 m has 12 spokes, assumed to be of negligible
width. It rolls along level ground without slipping, and the speed of its axle is
15 m s−1. Use a graphical approach to estimate the minimal speed a crossbow bolt,
20 cm long, must have if it is to pass unimpeded between the spokes of the wheel?
Neglect any vertical displacement of the bolt.

P15 A small bob can slide downwards from point A to point B along either
of the two different curved surfaces shown in cross-section in the figure. These
possible trajectories are circular arcs in a vertical plane, and they lie symmetrically
about the straight line joining A to B. During either motion the bob does not leave
the curve.

a) If friction is negligible, along which trajectory does the bob reach point B
more quickly? How do the final speeds for the two paths compare?

b) What can be said about the final speeds if, although friction is not negligible,
the coefficient of friction is the same on both paths?

P16 On a windless day, a cyclist ‘going flat out’ can ride uphill at a speed of
v1 = 12 km h−1, and downhill at v2 = 36 km h−1, on the same inclined road. What
is the cyclist’s top speed on a flat road if his or her maximal effort is independent
of the speed at which the bike is travelling?

The rather imprecise term ‘effort’ could be interpreted scientifically to mean
either
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a) the magnitude of the force exerted on the pedals by the rider (which is then
transmitted to the wheels via the crank arms, sprockets and chain), or

b) the rider’s mechanical power.
Solve the problem for both interpretations.

P17∗ Ann and Bob arrange a ‘free-wheel bike race’ on a very long slope that
makes an angle θ with respect to the horizontal. They have the same type of bicycle,
and neither of them pedals during the race. The total mass of Ann and her bike is
mA = 60 kg, whereas the corresponding figure for Bob is mB = 110 kg. Because
he is overweight (and ‘out of shape’), the air drag on Bob is one-and-a-half times
larger than that on Ann when they have equal speeds. Which one is going to coast
further on the horizontal road at the bottom of the slope?

Assume that their decelerations are due to air drag (proportional to the square of
the speed), friction at the bearings hub and rolling friction. The latter two effects
should be treated as a sort of kinetic friction, with an ‘effective frictional coeffi-
cient’ of μ.

P18 A small feather with vanishingly small mass is attached to one end of
a riding crop by a flimsy thread. The crop is then rotated steadily about an axis
passing through its other end and perpendicular to it. What is the trajectory of the
feather?

P19∗ A small pearl moving in deep water experiences a viscous retarding force
that is proportional to its speed (Stokes’ law). If a pearl is released from rest under
the water, then it soon reaches its terminal velocity v1, and continues sinking with
this velocity.

In an experiment, such a pearl is released horizontally with an initial speed v2.
a) What is the minimal speed of the pearl during the subsequent motion?
b) In which direction should the pearl be projected, with the same initial speed

v2 (< v1), in order that its speed increases monotonically during its descent?

P20 Two spherical bodies, with masses m and M, are joined together by a light
thread that passes over a table-mounted pulley of negligible mass. Initially they are
held in the positions shown in the figure; then, at a given moment, both of them
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are released. Mass M is many times – say, one thousand times – larger than mass
m. The friction between the smaller ball and the surface of the table is negligible.
Will the lighter ball be lifted from the table-top immediately after the release?

P21∗ A small smooth pearl is threaded onto a rigid, smooth, vertical rod,
which is pivoted at its base. Initially, the pearl rests on a small circular disc that is
concentric with the rod, and attached to it at a distance d from the rotational axis.
The rod starts executing simple harmonic motion around its original position with
small angular amplitude θ0 (see figure). What frequency of oscillation is required
for the pearl to leave the rod?

P22∗∗ The plane of a flat, rigid board of length L = 6 m makes an angle of
α = 10◦ with the horizontal, and a small rectangular block is situated at the
top of this incline. The board starts vibrating with simple harmonic motion in
the direction parallel to a line of steepest descent; the amplitude of the motion
is A = 1 mm, and its angular frequency is ω = 500 rad s−1. The coefficients
of kinetic and static friction between the block and the board are both μ = 0.4.
Estimate how long the block, which does not topple over during its motion, takes
to reach the bottom of the incline.
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P23∗∗ The cord of a swinging simple pendulum passes through a small hole
in a ceiling and into a loft above. There, a scientist’s assistant holds the loose end
of the cord and pulls it up very slowly (see figure). Does the linear amplitude (the
largest horizontal excursion) of the pendulum change? If so, how?

P24∗ A mountaineer (a former circus artist) has to spend the night on the
(vertical) side of a high mountain. So, as shown in the figure, he clamps himself
to four carabiners fixed to the rock face using four extraordinarily flexible springs.
The masses of the springs and their unstretched lengths are negligible, and their
spring constants are k1 = 150 N m−1, k2 = 250 N m−1, k3 = 300 N m−1 and
k4 = 400 N m−1. The mountaineer can be considered – for the sake of simplicity
– as a point-like body with a mass m = 70 kg.

What is the mountaineer’s period of oscillation if he is displaced from his equi-
librium position and then released?

P25 A small rubber eraser is placed at one edge of a quarter-circle-shaped
track of radius R that lies in a vertical plane and has its axis of symmetry vertical
(see figure); it is then released. The coefficient of friction between the eraser and
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the surface of the track is μ = 0.6. Will the eraser reach the lowest point of the
track?

P26 A box of mass 1 kg is placed on an incline on which it does not sponta-
neously start to slide. It is pulled up, and then down, the incline very slowly in such
a way that the traction force is always parallel to the slope (see figure). The total
work done is 10 J. What is the maximum height h of the incline? Assume that the
coefficients of static and kinetic friction are equal.

P27∗ Two permanent magnets are aligned on a horizontal, very slippery table-
top with a gap of length d between them; because of their finite sizes, their centres
of mass are d + d0 apart (see figure). The magnets are held in such a position that
the net force between them is attractive, and there are no torques generated.

If one of the magnets is held firmly in position and the other is released, then
the two collide after 0.6 s. If the roles are reversed, then the time interval between
the release and the collision is 0.8 s. How long would it take the two magnets to
collide, if both were released simultaneously?

P28∗ A U-shaped tube contains liquid that initially is in equilibrium. If a heavy
ball is placed below the left arm of the tube, how do the liquid levels in the two
arms change?
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P29∗∗ We wish to produce the maximum possible gravitational acceleration at
a given point in space, using a piece of plasticine1 of uniform density and given
volume. Into what shape should the plasticine be moulded?

P30 One of the planets of a star called ‘Noname’ has the shape of a long
cylinder. The average density of the planet is the same as that of the Earth, its
radius R is equal to the radius of the Earth, and the period of its rotation around its
long axis is just one day.

a) The first cosmic velocity vc,1 is the speed of a satellite in a stable orbit just
above the planet’s surface. How large is it for this planet?

b) What is the altitude of a ‘geostationary’ communications satellite above the
surface of this ‘sausage’ planet?

c) What can be said about the second cosmic velocity (the escape velocity) for
this planet?

P31 The Examining Institute for Cosmic Accidents (EXINCA) sent the fol-
lowing short report to one of its experts:

One of the exploration space ships belonging to the titanium-devouring little
green people has found a perfectly spherical, homogeneous asteroid; it has no
atmosphere, but is made of pure titanium. As part of the preparations for mining,
a straight tunnel was constructed, and railway lines were laid in it. The length of
the tunnel was equal to the radius of the asteroid, with both ends on the latter’s
surface. Unfortunately, although its braking system was on and locked, one of the
mine wagons slipped into the shaft at one end of the tunnel. Initially it speeded
up, but later it gradually slowed down, reversed and finally stopped exactly in

1 Although this word has passed into common usage, technically it is a registered trademark for Plasticine.
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the middle of the tunnel. Just before it reversed, the wagon came very close to
running down the mine captain, who was standing on the track.

EXINCA asked the expert (you) to obtain numerical values for the following:
a) how far along the tunnel the mine captain was standing,
b) the coefficient of kinetic friction between the wheels of the mine wagon and

the rails,
c) the total time of the wagon’s motion.

Assume that the volume of the tunnel is negligible compared to that of the asteroid.

P32 A space ship carrying titanium-devouring little green men has found and
landed on a perfectly spherical planet of radius R. A narrow trial shaft has been
bored from point A on the surface of the planet to O, its centre; this has con-
firmed that the whole planet is made of homogeneous (edible) titanium. In addition,
according to the measurements made, the temperature inside the narrow shaft is
constant, and equal to T0. The planet has an atmosphere with molar mass M, and
the atmospheric pressure at its surface is pA.

a) Find the air pressure at the bottom of the shaft.

After the exploratory drilling, work has continued, and the little green men have
started secret excavation of the titanium, as a result of which they have formed a
spherical cavity of diameter AO inside the planet, as illustrated in the figure. The
excavated titanium is being transported away using expendable cargo space craft.
Air from the atmosphere has moved to fill the cavity and, as a consequence, the
pressure at the access point A has decreased from pA to p′

A.

b) Assuming that the temperature everywhere inside the cavity is the same as
it was in the shaft, how has the atmospheric pressure at O changed?

P33 Mr Tompkins2 visited Wonderland in his dream, where the laws of
physics are almost the same as we know them – except that gravity deviates
‘slightly’ from Newton’s well-known law. Awakening with a start, he remembered

2 He is the eponymous main character in the physicist George Gamow’s book, Mr Tompkins in Wonderland, first
published in 1940.



Problems 11

that several planets orbit the only ‘sun’ in Wonderland, and that these planets obey
the following three ‘Kepler’s laws’:

1. Planets travel in elliptical orbits with the sun at the centre of the ellipse.
2. A line drawn from a planet to the sun sweeps . . . (unfortunately, Mr Tomp-

kins forgot how to continue).
3. The orbital periods of all the planets (independent of the sizes of their major

and minor axes) are the same, namely one ‘year’.

How does the gravitational law look in the physics textbooks of Wonderland, and
what is the missing part of the statement of ‘Kepler’s second law’?

P34 In the absence of an atmosphere on Earth, what would be the maximal
and minimal impact speeds with which a comet, which is orbiting the Sun, can
strike the Earth?

P35∗∗ Two comets with identical masses and speeds are found by astronomers
to be approaching the Sun along parabolic trajectories that lie in the same plane.
The comets collide at their common perihelion P (the point in their trajectories that
is nearest to the Sun S), and break into many pieces that then go in all directions,
but with identical initial speeds (see figure).

What shape is the envelope of the subsequent trajectories of the pieces of debris?

P36∗∗ We aim to make a space probe launched from Earth leave the Solar
System with the help of a single gravitational slingshot, which utilises the relative
movement and gravity of one of the planets that orbit the Sun. In astronomi-
cal units (the mean Sun–Earth distance = 1 AU), how far from the Sun would
the ‘ideal’ planet be if the initial launch speed of the probe is to be kept to a
minimum?

When solving the problem, make the following approximations:

• The orbits of the planets are circles all lying in the same plane.

• Near a planet, it is sufficient to take into account only the gravity due to
that planet.

• Far from all planets, only the Sun’s gravity is relevant.

Does a real planet exist at or near the optimal orbit?
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P37∗ Because of the effects of air drag, abandoned satellites, at the end of
their useful lives, lose energy in the upper layers of the atmosphere, before finally
burning up when they reach the denser lower layers. It can be shown that satellites
originally moving along circular trajectories will continue to travel in approxi-
mately circular orbits, with their orbital radii slowly decreasing.

A half-tonne satellite is orbiting the Earth on a roughly circular orbit when it is
abandoned. The drag acting on this particular satellite can be expressed as c�v2,
where c = 0.23 m2, � is the density of air at the altitude of the satellite and v is the
speed of the satellite.

a) Does the satellite brake or accelerate as a result of the air drag? How can your
answer be explained from the point of view of dynamics?

b) A simple connection can be found between the drag force and the tangential
acceleration of the satellite. What is it?

c) What is the density of air at an altitude of 200 km, if in this region the orbital
radius of the satellite decreases by 100 m during a single revolution?

P38∗∗ It is a well-known fact that the Moon always shows, more or less,
the same face to the Earth. This curiosity is not a coincidence, but a straightfor-
ward consequence of the tidal forces acting between the Earth and the Moon.
Over time, tidal forces continuously slowed the Moon’s rotation about its own
axis until the period of that rotation became equal to the Moon’s orbiting period
around the Earth. It is for the same reason that the Earth’s rotation around its
own axis is continually slowing, and the orbital speed of the Moon is further
decreasing.

a) Estimate the ratio of the rates of decrease of the Earth’s and Moon’s kinetic
energies.

b) During the Apollo Program (flights 11, 14 and 15), retro-reflectors (arrays
of corner-cube laser mirrors) were placed on the Moon. According to the
extremely accurate laser ranging measurements thereby made possible, the
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Moon’s linear distance from Earth is currently increasing at a rate of 3.8 cm
per year. Using this measured datum, estimate the change in the length of
an Earth day during a year.

c) If the Earth–Moon system continued its motion undisturbed, then, as a
result of the braking effect of the tidal forces, after a sufficiently long time,
the Earth would always show the same face to the Moon, i.e. the rotations
and the orbital motions of these two bodies would be synchronised.3 How
many times larger than at present would an Earth day and the Earth–Moon
distance be with such perfect synchrony?

Assume that the orbit of the Moon remains circular, and neglect the tidal effect of
the Sun.

P39∗∗ An astronaut, who seems light-headed, but who is an expert in celestial
mechanics, jumps away from the International Space Station (ISS) in the direction
directly opposed to that of the Earth, with a speed of v0 = 0.1 m s−1. He has
an oxygen cylinder, but no lifeline tether or auxiliary jet pack. What will be his
greatest subsequent separation from the ISS? If it is finite, for how long must his
oxygen supply last?

P40∗ For an interstellar space mission, set in the future, an attempt is made to
partially compensate for the lack of gravity by uniformly rotating the reasonably
long and very heavy cylindrical space ship, which has a diameter of 2R = 20 m,
around its symmetry axis. The period of rotation is adjusted so that the astronauts
feel an Earth-like ‘gravitational acceleration’ of g = 10.00 m s−2 at the outer edges
of the cylinder.

During the long journey, the astronauts exercise in a 5 m ‘high’ gym, whose
‘floor’ is the outer casing of the space ship; they notice that things are not quite
like they are on Earth.

a) How much work is done by a (point-like!) astronaut with a mass of 80 kg,
when he climbs up to the gym’s ceiling on a fixed climbing pole. By how much,
measured in an inertial frame of reference fixed to the space ship’s centre of mass,
does the astronaut’s kinetic energy change as a result of the climb? How can the
work done be reconciled with the change in his kinetic energy?

b) If the astronaut fell from the top of the pole, how long would he take to fall,
and how far from the bottom of the climbing pole (measured along the floor) would
he ‘hit the ground’?

P41 The height difference between the top and bottom of a downward-moving
escalator is h = 20 m. A mischievous boy of mass m = 50 kg runs up from the

3 In reality, before this could happen, the Sun will expand into a red giant and engulf the current orbit of the
Earth.
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bottom to the top at an (average) speed, relative to the steps, that is one-and-a-half
times their translational speed. Find the work done by the boy and explain how it
is accounted for.

P42∗ On an air-hockey table, there are N identical small discs lying equally
spaced around a semicircle (see figure); the total mass of the discs is M. Another
small disc, D, of mass m, travelling in a direction perpendicular to the closing
diameter of the semicircle, strikes the first of the stationary discs. By some miracle,
it subsequently bounces off all of the other N − 1 discs in turn, after which it
is travelling in a direction directly opposed to that of its initial motion. All the
collisions are perfectly elastic, and friction is everywhere negligible.

a) In the limiting case of N → ∞, what is the minimal value of the mass ratio
M/m for such a miracle to be possible?

b) When the mass ratio has the critical value found in part a), what is the ratio
of the final and initial speeds of D?

P43 Two identical balls are suspended on (vertical) threads of length � so
as to just touch each other and, as shown in the figure, can swing in the plane
defined by their suspension points and their centres. One of the balls is drawn
aside in this plane through a distance d (� �) and then released. Each time the
balls collide, they do so inelastically, and, as measured in their centre-of-mass
frame, their velocities decrease by a factor of k, the coefficient of restitution, where
0 < k < 1.
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How will the balls be moving at a much later time? What will be the amplitude
of the swings after a large number of collisions have taken place? Assume that the
damping due to air resistance is very small.

P44∗∗ Two small balls are threaded onto a frictionless horizontal rod that pro-
trudes from a vertical wall. The lighter ball with mass m is initially at rest, a dis-
tance L from the wall, while the much heavier second ball, of mass M, approaches
the wall from a distance greater than L (see figure). After their elastic collision, the
ball of mass m slides towards the wall, bounces back elastically, and again collides
with the heavier ball. The process then repeats itself, over and over.

How close does the heavier ball get to the wall?

Consider the balls as point-like particles, and, where appropriate, assume that
m � M.

P45∗ In a very dense fog, there are many tiny water drops that ‘float’ in the air
with negligible speed. If one of the water drops, which is a little larger than the rest,
begins to sink, it absorbs those smaller drops that lie in its path (see figure). The
ever-growing drop, which can be regarded as spherical, is found to be accelerating
uniformly, despite the air drag – proportional to the square of the speed and the
cross-sectional area of the drop – acting upon it. What is the maximum possible
value for this acceleration?

P46 A carved wooden American Indian statuette, which can be considered (to
a good approximation) as a solid cylinder with a homogeneous mass distribution,
has a height of H = 6 cm and a diameter of d = 1 cm (see figure). A thread is
attached to the statuette at a point that is h = 2 cm above the base, and the statuette
is placed in the middle of a rough horizontal table-top. The coefficient of friction
between the table-top and the statuette is μkinetic = μstatic = 1/3.
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As a challenge, contestants are required to pull horizontally on the thread and
drag the statuette (in one continuous movement) to the edge of the table, without it
falling over.

Is it possible to do this? If yes, how? If not, why not?

P47∗ In the shop window of a toy store, a miniature sailing boat is suspended
(with its deck horizontal) by two vertical thin rubber bands (see figure). The masses
of the mast and sails are negligible compared to that of the boat’s hull, the length
of which, from bow to stern, is much greater than its vertical height, from keel to
gunwale.

If the left-hand rubber band is cut, does point B sink or rise immediately after-
wards?

P48∗ Four identical, homogeneous rods are connected by four light frictionless
knuckle joints4 to form a square, which is then placed on a horizontal, smooth,
polished table-top. Vertex P is pushed in the direction of the diagonal of the square
that passes through P, and, as a result, acquires an initial acceleration of aP (see
figure).

4 A knuckle joint allows the angle between the two components it joins to vary freely in one particular plane.
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In which direction, and with how much acceleration, does the opposite vertex Q
of the square start to move?

P49 A cylindrically symmetric (but not necessarily homogeneous) body is
attached to two identical cords at points near its ends. The cords are partially
wound in the same sense around the cylinder, and their free ends are fastened to
points on a ceiling; initially, the cords are vertical and the cylinder is horizontal.
A third cord is attached to and wound (in the same sense as the other two cords)
around the middle of the cylinder; a heavy weight is tied to the free end of this cord
(see figure).

When the system is released from rest, what is the acceleration of the heavy
weight?

P50∗∗ A homogeneous flat disc (such as an ice-hockey puck) is both sliding
and rotating on an icy surface. Because of friction, both kinds of motion decelerate
and finally stop. Which of the two motions stops the earlier, the rotation or the
translation?

Assume that the disc presses uniformly on the ice, that the frictional force
between two surfaces does not depend upon their relative speed, and that air drag
is negligible.

P51∗ A uniform rod of mass m and length L is fitted at each end with a
frictionless bearing in the form of a freely rotating wheel, for which the rod acts
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as an axle. The two bearings are identical and have negligible masses compared to
that of the rod.

a) How does the rod move if it is placed on a horizontal rough surface – meaning
that the bearings roll on it without slipping – and the two ends of the rod are initially
given parallel velocities of v1 and v2 in a direction that is perpendicular to the axis
of the rod?

b) How does the rod move if it is initially placed, with an angular velocity of ω0

and zero centre-of-mass velocity, across the slope of a broad rough plane that is
inclined at an angle of θ to the horizontal (see figure)?

P52 Two identical billiard balls of diameter 5 cm, each moving with a speed
of 3 m s−1, roll, without slipping, towards each other on a horizontal rectangu-
lar U-shaped trough that is sufficiently deep that the balls are clear of its base
(see figure). The resulting instantaneous collision is perfectly elastic, and, during
it, each ball reverses its linear velocity, though their angular velocities are not
affected.

a) How wide does the trough need to be for the balls to collide twice?
b) Find the speed of the balls just before the second collision if the width of the

trough is 4 cm.

P53∗ A billiard ball, initially at rest on a billiard table, is struck by a cue tip
at the point T shown in the figure. The cue lies in the vertical plane contain-
ing T , the centre C of the ball and the ball’s point of contact P with the table;
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consequently, so does the line of action of the resulting impulse. Find the direction
in which the cue should be aligned in order that, after the shot,

a) the ball’s subsequent rotational and slipping motions terminate at the same
instant, and the ball comes to a halt,

b) the ball rolls without slipping, whatever the value of the coefficient of static
friction between it and the table.

Assume that, as a result of chalking the cue tip, the coefficient of friction
between it and the ball is sufficiently large that there is no slippage between them
during the cue stroke.

P54∗∗ If the line of action of the impulse in the previous problem does not lie
in the vertical plane defined by the points T , C and P, then, just after the shot, the
ball’s angular velocity vector will not be perpendicular to the velocity of its centre
of mass. Billiards players call this shot a Coriolis-massé.

Such a shot is shown in the figure, in which the line of action of the impulse
meets the ball’s surface (for a second time) at T ′ and the table at A.

a) What kind of trajectory does the ball’s centre of mass follow from just after
the shot until the point at which simultaneous rolling and slipping cease?

b) In which direction, relative to the line PA, will the ball continue its path once
it starts to roll without slipping?

Assume that, whatever the downward force acting on it, the billiard cloth does
not ‘become squashed’, and the ball’s contact with it is always a point contact.
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P55∗∗ A very large flat horizontal disc with a rough surface is rotating about
its vertical axis of symmetry with angular velocity �. A solid rubber ball of radius
R is placed on the disc in such a way that it rolls without slipping, and its centre
moves in a circle that has radius r0 and is concentric with the disc.

a) Find the initial velocity and angular velocity that the ball must have for this
kind of motion.

b) How would the centre of the ball move if it were started from the same
position with the same magnitude of initial velocity as specified in part a), but
with the opposite direction?

P56∗ A large flat disc with a rough surface rotates around the axis of symmetry
that is normal to its plane, and does so with constant angular velocity �. The plane
of the disc is tilted at an angle θ relative to the horizontal. A magician places a
solid rubber ball of radius R and mass m on the rotating disc and starts it off in
an appropriate direction. Then, to the audience’s great surprise, the centre of the
ball moves uniformly in a straight line, until it reaches the rim of the rotating disc.
Throughout the ball’s motion, it does not slip on the disc, and the angular velocity
of the disc does not change.

Find a physical explanation for this strange phenomenon. In which direction,
and how quickly, should the magician start the ball for this stunt to be successful?

P57∗∗ A small solid rubber ball of radius r is thrown onto the inner wall of
a long cylindrical tube, which has radius R and is fixed with its axis of symmetry
vertical. If the ball is started off with a sufficiently large horizontal velocity v0, then
it starts to oscillate periodically in the vertical direction, while still maintaining
contact with the tube. Describe the ‘dance’ performed by the centre of the ball.

The static friction is quite large, and so the ball never slides on the wall.
Assume that the ball is sufficiently incompressible that its contact with the tube
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is only ever through a single point, and that air drag and rolling friction are
negligible.

P58 Slinky,5 a well-known toy, is a pre-compressed helical spring, with a
negligibly small unstressed length. To a good approximation, it obeys Hooke’s
law, but with a small ‘Young’s modulus’, even being significantly stretched by its
own weight.

Such a spring is first hung vertically with its upper end fixed, and is then re-
suspended with its two ends attached to supports at the same vertical height, but
separated horizontally. The ends of the Slinky make angles of 45◦ with the vertical,
as shown in the figure. In which case is the stretched spring longer?

P59∗ What shape does a Slinky take up when its two ends are fixed to points
that are at the same height and separated by a moderate distance (the Slinky
remains a helical spring)?

P60∗ A Slinky of mass m was initially resting on a table-top with its axis
vertical. Its top end was then slowly raised until its lowest coil was just clear of
the table. At that point, the length of the Slinky was L.

a) How much work was done during the lifting stage?
b) If the upper end of the Slinky is now released (from rest), then, curiously, the

lowermost coil does not start moving until the Slinky has completely collapsed (see
figure). What speed, v0, does the collapsed Slinky have immediately afterwards?

c) How long does the Slinky take to completely collapse?

5 Slinky was invented by Richard James in the early 1940s; his wife dubbed the toy ‘Slinky’ (meaning ‘sleek
and graceful’) after finding the word in a dictionary, and deciding that the word aptly described the sound of a
metal spring expanding and collapsing.
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P61∗∗ A Slinky is placed inside a frictionless horizontal tube, with one of its
ends attached to a fixed point of the tube. The fixed point is a distance r0 from
a vertical axis about which the tube rotates with uniform angular velocity ω (see
figure). The Slinky spring is ‘ideal’: its unstressed length is negligible; its potential
elongation is unlimited; and it obeys Hooke’s law.

What is the length � of the stretched spring, if its spring constant is k and its total
mass is m?

Consider what happens in the limiting case r0 → 0.

P62∗∗ Find the shape of a Slinky inside the International Space Station (i.e. in
weightless conditions) if it is rotating uniformly – like a skipping rope – with both
ends of the spring twirled in unison.

P63∗ A tree in the editor’s garden has a thin, light and elastic horizontal side
branch that in early spring has very few leaves on it and provides a popular perch
for wild birds. Is the end of the branch depressed more when a pigeon sits at
its midpoint or when a blackbird, which only weighs one-quarter as much as the
pigeon, perches on the end of the branch?

P64∗ A hat peg is planned by a post-modern interior designer in two versions.
In both, a thin but strong elastic metal wire in the form of a quarter-circle is attached
to a solid vertical post. The alternative mounting arrangements are shown in the
figure.

The designer is surprised to find that, when the hat pegs are loaded with the same
weight (as shown), the ends of the pegs are not lowered by the same amount in the
two designs. Find a simple argument that determines in which design the droop of
the peg’s tip is the larger.

P65∗ Hanging a body with a mass of 1 kg from the end of a uniform, horizon-
tal, 1 m long rod, which is fixed rigidly at its other end, causes the loaded end to
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deflect by 1 cm. If the rod is stood vertically on one end (see figure), estimate the
vertical load F, applied to the other end, that is required to make it buckle.

P66 A cable of given thickness, and large but finite tensile strength, is to hang
vertically downwards from a ship, with the intention that it should reach the sea
bed. However, when the lowered cable is 1 km long, it snaps (at the top) because
of its own weight. How much cable is required to reach the sea bed, at a depth of
3 km, if filaments can be doubled up and run parallel to each other along particular
lengths? Estimate the total length of original cable needed to construct a composite
one that will reach to the bottom of the Mariana Trench, which lies 11 km beneath
the surface.

Assume that the density of seawater is constant, and that the stretching of the
cables is negligible.

P67∗∗ It is a common observation in the kitchen that, if a frankfurter sausage
(a long, straight sausage in ovine gut skin, sometimes called a ‘Frankfurter
Rindswurst’) splits during the boiling process, it always does so ‘lengthways’,
and never ‘across’. What is the reason for this?

If it were possible to produce one, where, and along which direction, would a
toroidal sausage split while being cooked? Assume that, in both cases, the thick-
ness of the sausage skin is uniform.

P68∗ A thin, strong, but flexible steel tight-rope is installed horizontally above
a wide street, and highly tensioned. An acrobat moves slowly onto and along the
tight-rope. When he reaches the quarter-way point (Q in the figure), the nearer tri-
section point of the rope (T) has been depressed by 5 cm from its original position.
By how much is Q depressed, when the acrobat reaches point T?
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Can your result be generalised to arbitrary points Q and T?
You may assume that the weight of the rope is negligible, that its depression is

always very small compared to its total length, and that the tension in it can be
treated as constant.

P69 Devise a mechanical system that uses a fundamental physics principle to
determine the point P on a general triangle that has the property that the sum of
its distances from the three vertices is a minimum. Can your device be adapted to
minimise a weighted sum of the distances?

P70 A sack, full of sand and of mass M, lies on a carpet, which, in turn, lies
on a relatively smooth horizontal surface. The distribution of the sack’s weight is
not uniform, but it is known that its centre of mass (CM) lies at distances s1 and s2

from its extremities.
By pulling horizontally on the carpet, both it and the sack are to be moved onto

an immediately adjacent rougher surface at the same height (see figure). How much
work is required to do this if the coefficients of friction between the carpet and the
original and final surfaces are μ1 and μ2, respectively?

P71 A cone with height h and a base circle of radius r is formed from a sector-
shaped sheet of paper. The sheet is of such a size and shape that its two straight
edges almost touch on the sloping surface of the cone. In this state the cone is
stress-free.
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The cone is placed on a horizontal, slippery table-top, and loaded at its apex
with a vertical force of magnitude w, without collapsing. The splaying of the cone
is opposed by a pair of forces of magnitude F acting tangentially at the join in the
base circle (see figure). Ignoring any frictional or bending effects in the paper, find
the value of F.

P72 Frank has made an iron triangle by welding together three thin iron rods
of identical cross-section. He decides to try to identify the centre of mass of the
triangle, and so he lays it on a sheet of paper, and draws the lines connecting each
vertex to the midpoint of the opposite side. At that moment, Lisa arrives and says
that the centre of mass of the triangle is not at its centroid (its geometrical centre).
She claims that Frank should connect the midpoints of the triangle’s sides to form
a smaller triangle, and that the centre of mass of the larger iron triangle coincides
with the incentre6 of the smaller one. Who, if anybody, is right?

P73 A triangle is cut out from a uniform sheet of cardboard, and placed on a
level table-top standing on one of its edges. It is loosely supported on both sides
so that it can move only in its own plane – but can do so freely in that plane. Is it
possible to make a triangle that tumbles over from two of its edges, and has only a
single equilibrium position?

P74∗∗ We describe any particular face of a tetrahedron as ‘unstable’ or ‘stable’
according to whether or not the tetrahedron spontaneously falls over if it is placed
on a level table-top with that face as its base. Is it possible to make a (homoge-
neous) tetrahedron that has three unstable faces and only a single stable one?

P75 The cable strung between two neighbouring electricity posts sags a little.
The mass per unit length of the cable is λ, the distance between the posts is L, and
the ‘maximum sag’ of the cable is d (d � L). What is the (approximate) tension in
it?

P76∗ In a gymnasium, a climbing rope and a climbing pole, both with uniform
cross-sections, have the same length; they also have equal weights. Each is attached
to the ceiling of the gymnasium by a small pivot, and both are pulled aside by
identical horizontal forces at their lower ends. Determine whether it is the rope’s
or the climbing pole’s lowest point that is lifted higher.

P77 The two ends of a 40 cm long chain are fixed at the same height, as shown
in the figure. Find the radius of curvature of the chain a) at its lowest point and b) at
the suspension points.

6 The incentre of a general triangle is the (unique) point at which the internal bisectors of its angles meet; this
point is the centre of the triangle’s incircle.



26 200 More Puzzling Physics Problems

P78∗∗ A uniform flexible rope passes over two small frictionless pulleys
mounted at the same height (see figure). The length of rope between the pulleys is
�, and its ‘sag’ is h. In equilibrium, what is the length s of the rope segments that
hang down on either side?

P79∗ One end of a necklace of small pearls is attached to the outer surface of
a fixed cylinder that has radius R and a horizontal axis; the attachment point P is at
the same level as the axis. The necklace is wound once round the slippery surface
of the cylinder, and the free end is left to dangle (see figure). How long, �, does
this free end need to be if the rest of the necklace is to touch the cylinder surface
everywhere?

P80∗ A flexible scatter rug (also known as a runner), of mass M and length L,
is tightly coiled into a cylinder of radius R (� L), as in the figure. If the coiled rug
is released, then, in the absence of rolling friction, it spontaneously unrolls to its
full length.
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a) Explain in terms of the forces involved why this happens.
b) How large a horizontal force F, applied as in the figure, is required to prevent

the unrolling of the rug?

P81∗∗ The committee of the Glacier Climbing Club has decided to introduce
a new challenge for its members: they have to climb as high as they can on an arti-
ficial right-circular cone, the surface of which has been made into a very smooth,
slippery ‘iceberg’, by letting water trickle down it in sub-zero temperatures. A lasso
is to be their only piece of climbing equipment!

The lasso for novices is as shown in figure a) and consists of a length of rope
attached by a small eyelet to a closed loop of fixed length. That for experts is shown
in figure b) and is a single rope with, at one end, an eyelet, through which the other
end is threaded. All the ropes are light compared to the mass of a climber, and
friction between them and the ice, and within the eyelet, is negligible.

For what ranges of cone angle, 2θ , are (i) the novices and (ii) the experts able to
climb up the iceberg using their lassos in the way illustrated in figure c)? Assume
that the straight segment of a lasso follows one of the cone’s lines of steepest
descent.

P82∗ The spindle of a bicycle chain assembly is mounted horizontally, and a
loop of bicycle chain is placed on the toothed wheel, as in the figure. The wheel is
then rotated around its axis at a steadily increasing rate until it has achieved a high,
but constant, angular velocity. What is then the shape of the chain?
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P83∗∗ A fire hose of mass M and length L is coiled into a roll of radius R
(� L). The hose is sent rolling across level ground with an initial speed v0 (and
angular velocity v0/R), while the free end of the hose is held at a fixed point on the
ground (see Fig. 1). The hose unrolls and becomes straight.

Fig. 1

Peter and Pauline (two students studying physics) are discussing what happens
during the unrolling. They agree that in some respects simplification of the
analysis can be justified: that, if the initial kinetic energy of the roll is much
greater than its potential energy (v0 � √

gR), then the effect of gravity can
be neglected; that the hose can be considered as arbitrarily flexible; and that
the work necessary to deform the hose, and to overcome both air drag and
rolling friction, can be neglected. However, they do think that it is important
to investigate the roll’s vertical motion in addition to the more obvious horizontal
one.

The speed of the diminishing roll continually increases, and its acceleration
a is clearly a vector pointing in the same direction as its velocity. On the other
hand, the vector resultant of the horizontal external forces that act on the roll (the
frictional force and the restraining force at the fixed end of the hose) points in the
opposite direction. This strange fact can be understood by recognising that the total
momentum of the moving roll (and hence of the whole system) is

p(x) = m(x) v(x) = M(1 − (x/L))
v0√

1 − (x/L)
= Mv0

√
1 − (x/L),
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where m(x) = M(1 − (x/L)) is the mass of the moving part of the hose after it has
travelled a distance x. Its speed v(x) has been determined using the conservation
of mechanical energy (but ignoring gravitational effects), and is given by v(x) =
v0/

√
1 − (x/L).

Clearly, as x increases, p(x) decreases – reflecting the fact that the mass of the
piece in motion decreases faster than the rate at which its speed increases. The
direction of the resultant force F(x) acting on the system is therefore opposed to
that of the motion,7 with

F(x) = dp

dt
= dp

dx

dx

dt
= dp(x)

dx
v(x) = −Mv2

0

L

1

2(1 − (x/L))
.

Peter (using the conservation of mechanical energy and mass) has determined
not only the mass m(x) of the roll, its radius r(x) and its angular velocity ω(x),
but also its moment of inertia I(x). He has also found the horizontal and vertical
velocities, vx and vy, of the roll’s centre of mass (see Fig. 2). All of these quantities
are functions of x, and therefore also of time t.

Fig. 2

Peter says that:

I have found vx and vy, and multiplying them by the instantaneous mass m(x), I
have calculated the components px and py of the linear momentum of the roll, and
from the rates of change of the latter, the external forces, F and N, can be found.

He decided to calculate the angular momentum J of this strange system, and
also its rate of change, and so check whether or not the torques due to the external
forces would produce this rate of change, i.e. whether or not τnet = dJ/dt. As
both the centre of the roll and the centre of mass of the whole system are accel-
erating, he expressed the formulae for the angular momentum and the torques,
not about these points, but with respect to the fixed point P, the stationary end of
the hose.

7 This calculation appears in the predecessor of this book, as the solution to ‘Problem 108’ of P. Gnädig, G.
Honyek & K. F. Riley, 200 Puzzling Physics Problems (Cambridge University Press, 2001). There, a further
question was posed: How long does it take for the hose to completely unroll?
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To his great surprise, he has found that – though the net torque of the external
forces is zero – the angular momentum of the system does not remain constant, but
changes with time! After he had checked his calculations for the umpteenth time,
he was close to stating:

In this system, the angular-momentum theorem, a basic law in classical mechan-
ics, is not obeyed.

Pauline, however, thought differently! She claimed that there was an error in the
method Peter had used, in that he had applied a well-known standard formula to a
situation to which it did not apply.

Who was right?

P84∗ A cylindrically shaped closed container rotates uniformly around its
principal symmetry axis, which lies horizontally, at a rate of 0.5 revolutions per
second. Both the cylinder’s inner diameter and its length measure 1 m, its inner
wall is rough and it contains 100 kg of sand. Estimate the temperature rise of the
sand during 10 minutes of operation. Make realistic estimates for (nearly all of)
the data required, and neglect heat loss through the wall of the container.

P85 A solid iron cube of volume 10−3 m3 is fastened to one end of a cord,
the other end of which is attached to a light plastic bucket containing water. The
cord, which has negligible mass, passes over a pulley, and the iron cube is sus-
pended in the water, as shown in the figure. It is found that the system is in
equilibrium.

a) How many litres of water are there in the bucket?
b) What would happen if more water were poured into the bucket?
c) What would happen if some or all of the water evaporated?

P86 An air bubble with a diameter of a few centimetres was injected into the
bottom of a giant closed vertical cylinder that had a height of 10 m and was, apart
from the bubble, completely full of water. At the moment of injection, the water
pressure at the bottom of the cylinder was 1.1 atm. The air bubble rose, and a little
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bit later it reached the top of the closed container. Find the pressure of the water at
the bottom of the cylinder after the air bubble had risen.

For the sake of definiteness, assume that the hydrostatic pressure of 10 m of water
is exactly 1 atm.

P87 There is water in a container that stands on a table. A rubber hose connects
the bottom of the container with a cupboard-sized black box standing next to
the table. If additional water is added to the container, then the water level in
it sinks, and if some is taken out, the level rises. Whatever could the black box
contain?

P88 A funnel is placed upside down on a table, as shown in the figure, and
1000 cm3 of water is poured into it. The area covered by the funnel on the table-
top is 200 cm2, and the height of the water is 18 cm.

What is the minimum mass of the funnel if it is not to be lifted away from the
supporting surface?

P89∗ A thin-walled hemispherical shell of mass m and radius R is pressed
against a smooth vertical wall, and, through a small aperture at its top, is filled with
a liquid (say, water) of density � (see figure). What are the minimal magnitude and
the direction of the force that has to be applied to the shell if liquid is not to escape
from it? To which point on the shell should this force be applied?
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P90 The gauge pressure8 in the tyres of quite an old car (one without power
steering) is increased from 1.5 atm to 2.0 atm. What percentage change is there in
the force required to rotate its steering wheel when the car is stationary?

P91∗ A balloon is inflated and connected to a water manometer, as shown in
the figure. The difference in height between the water columns in the two arms of
the manometer is 10 cm. When a solid cylindrical iron rod, of length 50 cm and
diameter 2 cm, is placed vertically and carefully on top of the balloon, will the
water in the manometer overflow?

P92 The wall of a vertical measuring cylinder contains many uniformly dis-
tributed small holes. The cylinder is filled with water up to a height H, and so thin
water jets are ejected horizontally through the holes. The jets do not interfere with
each other, and the water level in the cylinder is continuously maintained at its
initial value. What shape is the envelope of the water jets?

P93∗∗ There is some water in a closed spherical Florence flask.9 When the
flask is turned upside down, the water collects in its long neck up to a height of
about 5 cm. The internal dimensions of the flask are shown in the figure.

8 The gauge pressure is not the absolute pressure, but the difference between the absolute pressure and the
atmospheric pressure p0.

9 A Florence flask is a spherical flask (sometimes with a flattened bottom) that is mainly characterised by its long
(and sometimes quite wide) neck.
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The flask is now rotated about its vertical axis of symmetry at a rate of three
revolutions per second, and it is arranged that the temperature of the flask wall
is everywhere the same. After a sufficiently long time, an equilibrium state is
established in the flask.

Make a sketch showing the distribution of the water within the flask when this
equilibrium state has been reached.

P94∗ A razor-blade floats on the surface of water contained in a glass. When
the glass is gently shaken, the razor-blade sinks. How, if at all, does the water level
change as a result?

P95∗ Take a disc of copper with a diameter of about 10 cm, and a thickness
of approximately 0.2 mm (other metals, such as soft steel or aluminium, are also
suitable for this experiment). In the centre of the disc, make a circular depression
with a diameter of 15–20 mm and a depth of 2–3 mm. If such a disc is placed on a
water surface, it will probably float (see solution on page 263). But if some water
is splashed onto it, the disc will almost certainly sink, because metal is denser than
water.

Now place the dry disc on the water surface and direct a strong vertical jet of
water downwards into the central depression. What you will observe is paradoxical
– the jet pushes the disc down, but cannot sink it!10 It will be noticed that, on the
disc’s surface, there is a circular ‘hump’ of water that is pushed outwards by the
diverging thin layer of running water (see figure).

10 This interesting phenomenon is described in an article entitled ‘An unsinkable disk’ by A. Luzin in Quantum,
Sept./Oct. 1999, p. 42. Unfortunately, the explanation given there of why the disc does not sink is, in our
opinion, in error.



34 200 More Puzzling Physics Problems

In hydraulics, the observed water ‘hump’ is known as a ‘hydraulic jump’, and is
characterised by a sharp, step-like rise of the water level in an open waterway; at the
jump, the nature of the water motion changes. When liquid moving at high speed
discharges into a zone in which it has a lower velocity, a rather abrupt rise occurs
in the liquid level: the rapidly flowing liquid is suddenly slowed and increases its
depth.

A common example of a hydraulic jump is the roughly circular stationary wave
that forms around a central stream of water falling on the flat bottom of a kitchen
sink. The ‘hump’ of water near the rim of the copper disc is very similar to this
easily observed phenomenon. The depression at the centre of the disc provides the
disc with horizontal stability – without it, the disc would move rapidly away from
under the water jet.

Now for the question! Why does the disc not sink under the pressure generated
by the powerful water jet?

P96 Two spherical soap bubbles with different initial radii coagulate, and the
radii of their free surfaces after the coagulation are R and r. What is the radius of
curvature of the soap film that separates the two bubbles? What is the radius of this
film’s circular perimeter?

P97∗ While cleaning his flat, a physics research student knocks over a bucket
containing 5 litres of water, which then forms itself into one continuous puddle.
How large, in area, does the student expect the puddle to be? The contact angle
between the floor and the water is 60◦.

P98∗ Inside the cabin of a freely orbiting space ship, a ball of water approxi-
mately 4 cm in diameter and a nearby thin glass rod are in a state of levitation. The
rod is about 8 cm in length, and has a circular cross-section and blunt ends. One end
of the rod gently touches the ball. Sketch the shape the ‘water drop’ subsequently
takes up.

P99∗ Inside a space station, a freely floating, closed, spherical shell of inner
diameter 8 cm has one-third of its volume occupied by water; the rest contains



Problems 35

air at STP (standard temperature and pressure). In equilibrium, how is the water
distributed, if the material of the spherical shell is

a) glass, which is ‘perfectly’ wetted by the water,
b) silver, for which the contact angle of water is 90◦?

P100∗ You are given 1 kg of distilled water at 0 ◦C, an equal mass of boiled tap
water at 100 ◦C, and the task of warming the distilled water to 60 ◦C. How would
you set about it?

No additional water, hot or cold, is available, but you are provided with both
insulating and conducting materials (in sheet form) and a suitable selection of
tools.

What is the maximum possible temperature, in principle, to which your method
could warm the distilled water?

P101∗ There is a very small hole in an otherwise totally enclosed heated
furnace. Outside the furnace, the air temperature is 0 ◦C and the air pressure is
100 kPa. The air inside the furnace is kept at a constant temperature of 57 ◦C by
the controlled heating system, and after a sufficiently long time its pressure also
becomes stationary. Estimate the magnitude of this stationary pressure.

P102∗ An ideal gas, enclosed in a fixed, long, vertical cylinder with open ends,
is separated from its surroundings by two identical, frictionless pistons. Between
the pistons there is a fixed, rough, separating wall in which there is a small hole
(see figure). Initially, the temperature of the enclosed gas is equal to that of the
outside air, and the lower piston is held up against the separating wall. When the
lower piston is released, the pistons descend slowly.

In which of the two following scenarios will the bottom piston finish in a lower
position:

a) the pistons, the separating wall and the wall of the cylinder are good heat
insulators,

b) the pistons, the separating wall and the wall of the cylinder are good heat
conductors?
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P103∗ It is well known to hikers and mountaineers that the air temperature
decreases by 1 ◦C for each 100 m increase in altitude.

The ground, warmed by solar radiation, heats up the air above it, and the lowest
layer of the atmosphere (the troposphere) is in a state of permanent convection.
However, this mechanism is insufficient to equalise the temperatures of the various
air layers, because rising air masses are not able to effectively exchange heat with
their surroundings (due to a combination of their rapid motion and the low thermal
conductivity of air).

There is thus a variation of temperature with height. Use simple physical con-
siderations to explain and estimate the observed rate of air temperature decrease
with altitude.

P104 A quantity, n mol say, of helium gas undergoes a thermodynamic process
(neither isothermal nor isobaric) in which the molar heat capacity C of the gas can
be described as a function of the absolute temperature by C = 3RT/(4T0), where
R is the gas constant and T0 is the initial temperature of the helium gas. Find the
work done on the system up until the point at which the helium gas reaches its
minimal volume.

P105∗ An ideal gas is contained within a closed bag made from material that
is both easily stretched and an excellent heat insulator. The pressure outside the
bag is decreased from p1 to p2 and the gas both expands and cools. In which case
is the temperature drop in the gas greater: if the decrease in the outside pressure is
slow, or if it happens suddenly?

P106∗∗ One of the junctions (A) of a thermocouple is in air at TA = 27 ◦C,
while the other (B) is placed inside an insulated vessel containing ice at TB = 0 ◦C.
The electrical energy produced by the thermocouple is dissipated in a resistor of
resistance R placed in an insulated water bath. The masses of the water and ice are
equal. Find the amount by which the temperature of the water has increased when
the last of the ice has melted.

P107∗∗ By how much can a small spherical black body be warmed by sun-
shine, using a thin convex lens that has a focal length equal to twice its diameter?
Does the result depend upon the radius of the sphere?
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P108 During cloudless autumn nights, hoar frost can cover car windscreens,
even if the temperature of the surrounding air does not fall below 0 ◦C. How can
this happen? Where should a car be parked so as to avoid this phenomenon?

P109∗ The three vertices of a metal plate in the form of an equilateral triangle
are held at constant temperatures T1, T2 and T3 (by cooling or heating, as neces-
sary). What temperature do you expect at the centre of the triangle? Prove that your
answer is correct.

P110 Identical ordinary ice cubes are put into two quite large beakers, one of
which contains tap water, the other a strong brine solution. The liquids have the
same volume, and both of them are at room temperature. In which beaker will the
ice cube melt more quickly?

P111 If 1 kg of water freezes, then 334 kJ of energy are released. How much
energy is released if 1 kg of supercooled water at −10 ◦C freezes, and during the
freezing process the temperature remains constant?

P112 Should we increase or decrease the volume of a quantity of air that
contains saturated water vapour, if we wish to condense some of the vapour?

P113∗ Water is boiling in a narrow test tube that is open at the top. Just before
the last few drops are vaporised, the tube is rapidly and hermetically sealed. The
temperature at the top of the tube is then slowly increased to 200 ◦C, while the very
bottom of it is maintained at 100 ◦C.

What is the pressure of the steam in the test tube?

P114∗ At some time in the distant future, humankind makes contact with the
inhabitants of an exoplanet, on which the atmospheric pressure near the surface is
the same as on the Earth, i.e. 1 atm ≈ 101 kPa. Further, the atmosphere consists of
a mixture of oxygen and nitrogen gases. Because of these similarities, the planet is
called Exo-Earth.

Human researchers and Exo-Earth scientists cross-check the physical and chem-
ical data of their two atmospheres, and state that, on both planets, the boiling
points of liquid nitrogen and liquid oxygen are 77.4 K and 90.2 K, respectively,
at standard atmospheric pressure.

On both planets, local ‘air’ was isothermally compressed at a constant tem-
perature of 77.4 K, and liquefaction set in when the pressure reached 113 kPa.
However, on Earth oxygen, and on Exo-Earth nitrogen, condensed first.

a) What is the composition of the atmosphere on Exo-Earth?
b) For what atmospheric composition would the oxygen and nitrogen begin

to liquefy simultaneously under isothermal compression at 77.4 K, and at what
pressure would this happen?
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P115 Two spherical flasks are almost identical. One of them has a straight
neck directed upwards; the other is similar to a retort, in that its neck points
downwards, as shown in the figure. The same amount of a liquid is put into each
of the flasks, which are then heated from below in a controlled way that ensures
that the temperatures of the liquids within them remain fixed and identical. Which
flask will run out of liquid first if

a) water is used, and the constant temperature is 100 ◦C,
b) ether (diethyl ether, (C2H5)2O) is used, and the constant temperature is

34.6 ◦C, the boiling point of ether at atmospheric pressure?

P116∗ Two narrow, straight, vertical test tubes with identical cross-sectional
areas are open at the top; one of them is 20 cm long, and the other is 40 cm. We
pour 1 cm3 of eau-de-Cologne into the first test tube, and 2 cm3 into the second.
How many times longer does the latter take to evaporate than the former? Is there
any change in the result if both test tubes are covered, and identical but very small
holes are made, one in each cover?

P117∗∗ A point source of light is inside a solid sphere made from glass of
refractive index n. The sphere has radius r and the source is a distance d from
the sphere’s centre (see figure). What is curious is the fact that the sphere forms
a perfect (virtual) image of the light source, i.e. the backward continuations of
all light rays starting from the source, refracting at the sphere’s surface, and
travelling to the right-hand side of the figure, intersect each other at a common
point.

What is the distance d, and where is the sharp image of the light source
formed?
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P118∗∗ What is the shape of the blunt end of a glass rod that would focus (at a
single point F within the rod) all the light rays incident upon it that are parallel to
the rod’s axis? Find the equation describing the shape of the surface, expressing it
in terms of the (uniform) refractive index n of the glass, and the rod’s focal length
f , defined to be the distance between F and the point on the surface that lies on the
rod’s axis.

What is the corresponding solution if a beam propagating inside the glass rod,
and parallel to its axis, is to be brought to a focus at an axial point outside the
rod?

P119 On a spherical planet, the refractive index of the atmosphere, as a func-
tion of altitude h above the surface, varies according to the formula

n(h) = n0

1 + εh
,

where n0 and ε are constants. Curiously, any laser beam, directed horizontally,
but at an arbitrary altitude, follows a trajectory that circles the planet. What is the
radius of the planet?

P120∗ Find the shape of the image that is formed by a converging thin lens
with focal length f , if the object is a sphere of radius r (< f ), and the centre of the
sphere is at the focus of the lens.

P121∗ How many times ‘brighter’ is an image of the Moon when looked at
through a telescope rather than with the naked eye? And what about the stars?

P122∗ A converging lens of focal length f is cut along a plane that contains the
optical axis of the lens, and a small, black plate of thickness δ is placed between the
two half-lenses. A point-like source emitting monochromatic light of wavelength
λ is located on the ‘optical axis’, a distance p from the lens (p > f ).

How many interference fringes can be seen on a screen placed a distance H
behind the lens, with its plane perpendicular to the optical axis?

Data: f = 10 cm, p = 20 cm, δ = 1 mm, λ = 0.5 μm, H = 50 cm.

P123∗ In an unusual optical diffraction grating, the distances between the
neighbouring slits are not equal; they are alternately d and 3d. The widths of the
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slits themselves are all equal and are much smaller than d. If light of wavelength λ

falls at normal incidence on the grating, what kind of diffraction pattern is formed
on a screen placed at a distance L from it?

P124∗ An optical grating is illuminated normally by a laser beam of wave-
length λ � d, where d is the slit spacing. The grating is unusual, in that alternate
slits are wider and narrower: the width of the odd-numbered slits is a, while that
of the even-numbered ones is b, where b < a and both of them are much smaller
than d.

The special character of this grating is reflected in its diffraction pattern in a
peculiar, easily noticeable, way. How? What is the diffraction pattern like (i) if
b � a and (ii) if b ≈ a, and the screen on which the patterns are formed is a
distance L behind the grating?

P125 An opaque sheet is perforated by many small holes arranged on a square
grid (see figure), and is illuminated normally by monochromatic laser light of
wavelength λ. What kind of diffraction pattern can be observed on a screen placed
parallel to the sheet, and a distance L behind it, if the ‘lattice constant’ of the grid
is d? Assume that L � d � λ.

How does the diffraction pattern change if the sheet is compressed horizontally
(along the x-axis in the figure) by a factor of N, with the result that the holes lie on
a rectangular grid?

P126∗ An opaque sheet is perforated by many small holes arranged on a trian-
gular grid (see figure), and is illuminated normally by monochromatic laser light of
wavelength λ. What kind of diffraction pattern can be observed on a screen placed
parallel to the sheet, and a distance L behind it, if the ‘lattice constant’ of the grid
is d? Assume that L � d � λ.
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P127∗ a) Light cannot be transmitted through two coaxial polarising filters if
their polarisation axes are orthogonally oriented. However, if a third filter is placed
between them, some light can pass through all three. What is the maximum fraction
of the incident intensity that can be so transmitted? Find the corresponding angle
between the polarisation axis of the first filter and that of the one interposed –
denoted by ϕ in figure a).

b) There is a second way in which light can be made to pass through the two
orthogonal polarising filters: by placing, between and parallel to the filters, a uni-
form plate made from uniaxial birefringent (birefractive) material. The special
feature of such a plate is that its refractive index for light polarised parallel to
the direction of vector e, which lies in the plane of the plate (see figure b)), is n1,
whereas for light polarised perpendicular to e it is n2.

What is the maximum fraction of the incident intensity that can be transmitted,
if the system is illuminated (perpendicularly to the plane of the filters and the plate)
by monochromatic light of wavelength λ? Find the thickness d of the birefringent
plate appropriate to this case, and how we should choose the orientation of e?

P128∗∗ a) Nick, a 17-year-old grammar school pupil tidying up his room,
found an old pair of spectacles used for viewing 3D movies. He tried on the specs in
the bathroom, and he realised that when looking at his own image in the bathroom
mirror, with one eye closed, he could see only his open eye; the other ‘lens’, in
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front of his closed eye, seemed totally dark. What can be the explanation for Nick’s
observation?

b) A week later, Nick went to a 3D multiplex cinema (movie theatre), and on
returning home he repeated his experiment, but with the new 3D glasses he had just
acquired at the cinema. But, to his great surprise, the effect was just the opposite
of what he expected. In the mirror, he could see only his closed eye, and not the
open one. Find the explanation for Nick’s peculiar experience.

P129∗ A finite system of point electric charges, in vacuum and very far from
anything else, is in stationary equilibrium under the influence of its own internal
electric fields. What is the electrostatic interaction energy of the system? Is the
equilibrium stable or unstable?

P130 Three small positively charged pearls lie one at each vertex of a triangle.
Their masses are m1, m2 and m3, and their charges are Q1, Q2 and Q3, respectively.
When the pearls are released from rest, each moves along a different straight line,
the three motions taking place in a vacuum with negligible effects due to gravity.

What special condition has to be satisfied for this to happen? Find the angles of
the triangle formed by the pearls at the beginning of their motion, if the charge-to-
mass ratios of the three pearls are in the proportion

Q1

m1
:

Q2

m2
:

Q3

m3
= 1 : 2 : 3.

P131∗ In a cathode ray tube, the beam emerging from the electron gun can be
deflected by passing it through the electric field of a small parallel-plate capaci-
tor. If the capacitor is uncharged, then the speed and direction of motion of the
electrons are constant, and they hit the screen with an unchanged velocity.

When the parallel plates of the capacitor carry a constant charge, the electron
trajectory is bent. Is the speed with which electrons then hit the screen increased
or decreased as compared to its initial value? The electron gun–capacitor and
capacitor–screen distances are both much greater than the length of the capacitor’s
plates.
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P132∗ A triangle is made from thin insulating rods of different lengths, and the
rods are uniformly charged, i.e. the linear charge density on each rod is uniform
and the same for all three rods. Find a particular point in the plane of the triangle
at which the electric field strength is zero.

P133∗ Three very long (they can be regarded as infinitely long), thin, insulat-
ing rods are uniformly charged, i.e. the linear charge density on each rod is uniform
and the same for all three rods. The rods lie in the same plane, and cross each other
to make a general triangle. Where can a point charge be placed so as to be in
equilibrium?

P134 Two very long, thin, insulating rods, each carrying uniform linear charge
density λ, lie in perpendicular directions (in three-dimensional space), a distance
d from each other (see figure). What is the magnitude of the force of repulsion
between them?

P135 Two very long, parallel, thin, insulating rods are uniformly charged
with equal but opposite electric charge densities. What shape are the electric field
lines?

P136∗ A square of side d, made from a thin insulating plate, is uniformly
charged and carries a total charge of Q. A point charge q is placed on the sym-
metrical normal axis of the square at a distance d/2 from the plate. How large is
the force acting on the point charge?
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P137∗ A cube is made from six thin insulating square faces, each square hav-
ing side d and carrying a uniformly distributed charge of Q. How large is the
electrostatic force acting on each face?

P138∗∗ Two identical, large, rectangular, insulating plates lie one vertically
above the other. The uniform separation between the thin plates is d, and they are
both uniformly charged; the surface charge density on the upper one is +σ , and
that on the lower one is −σ .

What is the magnitude and approximate direction of the electric field at the point
P (see figure), which is at a height h vertically above the midpoint of one of the
upper plate’s edges?

The distance h is much smaller than the edge lengths of the insulating plates, but
much larger than the separation d.

P139∗ There is a small circular hole in a thin-walled, uniformly charged, insu-
lating spherical shell, which has radius R and carries a total charge Q. What is
the electric field strength at the centre of the hole? Sketch the electric field lines
associated with the holed spherical shell in a section that includes its axis of
symmetry.

P140∗∗ Two insulating hemispherical shells (e.g. the two halves of a ping-
pong ball) are placed very close to each other with their centres almost coincident,
as shown in figure a). Both of them are uniformly charged, one with total electric
charge Q, and the other with total charge q.

a) What is the magnitude of the net electric force exerted by the two bodies on
each other?
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b) Does the result change if the radius of one of the hemispherical shells is only
one-half that of the other, as shown in figure b)?

P141∗ Taking the zero of electrostatic potential at infinity, how many times
larger is the potential at the centre of an insulating solid cube carrying uniform
charge density than that at one of its vertices?

P142∗ A glass capillary tube is placed vertically into mercury held in a glass
container (see figure). A high voltage, relative to ground, is applied to the mercury.
Does the meniscus in the capillary tube (the interface between the mercury and air)
move, and, if it does, which way?

P143 Near the edges of a parallel-plate capacitor, the electric field is inhomo-
geneous, but the effect of this so-called fringe field is usually neglected. Would a
larger or smaller value be found for the magnitude of the capacitance if the fringing
effect were also taken into account?

P144 One of the plates of a parallel-plate capacitor with capacitance C carries
a charge of Q1, and the other carries Q2. What is the voltage (potential difference)
across the capacitor?

P145∗∗ Two very large, identical, rectangular, metal plates lie in the same
plane, with corresponding edges parallel. The plates, which are very close to each
other and connected by a wire, are initially uncharged. A point charge Q is now
placed near them at the position above the plates shown in the figure. Find the
resulting amounts of charge on each individual plate.

P146∗ Both plates of a parallel-plate capacitor, with plate separation d, are
earthed, and a small pearl carrying charge Q is placed a distance δ (δ � d) from
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the (imaginary) mid-plane between the plates (see figure). Find the force acting on
the pearl.

P147∗ Two large earthed metal plates make an angle θ with each other. A thin
rod of length L, and carrying a uniformly distributed charge Q, is placed in the
plane bisecting the angle between the plates, parallel to, and at a distance r from,
their line of the intersection (L � r).

Find the force that acts upon the rod as a result of the electrostatic induction a) if
θ = 180◦ and b) if θ = 18◦.

P148∗∗ A thin metal disc of radius R is charged, and carries a total electric
charge of Q. Find the charge distribution on the disc.

P149∗∗ Two thin metal discs, A and B, each of diameter 5 cm, are suspended
by electrically insulating threads in such a way that the discs are parallel (see
Fig. 1) and close to each other (for example, their separation might be 2 mm). Both
discs have small charges q on them. As q is small, we may neglect the associated
relative displacement of the discs, and the possibility of electrical discharge. The
electrostatic force between the two discs is clearly repulsive at this stage.
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Fig. 1 Fig. 2

A third metal disc C of diameter D > 5 cm is carefully placed between the two
original discs. The third disc is uncharged and also suspended by an electrically
insulating thread. The three discs are all parallel and their centres lie along the
same horizontal line. The resulting set-up is shown in Fig. 2.

Find the diameter D of the third disc that will make the net electrostatic force
acting on each charged disc equal to zero.

P150∗ A solid metal sphere of radius R is divided into two parts by a planar
cut, made in such a way that the outer surface of the smaller part of the sphere
is πR2. The cut surfaces are coated with a negligibly thin insulating layer, and the
two parts are put together again, so that the original shape of the sphere is restored.
Initially the sphere is electrically neutral.

The smaller part of the sphere is now given a small positive electric charge +Q,
while the larger part of the sphere remains neutral. Find

a) the charge distribution throughout the sphere,
b) the electrostatic interaction force between the two pieces of the sphere.

P151 A thin metal ring of radius R is charged in such a way that the electric
potential at its centre is V0. The ring is now placed horizontally above a grounded
solid metal sphere of radius r, so that the centre of the ring and the top of the sphere
coincide. Find the total charge induced on the sphere.
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P152∗ Four identical non-touching metal spheres are positioned at the vertices
of a regular tetrahedron, as shown in the figure. A charge of 20 nC given to one of
the spheres, A, raises it to a potential V . Sphere A can also be raised to potential V
if it and one of the other spheres are each charged with 15 nC.

What must be the size of equal charges given to A and two other spheres for the
potential of A to again be raised to V? And if all four spheres are used?

P153∗ A small pearl carrying charge Q is placed at a distance d from the centre
of a thin-walled spherical metal shell of radius R, with d > R. Find the force
acting on the pearl if the shell is a) grounded, b) uncharged and not grounded, and
c) charged, with charge Q′.

What would be the force acting on the pearl, in each of the three cases, if it were
placed inside the spherical shell, at a distance d < R from its centre?11

P154∗∗ An uncharged metal sphere of radius R is placed in a homogeneous
electric field of strength E0.

a) What is the electric field formed around the metal sphere?
b) Find the charge distribution on the sphere.

P155 Two small, identical bar magnets are placed some distance apart, as
shown in the figure.

11 The essence of this final complementary question can also be found in the predecessor of this book: see
‘Problem 92’ in P. Gnädig, G. Honyek & K. F. Riley, 200 Puzzling Physics Problems (Cambridge University
Press, 2001). Our reason for repeating its solution here is to present in one place all of the possible variants of
this question.
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In which of the following cases is the work needed larger? And how many times
larger?

a) The axis of the right-hand magnet is slowly rotated through 180◦, so that the
two magnetic moments are parallel.

b) The right-hand magnet is slowly removed ‘to infinity’ along the straight line
connecting the magnets.

P156∗ A circular wire loop of radius R, and carrying an electric current I, is at
rest in a horizontal plane (see figure).

Find the magnetic field strength at a distance L (� R) from the centre O of the
circular loop:

a) at a point, P1, situated on the vertical axis passing through O,
b) at a point, P2 in the plane of the current loop.

P157∗ A regular tetrahedron is made of homogeneous resistance wire of uni-
form cross-section. Current I is conducted into vertex A through a long, straight
wire directed towards the centre O of the tetrahedron, and it is conducted away
through vertex B in the same way, as illustrated in the figure. What are the magni-
tude and direction of the magnetic field vector at the centre of the tetrahedron?
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P158∗ One end of a long, straight, current-carrying metal wire is electrically
connected to a very large, thin, homogeneous metal plate, whose plane is perpen-
dicular to the wire, and whose distant perimeter is earthed. One of the terminals of
the battery supplying the current is also earthed.

Ignoring the Earth’s field, find the magnitude and direction of the magnetic field
at a point P that is a distance r from the wire and at a height h above the metal
plate, when a steady current I flows in the wire (see figure). Describe the magnetic
field above and below the plate.

P159∗∗ The surface of a plastic globe, of radius R, is uniformly covered with
conducting material (e.g. with a graphite layer), and the globe is placed on an
insulating support. One end of a long, straight, radial, current-carrying metal wire
is electrically connected to a point on the sphere’s surface. The steady current I,
flowing through the surface, leaves the globe through another long, straight, radial
metal wire that is perpendicular to the input wire, as shown.

What kind of magnetic field is formed inside and outside the globe? Find,
in particular, the magnetic field strength at the point P ‘half-way’ between the
input and output junctions of the current, and just a ‘whisker’ above the globe’s
surface.

P160∗∗ Two very long, parallel, straight, thin wires, a distance d apart, carry
electric currents with identical magnitudes but opposite directions. Find the shape
of the associated magnetic field lines.
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P161∗∗∗ A normal 8 × 8 chessboard is made from plates of two different met-
als, both of which are quite poor electrical conductors. The only other conducting
elements in its construction are two thin terminal strips, which have very good
conductivity. They are positioned one at each end of the board (but not shown in
the figure). The common thickness t of the plates is much less than the length L of
the board.

The conductivity of the light squares is σ1, and that of the dark ones is
σ2. Find the current flowing through the chessboard, if a steady voltage V is
applied across the terminals. Any interface resistances between the squares can be
neglected.

P162∗ Two long, cylindrical, unifilar, air-cored solenoids are placed end-to-
end and very close to each other, so that they have a common axis of symmetry
(see figure). The solenoids are identical, with cross-sectional area A and n turns
per unit length. The direct current flowing in one of them is I1, and that in the other
is I2. What is the magnitude of the magnetic force between them?

P163∗ In a strong magnetic field B, the two ends of a thin, flexible wire of
length � are fixed at points P1 and P2, a distance �/2 apart. The direct current
flowing in the wire is I. What is the shape of the wire, if the magnetic field vector is

a) perpendicular to the line segment P1P2,
b) parallel to the line segment P1P2?

With what force does the wire pull on the anchor points in each case?

P164∗ Two identical circular wire loops are placed in parallel planes, with
their centres on a common normal to both planes. The direct currents they carry
are the same, both in magnitude I and in direction of flow (see figure). From the
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midpoint O of the common normal, an electron with initial speed v0 starts off in a
direction parallel to the planes of the loops.

What can be said about the electron’s speed and direction when it is very far
from the loops?

P165∗ A charged particle enters a region in which there is a frictional force
proportional to the particle’s speed, and the particle stops 10 cm from its entry
point. If the particle repeats its motion when a homogeneous magnetic field, per-
pendicular to the plane of its trajectory, is also present, then the particle comes to
rest 6 cm from its entry point (see figure). How far from its entry point would the
particle stop if the magnetic field were twice as large?

P166∗ A small ball of mass m, and carrying a positive charge q, is suspended
by an insulating string of length �. The pendulum so formed is placed, at rest, in a
homogeneous, vertical magnetic field of strength B. Experiment shows that, if the
ball is initially knocked slightly sideways, then it swings back and forth, with the
plane of its swing slowly rotating. How long does it take for the plane to make one
complete revolution?

P167∗∗ This problem investigates the motion of two electrons that are moving
in a plane perpendicular to the field lines of a homogeneous magnetic field. The
electrons are considered as classical point masses, affected only by electric and
magnetic forces.

a) The two electrons, initially at rest, are placed a distance d apart. They are then
given initial velocities of identical magnitudes v, but in opposite directions. Find
the condition that d must satisfy if, in the subsequent motion, the separation is to
remain constant. Find also an expression for v.
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b) Show that it is possible to maintain a constant separation d if only one of the
two electrons is given an initial velocity. What is the trajectory of the centre of
mass of the system in this case? Find the minimal distance dmin that is necessary
to realise this kind of motion. Sketch the trajectories of the electrons in that case.
When will the initially moving electron first stop?

P168 The electrical resistances measured across the three pairs of terminals of
the ‘transparent’ black box shown in the figure are

AB: 1 �, BC: 2 �, AC: 3 �.

Find the values of resistors x, y and z.

We can write the following simultaneous equations expressing the unknown
resistances (in units of ohms) by means of their labels:

1

x
+ 1

y + z
= 1 −→ x(y + z) = x + y + z, (1)

1

y
+ 1

x + z
= 1

2
−→ y(x + z) = 2(x + y + z), (2)

1

z
+ 1

x + y
= 1

3
−→ z(x + y) = 3(x + y + z). (3)

Subtracting equation (3) from the sum of (1) and (2), we get 2xy = 0. This is
impossible, because neither x nor y is zero!

How can this mathematical ‘contradiction’ be resolved?

P169∗ Closed strips are made from the chain shown in the figure, which con-
sists of 3N identical resistors, in two different ways:

a) the terminals A and C, and the terminals B and D, are connected pairwise
(ordinary strip),

b) the terminals A and D, and the terminals B and C, are connected pairwise
(Möbius strip).

In which of the two cases is the equivalent resistance between points A and B the
larger?
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P170 Find the natural frequencies of an LC circuit with two identical inductors
and two identical capacitors (a ‘2L2C’ circuit), connected as shown in the figure.

P171∗∗ Find the equivalent electrical impedance between the terminals A and
B shown in the figure, for an alternating current of frequency ω. The ‘infinite’
chain is made up of a large number of identical units, each consisting of a coil of
inductance L and a capacitor with capacitance C. Is it possible that the equivalent
impedance has two different values?

P172∗ Two identical, very long, cylindrical conductors, of diameter d and
negligible resistance, are placed parallel to each other with their axes separated
by D = 50d. A battery of electromotive force (voltage) V is connected between
the left-hand ends of the wires, while a resistor with resistance R is connected
across their other ends (see figure). Find the resistance R that makes the electrical
and magnetic forces between the conductors equal.
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P173∗ In 1917, T. D. Stewart and R. C. Tolman discovered that an electric
current flows in any coil wound around, and attached to, a cylinder that is rotated
axially with constant angular acceleration.

Consider a large number of rings of thin metallic wire, each with radius r and
resistance R. The rings have been glued in a uniform way onto a very long evacu-
ated glass cylinder, with n rings per unit length of the symmetry axis. The plane of
each ring is perpendicular to that axis.

At some particular moment, the cylinder starts to accelerate around its symmetry
axis with angular acceleration α. After a certain length of time, there is a constant
magnetic field B at the centre of the cylinder. Find, in terms of the charge e and
mass m of an electron, the magnitude of the field.

P174∗ We aim to measure the resistivity of the material of a large, thin, homo-
geneous square metal plate, of which only one corner is accessible. To do this, we
chose points A, B, C and D on the side edges of the plate that form the corner (see
figure). Points A and B are both 2d from the corner, whereas C and D are each a
distance d from it. The length of the plate’s sides is much greater than d, which, in
turn, is much greater than the thickness t of the plate.

If a current I enters the plate at point A, and leaves it at B, then the reading on a
voltmeter connected between C and D is V . Find an expression for the resistivity
� of the plate material.

P175 A metal sphere is electrically charged and hangs on an insulating cord.
The sphere slowly loses its charge because the air has a small, but non-zero, con-
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ductivity σ . Assuming that the air’s conductivity is everywhere the same, how long
will it take for the charge on the sphere to halve?

P176∗ A chocolate figure of Santa Claus, wrapped in aluminium foil, is elec-
trically charged and hangs on an insulating cord. The figure slowly loses its charge
because the air has a small, but non-zero, conductivity σ . Assuming that the air’s
conductivity is everywhere the same, how long will it take for Santa’s charge to
halve?

P177 A long, straight wire of negligible resistance is bent into a V shape, its
two arms making an angle α with each other, and placed horizontally in a vertical,
homogeneous magnetic field of strength B. A rod of total mass m, and resistance
r per unit length, is placed on the V-shaped conductor, at a distance x0 from its
vertex A, and perpendicular to the bisector of the angle α (see figure).

The rod is started off with an initial velocity v0 in the direction of the bisector,
and away from A. The rod is long enough not to fall off the wire during the
subsequent motion, and the electrical contact between the two is good – although
the friction between them is negligible.

Where does the rod ultimately stop?
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P178 Inside a vertical, thin-walled, non-ferromagnetic (say, brass) tube, a
quite large, strong, cylindrical permanent (say, neodymium) magnet falls very
slowly. It takes a time t1 to fall between two particular markers. If the experiment
is repeated with a different non-ferromagnetic (say, copper) tube with the same
length but a slightly larger diameter, then the corresponding time is t2. How long
does it take for the magnet to fall between the marks when the two tubes are fitted
inside each other? The mutual inductance between the tubes is negligible.

P179 Two circular wire loops, with radii R and r (r � R), are concentric
and lie in the same plane (see figure). The electric current in the smaller loop is
increased uniformly from zero to a value of I0 over a time interval t0. Find the
induced voltage in the larger loop.

P180∗ A closed circular loop of radius r is made from a wire of resistance R
and a diode, which can be considered ideal. The loop is held in a horizontal plane,
and a long, vertical glass tube passes through its centre (see figure). Find the charge
that flows through the diode if a small bar magnet with magnetic moment m falls
through the tube.
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P181∗ Three nearly complete circular loops, with radii R, 2R and 4R, and made
of thin wire, are placed concentrically on a horizontal table-top, as shown in the
figure. A time-varying electric current is made to flow in the middle loop. Find the
voltage induced in the largest loop at the moment when the voltage between the
terminals of the smallest loop is V0.

P182 Two identical superconducting rings are very far from each other. The
current in one of the rings (say, A) is I0, but there is no current in the other (B). The
two rings are now slowly brought closer together. Find the current that flows in A
when that in B has increased to I1.

P183∗ Three metal wires of lengths 4a, 6a and 6a are arranged along the edges
of a cube of side a in three different ways, as shown in the figure. The coefficient
of self-inductance of the square shown in figure a) is measured as L1, and for the
arrangement shown in figure b) it is L2. How large, expressed in terms of L1 and
L2, would it be for the arrangement shown in figure c)?

P184∗ Three identical, ‘wide’ electromagnetic coils, of negligible ohmic
resistance, are wound onto a ‘narrow’ toroidal (doughnut-shaped) iron core,
equally spaced around its circumference, as shown in the figure. The first coil
is connected to an (ideal) alternating-current power supply, the second to an
open switch S, and the third to a very high-resistance voltmeter. With this
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arrangement, the voltmeter shows a root mean square (r.m.s.) reading equal to
one-half of that of the power supply.

At this point, switch S is closed and short-circuits the terminals of the second
coil. Assuming that the magnetic permeability of the iron core does not depend on
the magnetic flux through it, determine the new reading of the voltmeter.

P185∗∗ Two ideal (with zero ohmic resistance) air-core toroidal coils, of iden-
tical size but with different numbers of turns, N1 and N2, are interlinked, as shown
in the figure. The planes containing their centres and major radii are perpendicular
to each other. The terminals of the coil with N1 turns are connected to the normal
household a.c. supply with r.m.s. voltage V0, and an ideal voltmeter is connected
to those of the other coil. Find the reading on the voltmeter.

P186∗ A small, electrically charged pearl, initially at rest, can move on a hor-
izontal, frictionless plane. Not far from the pearl, there is a long, vertical solenoid,
in which the electric current is first increased uniformly from zero to a given value,
and then uniformly decreased back to zero. In which direction, relative to point P
in the figure, will the pearl have moved by the end of the process? Or will it (still)
be where it started?
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P187∗ The current in an air-core, toroidal coil with major radius 0.1 m, cross-
sectional area 2 cm2 and 200 turns changes uniformly (over a short interval) at a
rate of 10 A s−1. Find the initial acceleration of a proton, treated as a classical
point mass, that starts from rest at the centre of the toroid.

P188∗ A cylindrical capacitor with external radius R, internal radius R − d
(d � R), length � and mass M hangs on an insulating cord in a region where
there is a homogeneous, vertical magnetic field of strength B. It can rotate freely
(as a whole) around its vertical axis, but is constrained so that it cannot move
horizontally. The capacitor is charged and there is a voltage difference V between
its plates.

What happens, if:
a) without being mechanically disturbed, the capacitor is discharged through an

internal radial wire,
b) suddenly, the magnetic field is switched off?

P189∗ It is well known that, in a homogeneous magnetic field B0, an observer
moving with velocity v0 (|v0| � c) ‘experiences’ an electric field, given by E0 =
v0 × B0. This phenomenon is called motional electromagnetic induction.
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Using only physical laws known to high-school students, investigate whether or
not the inverse phenomenon exists. Does an observer ‘experience’ a magnetic field
when moving in a homogeneous electric field?

P190∗∗ A parallel-plate capacitor, with its plates vertical, is charged in the
sense shown in Fig. 1, and positioned with its lower edges above and on either side
of a small horizontal compass needle. The capacitor is discharged when the tops
of the plates are joined using a small conducting rod. Describe the response of the
compass needle during the discharge process.

Fig. 1

This problem was used as a question in a Hungarian national physics competi-
tion, several years ago. The ‘official solution’ to the problem read more or less as
follows:

When the tops of the plates are joined by the conducting rod, an electric current
starts to flow in the rod, from left to right, with magnitude I = −dQ/dt. At the
same time, the electric field between the plates E = ε−1

0 Q/A changes, and J. C.
Maxwell has shown that this generates the so-called displacement current. The
size of the current is proportional to the rate of change of the electric field, with
proportionality constant ε0.

The displacement current density between the plates is

jD = ε0Ė = ε0
1

ε0

1

A

dQ

dt
= − I

A
.

The current in the rod (of magnitude I) and the displacement current (of magni-
tude jDA = −I), taken together, can be considered as charge moving in a closed
circuit.

According to Maxwell’s equations, magnetic fields are produced not only by
ordinary electric currents, but also by displacement currents. As the displacement
current and the current in the rod have equal magnitudes (but opposite directions),
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Fig. 2

and the displacement current is closer to the compass needle, its effect is larger.
This is why, during the discharge process, the compass needle tends to rotate (see
Fig. 2), with its north pole moving in an anticlockwise direction (from the posi-
tion shown) when viewed from above. It will subsequently return to its original
position.

Decide, whether the ‘official solution’ to the problem is right or wrong.

P191∗ A chocolate figure of Santa Claus, wrapped in aluminium foil, is elec-
trically charged and hangs on an insulating cord. The figure slowly loses its charge
because the air has a small, but non-zero, conductivity. Describe the magnetic field
around Santa during the discharge process.
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P192 An electron, moving with 60 % of the speed of light c, enters a homoge-
neous electric field that is perpendicular to its velocity. When the electron leaves
the field, its velocity makes an angle of 45◦ with its initial direction (see figure).

a) Find the speed v1 of the electron after it has crossed the electric field.
b) Find the distance d shown in the figure, if the strength of the electric field is

E = 510 kV m−1.

The rest energy, mc2, of an electron is 510 keV.

P193 Imagine a circular evacuated tube running around the Earth’s magnetic
equator, in which – in principle – electrons and protons could orbit under the
influence of the Earth’s magnetic field.

a) Estimate the required speed for each particle, and determine the correspond-
ing direction of circulation.

b) Express the particle energies needed for these hypothetical flights in eV
units.

P194∗ The trajectories of charged particles, moving in a homogeneous mag-
netic field, can be followed by observing the trails they produce in cloud chambers
(e.g. a Wilson chamber). Is it possible that, when a charged particle decays into
two other charged particles, the trail segments close to the decay point (before the
particles have started to slow down significantly) are arcs of circles that touch each
other (as shown in the figure)?
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P195∗ The pion (π+) is a subatomic particle with a mass 273 times larger than
that of an electron. In one of its possible decay modes, it decays into a positron
(e+) and an electron-neutrino (νe):

π+ −→ e+ + νe.

What is the minimum speed of the pion if, following its decay, the positron and the
neutrino move at right angles to each other?

Assume that the neutrino has zero rest mass. For such a particle, the connection
between its energy and linear momentum is E = pc.

P196∗ Investigate the elastic collision of two (ultra-relativistic) particles, mov-
ing with speeds very close to the speed of light. The linear-momentum vectors of
the particles, before the collision, are shown in the figure. Determine the minimal
possible angle between the directions of the particles after the collision.

P197 An electron orbits uniformly around a circular trajectory in a homo-
geneous magnetic field. Is it possible for the magnitude of the magnetic field
produced by the electron’s motion to be larger, at the centre of the circle, than
that of the field?

P198∗ Estimate the pressure exerted on the walls of a small cubical box, which
has edges of length d, by a neutron enclosed within the box.

P199 Positronium is a system consisting of an electron and its antiparticle,
a positron, bound together into an exotic ‘atom’ by their electrostatic attraction.12

The orbit and energy levels of the two particles are similar to those of the hydrogen
atom. Find – within the framework of a Bohr model – the energies of positronium’s
ground and excited states.

P200 The fuel consumption of a small car is 4 litre/100 km. Convert the con-
sumption into SI units and find an (imaginative) physical interpretation for the fuel
consumption expressed in these units.

12 A positronium atom is unstable; the two particles annihilate each other, producing predominantly two or three
gamma photons.
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H1 Consider the motions of the bodies both in the original frame of reference
and in another frame that moves with velocity v0 relative to the first one. Apply the
Galilean transformation formulae.

H2 Be careful, the transformation principle due to Galileo Galilei applies
only to inertial reference frames. The idea that Ann simply observes Bob moving
towards her with a speed of 1 m s−1 is false.

H3 It is easier to solve the problem in a frame of reference fixed to the cart.
A vector diagram of velocities, superimposed on a geometrical one showing the
initial situation, should prove helpful.

H4 It is helpful to describe Joe’s motion using a reference frame moving with
the river water; imagine that we are in a boat that drifts with the river. Using
this frame of reference, a suitable optical analogy and the application of Fermat’s
principle can help us to find Joe’s optimal trajectory.

H5 The description of the disc’s motion in a frame of reference fixed to the
table is not easy. Try using a reference frame moving with the conveyor belt.

H6 The task can be tackled in several ways. One possibility is to analyse the
turning process in an appropriate projection of phase space, namely in the vx– vy

coordinate system. Another good idea is to use an inertial frame of reference
moving relative to the ice in a suitably chosen direction.

H7 From the tangential and centripetal components of the acceleration, deter-
mine the horizontal and vertical ones.

H8 Finding accurate time intervals for the two sections of the motion is very
difficult. To answer the question as posed, it is easier to compare an underestimate
of the time to cover arc AP with an overestimated time for arc PB.

65
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H9 Show that the axis of symmetry of a parabola makes an angle with the
tangent to the parabola at any point P that is half the angle it makes with the line
connecting P to the focus.

H10 Instead of using calculus, let us try to solve the problem using a variety of
techniques, e.g. by investigating the number of real roots of a quadratic equation,
or by using the properties and geometric representations of relevant vectors.

H11 The answer can be obtained by using the laws of projectile motion and
some straightforward, if somewhat lengthy, algebra. Find the equation that gives
the height(s) h corresponding to a given point of impact, and investigate the condi-
tion under which this equation has real roots.

An alternative method is to find the directrix and focus of the parabola that
describes the trajectory of the water jet, and then investigate the geometrical con-
dition under which the water hits the incline at a given point.

H12 The sharp points on the photograph are the images of those points on the
spokes that have only radial motion.

H13 Find the equation of the ‘virtual’ shape of the spokes in a Cartesian
coordinate system.

H14 The notion that the bolt can remain between two successive spokes of the
wheel for as long as it takes the wheel to rotate through an angle of 360◦/12 = 30◦

is wrong. The fact is that the cartwheel does not rotate around a stationary axis,
since it also has translational motion. An approximation to the correct answer can
be found using a graphical method.

H15 In the absence of friction, the law of conservation of mechanical energy
requires the two final speeds to be the same. To find the correct answers to the other
questions, consider, on both trajectories, a) small segments with identical lengths,
and determine which of the two is covered more quickly, b) small segments with
identical slopes, and investigate on which of these a larger frictional force retards
the bob.

H16 The cyclist’s speed is constant in each of these three cases, and so his
or her acceleration is zero. It follows that the net force acting on the cyclist (the
resultant of the gravitational force, the air drag and the frictional and normal forces
exerted by the road) must be zero.

H17 Because he is heavier, Bob is pulled down the slope by a larger grav-
itational force than the one that acts upon Ann, the forces being in the ratio of
mB/mA ≈ 1.8. However, the air drag acting on him is greater than that on Ann’s
slimmer body, with his coefficient k in the drag formula F = kv2 being one-and-a-
half times larger than hers. Which effect is the more important?
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Write the equations of motion for the two riders and find out how their speeds at
the end of the slope depend on the ratio k/m.

It is clear that their equations of motion on the horizontal road determine the total
path lengths covered before each comes to a halt. The decelerations involved are
not uniform and the equations are not straightforward. However, if we only want
to know which of them coasts further, full solutions to the (differential) equations
are not necessary – it is sufficient to investigate them qualitatively using suitable
variables.

H18 The mass of the feather is infinitesimally small, so gravity can be ignored
when considering the forces acting upon it.

H19 Examine how the difference between the instantaneous and final velocity
vectors changes with time.

H20 Suppose that the smaller ball is not lifted from the table-top. Find the rela-
tion between the accelerations of the two balls, then use the fact that the larger ball
is practically in free fall just after the release. What is the net force experienced by
the smaller ball at that moment, and in which direction does it act?

H21 Our first thought might be that the condition for the pearl to fly off the
rod is that, at the top of its trajectory, the pearl should just lift off from the disc.
Starting from this (retrospectively naive) assumption, we find the inequality

f >
1

2π

√
g

θ2
0 d

.

But this result is false! For the correct answer, determine the vertical component
of the net force acting on the pearl as a function of time, and use its time-averaged
value.

H22 Most of the time, the acceleration of the board is very much larger than
the acceleration the block would experience when acted upon by a force equal to
the maximal value of static friction. So we can assume that the block does not
adhere to the board, but slides (upwards or downwards) on it. The velocity of
the block changes regularly, alternating between speeding up and slowing down.
A more-or-less steady state of motion sets in, with the velocity fluctuating around
a particular value vdrift, called the drift or terminal velocity. The block’s time of
arrival at the bottom of the board is determined by this drift velocity.

H23 Find the average tension in the cord, and the work done during a single
swing if the length of the cord is decreased by a small amount �� during one
swing.
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H24 Describe, in vector notation, the equation determining the mountaineer’s
equilibrium position and the equation of motion when his body is displaced from
equilibrium.

H25 Underestimate the work done against friction, and compare it with the
initial gravitational potential energy of the eraser.

H26 Investigate the role of friction from both the static and dynamic points of
view.

H27 Apply the conservation laws of energy and linear momentum. It is not
necessary to explicitly find the interaction energy of the magnets. It is sufficient to
know that this energy is some function of the distance between the magnets (which,
in principle, can be calculated, or can be measured experimentally).

H28 Our probable first idea – that the heavy ball tends ‘to pull down’ the liquid
above it – is false. In fact, just the opposite occurs, and the liquid in the left arm
rises.

It is probably helpful to first analyse the extreme case in which the gravitational
field due to the heavy ball is much larger than that of the Earth.

H29 Without loss of generality, we may take the point in question as the
origin of our coordinate system, and the x direction as that of the net gravitational
field. Determine the shapes of surfaces which are such that, if a small piece of
plasticine of given volume is placed at any point upon one of them, the same
additional gravitational x component is produced at the origin. These surfaces may
be taken as ‘level surfaces’, differentiated only by the magnitudes of the additional
components they produce; the larger the component, the closer to the origin the
surface lies on average.

H30 The laws governing gravitational and electric fields are very similar;
use this analogy and apply Gauss’s law. Warning: The gravitational field near
the planet has a different form from that which applies when the distance from
the planet is commensurate with the length of the planet (or is much larger
than it).

H31 The expert – who was not given any numerical data in the first instance –
was able to provide numerical answers to all of EXINCA’s queries. In his scien-
tific report, he showed that both phases of the wagon’s motion were of a simple
harmonic nature.

H32 The answers to both questions can be found using brute-force methods,
but consideration of gravitational potential energy in the Boltzmann distribution
provides a much more elegant solution.

H33 Think about, for example, the motion of a conical pendulum.
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H34 The expression ‘orbiting the Sun’ in the text of the problem is an indica-
tion that the total energy of the comet is negative. The impact speed of the comet is
maximal if the comet approaches from a direction directly opposed to the Earth’s
motion, and if, at the same time, the comet is ‘bound’ very weakly to the Sun,
i.e. its total energy is almost zero. The impact speed will be minimal if the comet
arrives in the vicinity of Earth in such a way that their relative velocity is negligible.

H35 The pieces of the debris must move along a variety of elliptical orbits, but
all with the same major-axis length, and all with the Sun as one of their foci. Find
the possible positions of the other foci of these ellipses, and note that each point of
the envelope can lie on only one of the ellipses.

H36 It is advisable to launch the space probe in such a way that, after ‘leaving’
the gravitational field of the Earth, its velocity relative to the Sun has the same
direction as the velocity vE of the Earth, because then the speeds of the Earth and
the space probe are cumulative.

The conservation laws for energy and angular momentum in the presence of the
Sun’s gravitational field apply to the space probe when it is moving in interplan-
etary space. It is convenient to analyse the gravity-assisted ‘swing-by manoeuvre’
from a reference frame fixed to the planet.

H37 To a good approximation, the dynamical conditions for circular motion
remain valid throughout the satellite’s motion. Using energy considerations, it can
be proved that the decrease in the total energy of the satellite is just the same in
magnitude as the increase in its kinetic energy. Consequently, perhaps contrary
to expectation, the air-drag loss increases, rather than decreases, the speed of the
satellite.

The dynamical reason for this can be summarised as follows. The net force
on the satellite is the vector sum of the drag force opposing the velocity and
the gravitational force. As a result of the ‘spiral’ trajectory, this net force is not
perpendicular to the velocity of the satellite, but has a tangential component that
acts in the direction of the satellite’s velocity, and so accelerates it.

H38 If we neglect angular-momentum effects due to the Sun, the Earth–Moon
system can be considered as a closed system in which the total angular momentum
is conserved. The total angular momentum consists of the spins of the celestial bod-
ies rotating around their own axes, and the orbital angular momentum associated
with their motions around their common centre of mass. It is useful to estimate
which of these make a significant contribution to the total angular momentum,
and which are negligible. For the purposes of this estimation, we can use the
approximation that the Earth’s Equator, the equator of the Moon and the Moon’s
orbit all lie in the same plane. Assume that the Moon is a homogeneous sphere.
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The inertial momentum of the Earth can be taken from the table at the end of the
book (see Appendix).

In addition to the conservation of angular momentum, another equation is
needed – one that gives a connection between the orbital angular velocity of
the Moon and the Earth–Moon distance. To obtain this, consider the centripetal
acceleration of the Moon as it orbits in an approximate circle.

H39 We can assume that the astronaut’s trajectory differs only slightly from
that of the ISS. The description of the motion is best made using polar coordi-
nates. Higher powers of any small dimensionless quantities that appear during the
calculation can be neglected.

The problem may also be solved using Kepler’s laws of planetary motion. The
use of all three laws is necessary if this method is chosen.

H40 a) Do not forget to take into consideration the change in the space ship’s
kinetic energy!

b) It is convenient to use an inertial frame of reference to investigate the astro-
naut’s motion.

H41 The naive answer, namely mgh = 50 × 9.81 × 20 = 9.81 kJ, is false.

H42 For a successful realisation of the miracle, the direction of the velocity
of D must turn through an angle of π/N at each and every collision. If m > M/N,
then D cannot scatter at an arbitrarily large angle from an initially stationary disc
of mass M/N. Find an expression, in terms of m, M and N, for the maximum angle
that is possible.

In the solution to part b) the following expression for the exponential function is
needed:

ex = lim
n→∞

(
1 + x

n

)n
.

H43 If the swings are small, their period is independent of their amplitude, so
the balls will always collide at their initial equilibrium positions. Since air resis-
tance is negligible, the bouncing balls will return to the lowest point of their trajec-
tories with the same speeds as they had immediately after the previous collision.
At each collision, the mechanical energy decreases, but the net linear momentum
remains constant.

H44 Using the conservation laws that govern elastic collisions, it can be shown
that, after each collision, the product of the relative velocity of the two balls and the
distance of the collision point from the wall always has the same value. Using this
and the law of conservation of mechanical energy, the required minimum distance
can be found.
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Another (approximate) solution to the problem can be obtained if the ball
of mass m is considered as a one-dimensional ‘gas’, containing only a single
molecule, that is being compressed adiabatically by a piston of mass M.

H45 In addition to the effects due to air drag, the motion of the increasingly
heavy drop is retarded by the linear momentum changes of the smaller drops that
it absorbs.

H46 If the tall narrow statuette is pulled very gently, then – because of the
relatively large friction – the figurine pitches ‘forwards’ onto his left ear. But if the
tension in the thread is too large (and the thread does not break), then the statuette
tumbles over ‘backwards’ onto his right ear! Try to find a ‘Goldilocks’ tension, one
that is neither too small nor too large, but just right.

H47 The tension in the remaining rubber band depends only on its current
elongation, which cannot change instantaneously. Write the equations for any
translational and rotational motion, and determine the condition for the upward
motion of point B. It can be proved that this condition is satisfied whatever the
mass distribution of the boat’s hull.

H48 In principle, it is possible to formulate all the dynamical equations needed
to describe the translational and rotational motions of each rod. However, those
equations will contain so many auxiliary variables (e.g. the strengths and directions
of the forces acting at the joints) that the required result could only be found after
considerable calculation. The acceleration of Q can be derived much more easily
if the work–energy theorem is applied over a very short time interval immediately
following the start of the motion.

H49 At first sight it might seem that too little information has been provided.
Nevertheless, pluck up courage and write the equations for translational and rota-
tional motion.

H50 Prove that neither the translational motion nor the rotation of the disc can
stop earlier than the other. To do this, consider how large the translational braking
force is, even when the centre of mass is moving very slowly, and how large a
torque slows the rotation, even when the angular velocity is very small.

H51 Show that the small masses of the bearings and the ‘non-slipping’ con-
dition together imply that the static frictional forces that act on the bearings have
negligible components perpendicular to the rod. This means, in both cases, that
there is no torque acting on the rod and that its angular velocity is constant.

H52 Just after the first collision, because the balls slip on the edges of the
trough, friction decelerates both their translational motions and their angular veloc-
ities. The critical point of the solution is finding the appropriate condition for the
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balls to roll without slipping. The law of conservation of angular momentum might
also be useful.

H53 In both cases, find fixed points (in space) about which the angular
momentum of the ball remains constant, even during the accelerating period
of the stroke.

H54 Prove that the velocity vector of the point on the ball in contact with
the table has a constant direction throughout the ‘slipping’ motion. Part b) can be
answered using an appropriate application of the law of conservation of angular
momentum.

H55 Formulate the vector equations for the rotational motion of the ball and
the motion of its centre of mass, and express the condition that the ball rolls without
slipping. Using these equations, prove that, independent of the initial conditions,
the ball’s centre always moves uniformly around a circular trajectory, but that, in
general, the centre of this circle does not coincide with the centre of the disc.

H56 It is advisable to write the equations for the translational and rotational
motion of the ball in vectorial form. Investigate the condition for zero acceleration
of the centre of the ball. A review of the solution to the previous problem may help.

H57 First investigate the rotation of the rubber ball about its own vertical axis,
and the rotation of its centre of mass around the axis of the tube. If it could be
shown that both of these rotations are uniform, then the description of the other
parts of the motion would be easier. Beware: Any notion that the vertical motion
is one with uniform acceleration is false.

H58 Compare the average tensions in the spring in the two cases.

H59 First, show that the mass of any particular, not necessarily short, piece of
the Slinky is directly proportional to the length of its horizontal projection.

H60 The work done during the lifting stage increased both the gravitational
potential energy and the elastic energy of the Slinky. Expressions for those changes
can be found by considering the Slinky as divided into small pieces of equal mass.
Parts b) and c) can be answered if it is noticed that, following the spring’s release,
its centre of mass is in free fall.

H61 Using the method of dimensional analysis, a partial, though not complete,
solution can be found.

For a more precise analysis, it is convenient to specify any particular point on the
spring by the mass m∗ of that portion of the spring that lies between that point and
the anchor point. If the tension in the spring, F, and the distance from the rotational
axis, r, can be found as a function of m∗, then the whole problem can be solved.
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To do this, write equations for the rates of change of F(m∗) and r(m∗) as m∗ varies.
From these – using an appropriate mechanical analogy – all of the details of the
stretching of the Slinky (including its total elongation) can be deduced.

Note. Before tackling the main problem, it is instructive to think about a simpler
version of it. Instead of a spring with the continuous mass distribution present
in the Slinky, consider a massless spring, with negligible unstressed length and
spring constant k, that has a point-like mass m attached to its end, and is rotated
in the same way as the Slinky.

H62 Find an analogy between the equation describing the shape of the rotating
Slinky and the equation governing the simple harmonic motion of a point-like
body. A review of the solution on page 210 could be very helpful.

H63 The displacement of the free end of a horizontal cantilevered beam that
is fixed at one end, and loaded vertically at the other, is directly proportional to the
loading force and to the cube of the beam’s length.

H64 To make a comparison between the two end-point droops, consider the
quarter-circle as divided into small segments of identical length. When the metal
wire is loaded, the torque in it varies from point to point, and the small segments
of the wire are tilted to varying degrees. The angle characterising the inclination of
any particular segment (i.e. the difference in angle between the tangents at its two
ends) is directly proportional to the torque at the position of the segment. Compare
the torques acting in appropriately corresponding small segments of the two wires,
and investigate the contributions these deformations make to the total droop of the
end-points of the wires.

The problem can also be approached through energy considerations, using the
fact that the amounts of stored elastic energy in equal-length segments of a wire
are directly proportional to the square of the torques generated in them.

H65 The elastic energy stored in a deformed rod is directly proportional to its
length, and inversely proportional to the square of its radius of curvature. Approx-
imate the shape of the deformed rod by an arc of a circle in both cases, and find a
connection between the stored elastic energy and the loading force.

H66 If the number of parallel cable filaments is increased, from the bottom
upwards, sufficiently often, then – in principle – arbitrarily deep sea beds can be
reached.

H67 The rupturing of the sausage skin is caused by the steadily rising steam
pressure inside it. The resulting overpressure produces a similarly increasing ten-
sile stress in the skin of the sausage, a stress that is anisotropic (and, in the case of
the torus, also inhomogeneous). The magnitudes of the stresses can be calculated
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in an elementary way from the force balance of an appropriately chosen piece of
the sausage.

H68 The gravitational force acting on the acrobat is balanced by the vertical
components of the tension in the rope. For small angles, the approximation sin θ ≈
tan θ can be used.

H69 Find a mechanical system in which the energy is minimal (and so the
system is in equilibrium) when the sum of the distances measured from the vertices
of the triangle to a particular point is the least. Consider how the parameters of
the device could be altered to determine the corresponding minimal values for a
weighted sum of the distances.

H70 Notionally divide the area of contact between the sack and the carpet into
very narrow strips perpendicular to the direction of motion, so that the load on each
can be taken as uniform. The sum of the elements of work done against friction on
each of these small segments of area gives the required answer. Consider whether
it is important that the sack is pulled at the bottom, i.e. using the carpet. Would
your analysis apply if the towing line were attached to the sack above the level of
the carpet?

H71 Apply D’Alembert’s principle (of virtual work) using a small (imaginary)
splaying of the cone caused by the vertical load.

H72 Lisa is right. For showing that this is so, an application of the angle
bisector theorem could prove useful.

H73 The triangle will tumble over if the vertical projection of its centre of
mass lies outside its supporting base.

H74 It can be proved that, if one of the faces of a tetrahedron is unstable, then
two of the other three faces must have larger areas than it has. It follows from this
that a tetrahedron must have at least two stable faces, the ones with the largest and
second largest areas.

H75 To estimate the tension, construct an approximate equation expressing
the balance of moments about some particular point for a suitably chosen segment
of the cable.

H76 The question can be resolved in an elementary way, without using the
shape of the rope. Establish a relationship between the horizontal forces needed to
lift each of the ends to the same height.

H77 To find the solution, it is not necessary to calculate the exact shape of the
chain.
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H78 It can be shown that the difference between the tensions in the rope at
two arbitrary points on it (denoted by A and B), e.g. the centre and the right-hand
pulley, depends only on the height difference between the points and the linear
mass density λ of the rope. In an obvious notation:

FB − FA = λg(hB − hA).

To prove this, consider the energy changes that would be involved if a small length
of rope were (notionally) cut out from the neighbourhood of point A and inserted
close to point B.

H79 The difference in the magnitudes of the tensions acting at two arbitrary
points of the necklace is directly proportional to the height difference between the
points (see solution on page 239). If the part of the necklace that hangs down is
sufficiently long, then the equilibrium is stable. If the length of the dangling portion
is decreased to below a certain critical value, then the pearl necklace drops away
from the surface at the lowest point of the cylinder.

H80 Apply D’Alembert’s principle of virtual work to investigate the energy
changes that take place if the partially rolled rug is coiled up a bit further.

H81 The tension is constant throughout the rope of the experts’ lasso. The
same is true, separately, for each of the two pieces of the novices’ lasso. In both
cases, at equilibrium, the climber’s gravitational potential energy is minimal. To
determine how the rope lies on the lateral surface of the cone, it is easier if that
surface is notionally spread out into a plane sheet.

H82 It can be shown that the shape of the chain remains unaltered.13

H83 Apply the law of conservation of mechanical energy, and, using the veloc-
ity of the roll, calculate the force as the rate of change of linear momentum.

H84 The mechanical work required to maintain the rotation of the device,
which is similar to a concrete mixer, is totally transformed into heat. Try to obtain
an expression for this work in terms of quantities that describe the overall situation
and do not vary with time. The ‘scarp angle’ of the sand14 in the mixer will be
needed; estimate it on the basis of everyday experiences.

H85 Note that the downward forces acting on the bucket include not only the
weight of the water inside but also the reaction to the upthrust experienced by the
iron cube.

H86 Do not forget that the water is practically incompressible.

13 A similar problem can be found in the predecessor of this book: see ‘Problem 104’ in P. Gnädig, G. Honyek &
K. F. Riley, 200 Puzzling Physics Problems (Cambridge University Press, 2001).

14 The angle that the sloping surface of the sand makes with the horizontal.
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H87 Several solutions are plausible. In one of them, an easily deformed spring
is the key element.

H88 Consider notionally covering the funnel with a cylinder that has a base
that coincides with the rim of the funnel, and then pouring water into it up to the
level of that in the funnel. In this situation, how much force does the water exert
on the funnel?

H89 Use the fact that the net force acting on the hemispherical body of water
must be zero. For the determination of the application point, consider the various
torques, about an appropriately chosen point, that are generated within the system.

H90 If the tyre pressure is increased, then the area of contact between the
tyres and the road decreases. Consequently, the moment arm (and the torque) of
the frictional force opposing the reorientation of the front wheels will be reduced.

H91 The idea that the product of the gauge pressure in the balloon and the
cross-sectional area of the rod must be equal to the rod’s weight is false. The force
acting on the bottom of the rod is due not only to the hydrostatic force coming
from the gauge pressure but also to an elastic force arising from the deformation
of the balloon’s rubber wall.

H92 The answer can be found with the help of the discriminant of a particular
quadratic equation.

H93 At first sight, the problem seems to be a purely mechanical one, but it
does, in fact, also involve thermodynamics. The stationary state that emerges ‘after
a sufficiently long time’ involves a thermodynamic equilibrium, in which the role
of water vapour is crucial.

H94 How large is the force exerted on the bottom of the glass, both before and
after the razor-blade sinks?

H95 The vertical stability of the disc is provided by the pressure difference
between the top and bottom of the disc. However, an explanation based on
Bernoulli’s law – that the pressure above the disc is lowered because of the
fast horizontal outward flow of water – is false.

H96 The radius of curvature of the separating soap film can be found from the
balance of pressures across it. To get the radius of the perimeter circle, consider
the forces acting on a small segment of it.

H97 Two opposing effects are present: surface tension tries to shrink the pud-
dle so that it has as small a surface area as possible; gravity would like to flatten
it and make it as thin as possible. The equilibrium size of the puddle can be found
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by using the principle of minimum energy. Do not forget to take into account the
interaction energy at the water–floor interface.

H98 Our likely first thought, that in equilibrium the water drop will coat the
rod uniformly, is false. The shape of the water drop is determined by a minimum
energy criterion, and the position of the rod by a balancing of the forces acting
on it.

H99 The equilibrium state can be found using the principle of minimum
energy, and, under weightless conditions, only surface energies need to be
considered.

H100 Divide the hot water into a number of equal portions, each in its own
small vessel. Then, one by one, place them in thermal contact with the originally
cold distilled water.

H101 In a stationary state, the rates at which air molecules enter and leave the
furnace are equal.

H102 Apply the first law of thermodynamics to the procedure whereby the gas
is transferred from above the separating wall to below it.

H103 Investigate what would happen if a small volume of air in an otherwise
stationary lower atmosphere were suddenly to rise to a slightly higher altitude. The
lifted air mass would cool as a result of a fast (adiabatic) expansion, and its density
would decrease. The condition for the atmosphere’s stability is that the final density
of the air mass under investigation should be larger than that of the air that is then
around it; if it were not, the situation would be unstable and the air mass would
rise still further.

H104 Consider the implication for the specific heat of the gas of reaching its
minimal volume, and hence find the final temperature of the helium. Then apply
the first law of thermodynamics.

H105 If the pressure decreases slowly, then the gas reaches its final state via a
succession of equilibrium states, that is, by a reversible process. If the drop in the
pressure is rapid, then the process is irreversible, and the net force acting on the
wall of the bag during the expansion is not zero.

H106 A thermocouple is made by spot-welding one pair of ends of two wires
made from different metals.

If the temperature TA at the welded junction is different from the common tem-
perature TB of the free ends, then a potential difference VAB is generated between
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those free ends, the size of the potential difference being proportional to the tem-
perature difference (this is known as the Seebeck effect):

VAB = SAB(TA − TB),

where SAB is the so-called Seebeck coefficient and depends upon the materials used
for the wires.

In the circuit described, a further thermoelectric phenomenon, known as the
Peltier effect, also takes place. If an electric current flows through a junction formed
by two different conductors, then heat is either released or absorbed there, accord-
ing to the direction of current. The rate at which heat is released or absorbed is
directly proportional to the current I flowing through the junction:

PA = �AI,

where �A is known as the Peltier coefficient, its numerical value depending upon
the metals forming the junction. This coefficient is related to the Seebeck coeffi-
cient through the equation

�A = SABTA,

where TA is the temperature of the junction. Both effects need to be taken into
account.

As an alternative to using the formulae given above, the problem can be solved
by considering the thermocouple as a heat engine that uses room-temperature air
and zero-temperature ice as its source and sink.

H107 The image of the Sun is not a point-like dot, but a small disc in the
focal plane of the lens. At the black body’s maximal temperature, the power of
absorbed solar radiation is equal to the power of the radiation the body itself
emits.

H108 In order to maintain the necessary conditions for the frost to form
overnight, a balance has to be established between the outgoing heat radiated by
the windscreen and the incoming heat from the (warmer) surroundings.

H109 Use the symmetry of the situation and the superposition property that
follows from the linearity of the heat conduction equation (Fourier’s law).

H110 The difference in melting rates is related to the fact that the density of
the melted water from the ice cubes differs from the densities of the liquids in the
two vessels.

H111 Apply the principle of conservation of energy.

H112 Surprisingly, water can condense from the saturated vapour in both
cases. How is this possible?
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H113 In the final, stationary state, there is a small amount of water at 100 ◦C at
the bottom of the test tube. The wording of the question suggests that the pressure
is the same all along the tube.

H114 Before the start of the liquefaction, the behaviour of the gas constituents
is very close to that of an ideal gas, and so the ratio of their partial pressures is
approximately equal to their molar ratio (or, equivalently, their particle number
or volume ratio). During the isothermal compression, the liquefaction begins at
the moment the partial pressure of one (or both) of the components reaches its
saturated vapour pressure at that particular temperature.

H115 Compare the densities of ether vapour and steam with the density of air.

H116 The evaporated vapour from the eau-de-Cologne (from a physics point
of view, a mixture of water and alcohol) varies in concentration continuously along
the test tube, decreasing from the bottom up. The vapour escapes from the test tube
as a result of diffusion; the speed of flow is directly proportional to the magnitude
of the density gradient (change of density per unit length).

H117 If two neighbouring light rays emerge from the same point, and meet
again at a different point, then, according to Fermat’s principle, their optical
path lengths are equal. The principle also applies to diverging rays if they are
focused to a point by an image-constructing tool (say, a lens or the human eye).
Using this result, it can be shown that, for any ray contributing to perfect image
construction, its optical path length from the light source to the refracting point
is equal to the (physical) distance between the refracting point and the image
point.

As an alternative to Fermat’s principle, the problem may be solved using Snell’s
law, applying it to the particular rays that emerge tangentially from the sphere.

H118 Apply Fermat’s principle.

H119 According to Fermat’s principle, light rays very close to each other
traverse their trajectories in equal times.

Applying Huygens’ principle also provides a means of solution. It states that
every point on a constant-phase surface becomes a source of a spherical wavelet,
and the new phase surface (the wavefront) is formed by the envelope of these
wavelets, propagating with phase velocity c/n. Geometrical optics (which is a
simplified model) describes the propagation of light in terms of ‘rays’ which travel
perpendicularly to the wavefront.

The phenomenon of the ‘circling’ light can also be interpreted as a series of total
internal reflections.
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H120 Using the method of ray tracing, construct the image of a point on the
surface of the sphere. The image of the sphere is a surface of revolution created by
rotating a conic section around the optical axis.

H121 The virtual brightness of the Moon is determined by the strength of
illuminance of the retina (that is, the light intensity on the photosensitive layer of
the eye). When we use a telescope, more light energy enters our eye than when we
look at the Moon directly, but the area of the image is also larger.

H122 The two half-lenses produce two real, point-like images of the light
source. These images, acting as coherent point sources, create an interference
pattern on the screen. The interference fringes can be observed only on that part of
the screen where the light beams from the two image points overlap.

H123 This unusual diffraction grating can be considered as the superposition
of two ordinary gratings with slit spacing 4d, the centres of the gratings being
separated by a distance d.

H124 Statements about the diffraction pattern can be made by using the
Huygens–Fresnel principle. Accordingly, the net wave amplitude at any point on
the screen can be found by summing (taking account of the appropriate phases)
the amplitudes due to the elementary ‘wavelets’ originating at the individual slits.
The square of the net amplitude is proportional to the light intensity at that point
on the screen. The wavelet amplitude from a particular slit is proportional to the
slit’s width, and its phase is determined by the relevant optical path length.

H125 Interference maxima (bright spots) will be observed on the screen wher-
ever the light waves from all the holes arrive in phase (the Huygens–Fresnel prin-
ciple). Find the mathematical condition for this in terms of the holes’ position
vectors r = (x, y), and the vector R = (X, Y) giving the position on the screen of a
maximum.

H126 A square grid can be transformed into one based on equilateral triangles
by using elongation in a suitable direction, together with an appropriate scaling
factor; the reverse transformation is also possible. What happens to the correspond-
ing diffraction patterns is discussed in connection with the solution to a similar
problem on page 320.

H127 a) A polarising filter lets through only light whose electric field is par-
allel to the filter’s polarisation axis. The intensity of light is proportional to the
square of its electric field strength.

b) It is perhaps surprising that, by choosing an appropriate plate thickness d and
an optimal direction for e, up to 100 % of the incoming beam can pass through the
system.
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H128 a) The ‘lenses’ (in reality, the films) in the pair of 3D glasses found
during the tidying up are two linear polarising filters, with polarisation axes per-
pendicular to each other.

b) The experience, the reverse of what happened in part a), indicates that the
newly acquired pair of 3D glasses work with circularly polarised light. Such light
can be produced from linearly polarised light (and can be analysed) with the aid of
birefringent plates (as described in Note 2 on page 325), if the thickness and the
orientation of the plates are suitable.

H129 Consider what happens if the whole system is magnified, with the dis-
tances between charges all increased by the same ratio. Does it remain in stationary
equilibrium? What happens to the interaction energy? For the investigation of the
system’s stability, Gauss’s law could prove useful.

H130 In the absence of external forces, the centre of mass of the system
remains at rest. It is therefore convenient to choose the centre of mass as the
origin of a vector coordinate system. The pearls can move in the way described
if their accelerations are proportional to their instantaneous position vectors, and
the proportionality factor is the same for all three bodies.

H131 The relatively strong electric field inside the capacitor influences the
electrons over a short segment of their trajectory. Although the electric field outside
the capacitor is weak, it exerts forces on the electrons over a longer section of their
trajectory. Moreover, because the beam trajectory is bent, this weak field can also
cause deceleration! What will be the net result of these two effects?

H132 You can prove, and then use, the fact that the electric field produced
at some particular point A by a short, thin, uniformly charged rod is equal to the
electric field due to a circular arc carrying the same linear charge density, if the arc
is appropriately positioned with respect to A.

H133 The point in question must be in the plane of the rods, and inside the
triangle. We are seeking a point at which the net electric field is zero, or, what is an
equivalent statement, a point at which the electrostatic potential has an extremum,
as a function of position.

H134 Find the force acting on small pieces of one of the rods due to the
presence of the electric field of the other. It is convenient to characterise a small
piece of one rod by the angle it subtends at the closest point on the other.

H135 The electric field component produced at any point P by one of the rods
is inversely proportional to the distance of P from the rod. Using this fact and some
geometrical considerations, it can be proved that each field line is an arc of a circle.
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H136 Relate the force exerted on the point charge by a small piece of the plate
to the electric flux through that same piece of plate, due to the point charge q.

H137 Start with the solution on page 340, and find the electric flux through
one face of the cube due to the charge on the other five.

H138 Small pieces of the upper and lower plates that subtend the same solid
angle �� at the point P (they just cover each other when viewed from P) create
electric fields at P that have the same magnitude, but opposite directions; these field
components cancel each other out. It follows that the electric field produced at P
by the lower plate is fully nullified by that part of the upper plate that subtends the
same solid angle at P as the whole lower plate does. Thus the net electric field at P
is just that generated by the ‘rest’ of the upper plate, i.e. the three-sided peripheral
area marked off by a dashed line in the figure.

H139 Apply the method of superposition, and investigate the electric field the
charged insulating spherical shell would have if the missing piece of the shell
(approximately a small disc) were replaced into the hole and carried the same
uniform surface charge density as the rest of the shell.

H140 a) First, find the force between the two hemispherical shells in the spe-
cial case when their charges are equal. In this case, the electrostatic force acting
on the hemispheres can be calculated as if a gas at pressure p exerted the forces on
their inner surfaces. After this, the result for the general case, in which q and Q are
different, can be guessed.

b) Using the principle of superposition, the result can be obtained in several
different ways.

H141 Imagine the cube cut into eight identical smaller cubes, and apply both
the principle of superposition and the method of dimensional analysis.

H142 On a charged conductor, the excess charge resides on its outer surface,
and the electric field exerts an outward force on it normal to the surface. What is
the effect of these forces on the shape of the mercury, which has constant volume?

H143 Using Gauss’s law, find arguments that show that, for a given charge
on the capacitor, the real voltage across it is smaller than that predicted by the
approximate calculation.
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H144 Apply the principle of superposition, and with the help of suitable super-
posed charge distributions, create a capacitor that is charged ‘traditionally’.

H145 Solve the problem first as if the metal plates were grounded, and then
bring charges onto the two metal plates in a way consistent with the law of conser-
vation of electric charge.

H146 The effect of the earthed plates of the capacitor can be described using
an infinite number of image charges situated outside both plates. The magnitude of
the net force exerted on the pearl by the image charges is finite, as the contributions
due to images far from it are negligible.

H147 The problem can be solved by using the method of image charges. The
linear image charges have to be placed so that the potential is zero on the planes
containing the earthed plates.

H148 If a thin metal disc is electrically charged, then its charge distribution is
not uniform: the surface charge density increases from the centre of the disc to its
edge.

On a charged metal sphere, it is well known that the surface charge density is
homogeneous, and inside the sphere the electric field is zero (the electric field
contributions at any particular point, made by ‘opposing’ pieces of the sphere that
subtend the same solid angle at the point, cancel each other out).

Prove that, if a charged metal sphere is (notionally) ‘flattened’ into a disc in
such a way that we do not let the charges move (radially), then the surface of the
disc remains an equipotential. This procedure provides the required solution to the
problem.

H149 When the middle disc is just a little larger than the two charged discs,
the forces acting on the latter are directed outwards. But if the middle disc is very
large, then it attracts the two other discs, in the same way that an uncharged infinite
conducting plate attracts an isolated charge. This means that there is a critical size
for the middle disc that makes the net force acting on each charged disc zero.

The essence of the solution is that the three discs can be considered as a single
disc (because they are very close to each other) with the surface charge distribution
as calculated in the solution on page 362.

H150 In equilibrium, the charge distribution is such that the energy of the
electrostatic field is minimal. Could a significant potential difference exist between
the two parts of the sphere?

H151 At every point on the grounded metal sphere, the value of the electric
potential must be zero. This net potential is produced by two sets of charges, one
on the ring, and the other on the surface of the sphere. Find a point inside the sphere
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at which the contributions to the potential of the charges on both the ring and the
sphere’s surface can be calculated easily!

H152 If the distance between the spheres were much greater than their radius,
then their electric fields could be calculated by approximating the charged spheres
by point charges. However, in the given situation (as shown in the figure included
in the problem), this is not the case: the sizes of the spheres and their separations
are comparable, so the spheres cause electrostatic induction in each other. The
exact surface charge distribution and electric field can be calculated only with
very sophisticated mathematics, but (fortunately) this is not necessary! Instead,
we apply the principle of superposition.

H153 Apply the method of spherical image charges. The basis of this method
is that the electric field produced by two point charges, of opposite signs and dif-
ferent absolute values (+Q1 and −Q2), a given distance apart, has a zero-potential
surface consisting of all points that satisfy

ke
Q1

r1
− ke

Q2

r2
= 0,

where r1 and r2 are the distances from the two charges of any particular point
(see figure), and ke = 1/(4πε0) is the constant in Coulomb’s law. Rearranging the
equation, we get:

Q1/Q2 = r1/r2.

According to Apollonius’s theorem, the locus of such points is a sphere (Apollo-
nius’s sphere) whose centre lies on the (extended) line joining the two charges.

As the metal surface is an equipotential, the effects of the surface charges on the
spherical shell that are produced by the electrostatic induction can be substituted
by those produced by imaginary image point charges with appropriate magnitudes
and positions. But how?

H154 Start with part b) of the solution on page 373, and investigate the change
of positions and magnitudes of the image charges if the external point charge
responsible for the electric field around the sphere is gradually moved away from
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the metal sphere to infinity! To determine the surface charge distribution on the
sphere, replace the image charges with spheres of radius R carrying a uniform
volume charge density, and partially overlapping each other.

H155 With the help of an appropriate thought experiment, the solution can be
found without any detailed calculation. Use the fact that any change in magnetic
interaction energy depends only on the initial and final states, and that it does not
depend on the process by which the final situation was reached.

H156 a) The magnetic field strength can be found by using the Biot–Savart
law and simply summing the field components parallel to the axis of symmetry.

b) We can assume that the magnetic field very far from a plane current loop
is identical to that produced by a point-like magnetic dipole. The strength of this
dipole (its magnetic moment) is the product of the current in the wire and the area
of the loop. So, as far as its distant magnetic field is concerned, the original circular
current loop could be replaced by any other loop of the same area (πR2), provided it
carries the same current. There could be some advantage in this if the replacement
loop can be handled more conveniently than the original.

H157 The magnitudes of the magnetic fields produced at the centre of the
tetrahedron by currents flowing in its edges are directly proportional to the
corresponding currents. Note that each of these contributions to the magnetic
field vector is parallel to some (different) edge of the tetrahedron.

H158 Using the symmetry of the arrangement, prove that the magnetic field
lines are concentric circles centred on the wire. When that has been done, the
magnitude of the magnetic field, |B|, can be found with the help of Ampère’s law.

H159 Apply the superposition principle, as was done, for example, in Solu-
tion 2 on page 384. Consider first a single straight input wire, and imagine the cur-
rent it provides being led away (to infinity) radially and uniformly in all directions,
i.e. in a spherically symmetric pattern. Determine the magnetic field produced by
this current distribution. Then repeat the procedure with the output current, and
finally superimpose the two magnetic fields.
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H160 Investigate the similarity between the magnetic field lines associated
with the parallel current-carrying wires, and the equipotential surfaces associated
with two parallel insulating rods that are uniformly charged with equal but opposite
electric charge densities.

H161 The current distribution and the electric field, respectively, can be char-
acterised by current-streamlines and equipotential lines, which for all practical
purposes lie in one plane. These form arrays of mutually orthogonal curves (see
solution on page 390). Rotating the chessboard through 90◦ reverses the two arrays
of curves, but its equivalent resistance remains unaltered.

H162 The axially directed force acting on the turns of solenoid 2 can be related
to the magnetic flux from solenoid 1 that passes through the curved surface of the
second cylinder.

Energy considerations can also lead to a successful conclusion. Investigate the
change in energy of the system if the solenoids are moved apart by a small distance
�x. It is sufficient to deal initially with the special case I1 = I2 = I, but do not
forget the possibility of energy coming in to or going out from the system.

H163 The tension is the same at each point of the wire, and can be related to
its radius of curvature. So, in both cases, the shape assumed by the wire is a curve
with a constant radius of curvature.

H164 On the mid-plane of the circular current loops, the direction of the mag-
netic field is everywhere perpendicular to it, and its strength depends only on
the distance from point O. Write down an expression for the force acting on the
electron, and investigate the effect of any torque produced by this force on the
angular momentum of the electron about some particular fixed point.

H165 Write the vector equation for the particle’s motion, covering a small
segment of its trajectory, and then sum the result for the complete motion.

H166 Writing the equation of motion of the pendulum, as it swings in the
magnetic field, we might notice that it is very similar to the equation of motion of
a simple pendulum in a rotating frame of reference (consider a Foucault pendulum
at the North Pole).

H167 It is useful to write the equations of motion of the two electrons in
vector form. The sum of the two equations of motion describes the motion of the
electrons’ centre of mass, and their difference shows the relative motion of the
electrons around that centre of mass.

H168 Try to convert the � circuit in the black box into a � configuration.
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H169 Find a simple equivalent circuit, including voltage sources, that has
symmetry properties, and then locate points that are at the same potential. Do not
forget that N can be either even or odd.

H170 The differential equations describing the changes with time in the
charges on the two capacitors, i.e. the equations governing the coupled oscillations
of the circuit, can be written and solved using ‘brute-force’ methods. But there
is also a much simpler (and cunning) solution method! Imagine that a tunable
current generator is connected to the two terminals of one of the circuit elements.
What happens to the voltage difference between the connecting points when the
frequency of the generator is equal to one of the resonance frequencies of the
‘2L2C’ circuit? The correct solution may also be found by notionally replacing
part of the circuit by a tunable voltage generator.

H171 Consider first a finite chain with n coils and n capacitors. As the chain
does not contain any ohmic resistance, the phase shift between the current flowing
through it and the voltage is either +90◦ or −90◦. In one of these cases, the chain
can be replaced by a capacitor with a particular capacitance Cn, and in the other
by a coil that has a suitable inductance. Suppose that the first situation holds, and
determine the value of Cn for the first few n. If it turns out that Cn is negative, then
the chain behaves as a coil.

Find a connection between Cn and Cn+1, and then determine the ‘fixed (conver-
gence) point(s)’ of this recursive formula. This (or one of them) gives the equiva-
lent capacitance of the ‘infinitely long’ chain.

H172 The resistances of the conductors are negligible, and so the surfaces of
both wires are essentially equipotentials, with a potential difference of V between
them. The current flowing through the wires is I = V/R. The calculation of the
magnetic force (Lorentz force) that acts between the wires is quite simple, but, in
order to find the electric force, the amount of electrical charge on the surfaces of
the conductors needs to be determined.

H173 Note that, in the frame of reference moving together with the rotating
rings, the positive ions of the metal crystal lattice are at rest but the conduc-
tive (free) electrons are moving. So there are currents in the rings while they are
accelerating.

H174 In the vicinity of any edge of the plate, the current density vector must
be parallel to that edge. This unusual boundary condition can be arranged if the
finite plate is notionally made infinite, and suitable ‘image electrodes’ are added –
in a similar way to that in which image charges are used in electrostatics.
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H175 The charge on a capacitor that is discharging through an ohmic resistor
decreases exponentially with time. Its ‘half-life’ depends upon both the capacitance
of the capacitor and the ohmic resistance.

H176 The solution method applied to an earlier, very similar, problem (see
page 428) cannot be used here because of the irregular shape of the chocolate
figure. Neither Santa Claus’s capacitance nor the ‘effective resistance’ of the air
can be calculated.

Imagine the figure to be enclosed within a closed convex surface, and compare
the rate at which charge flows out through a small part of that surface with the
electric field flux produced there by the remaining charge.

H177 Show that the magnitude of the rod’s acceleration and the rate of change
of the enclosed magnetic flux are proportional to each other. Deduce that the sum of
the rod’s speed and the enclosed flux – each multiplied by suitable proportionality
factors – remains constant during the motion.

H178 The braking force acting on the magnet is caused by induced eddy
currents. This magnetic force is proportional to the speed of the magnet, and
balances its weight.

H179 If the current in one of two circuits situated close to each other (say, that
in circuit 1) varies with time, then the induced voltage V∗ in circuit 2 is proportional
to the rate of change of the current in circuit 1:

V∗
2 = −M12

dI1

dt
,

where M12 is the mutual inductance of circuit 1 with respect to circuit 2, and the
negative sign indicates the polarity of the induced voltage, in accordance with
Lenz’s law. The mutual inductance gives the quantitative connection between the
current in circuit 1 and the magnetic flux, produced by circuit 1, that passes through
circuit 2. With the help of the law of conservation of energy, it can be shown that
the mutual inductance is symmetrical, i.e. it does not change if the roles of the two
circuits are reversed:

M12 = M21.

H180 An ideal diode lets current flow in one direction without any resistance
(a short-circuit), whereas in the opposite direction no current can flow (an open-
circuit). Find a connection between the magnetic flux through the circular loop
produced by the small bar magnet and the electric charge flowing through the
diode. The flux can be found in an elementary way if the magnet is notionally
replaced by a small circular current loop (see solution on page 433).
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H181 Use the symmetry aspect of mutual inductance, and the fact that the
system consisting of the two largest loops can be considered to be the same as that
formed by the two smallest loops, but magnified by a factor of 2.

H182 The value of the magnetic flux through a superconducting ring cannot
change. The following fact might prove useful: the mutual inductance M between
two circuits that have self-inductances L1 and L2 satisfies the inequality M ≤√

L1L2.

H183 Note that the arrangements in figures b) and c) are equivalent to setting
two or three squares, with appropriately chosen current directions, on neighbouring
faces of the cube. Their currents and magnetic fields can be superimposed.

H184 Use the symmetry feature of mutual inductance, and construct the loop
rule (Kirchhoff’s second law) for each of the circuits.

H185 It is clear that the magnetic field of toroidal coil 1 is strong inside the
toroid – but coil 2 encircles it only once (and, admittedly, in a very ‘devious’
way). Although the magnetic field that toroid 1 produces outside its windings is
very weak, it does pass through all N2 turns of coil 2. In the calculation of the
mutual inductance of the two coils, we get the correct value (symmetrical under
the interchange of N1 and N2) only if we take into consideration the effects of both
the strong inner magnetic field and the weak outer field.

H186 Investigate the changes that take place in the pearl’s angular momentum
relative to P.

H187 The induced electric field, produced by the changing magnetic field
in the (thin) toroidal coil, is similar to the magnetic field associated with a cir-
cular current loop. Using the similarity between Faraday’s law of induction and
Ampère’s circuit law, determine analogous pairs of physical quantities in these
two phenomena. The required solution can be found by using this analogy, together
with the Biot–Savart law.

H188 The capacitor starts to rotate, and its final angular velocity will be the
same in both cases.

H189 Note that electric fields have as their sources electric charges, and they
must reside somewhere. A homogeneous electric field can, to a good approxima-
tion, be produced using a large parallel-plate capacitor. Analyse what is ‘seen’ by
an observer moving inside the capacitor with a fixed velocity that is parallel to the
plates.

H190 Surely, an ‘experienced’ reader (such as yourself?) knows that the ‘offi-
cial solution’ to the problem is wrong. The key to the correct solution is the Biot–
Savart law.
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H191 Only the conduction currents in the air could produce contributions to
the magnetic field around Santa, but in reality they do not do this.

H192 The speed of the electron is comparable to the speed of light, and for
this reason a relativistic calculation is needed. Consequently, for example, the
trajectory of the electron is not a parabola! Warning: Although there is no force
perpendicular to the electric field acting on the electron, its velocity component in
its initial direction does not remain constant, but decreases.

H193 First try calculating the speeds of the particles according to Newton’s
second law (F = ma). If the results are too large, roll out the relativistic formulae.

H194 A charged particle moving, without slowing down, in a plane perpen-
dicular to a homogeneous magnetic field performs uniform circular motion. In a
decay, the conservation laws of electric charge and linear momentum are obeyed.
The answer does not depend upon whether or not the motions of the particles are
relativistic.

H195 It is convenient to chose a system of units in which the speed of light c
has unit value. In this system the total energy of a particle with mass m and linear
momentum p is E = √

p2 + m2. Using the energy and linear-momentum conser-
vation laws, prove that, whenever the decay products are moving perpendicularly
away from each other, the geometric mean of their energies is always the same.
From this – and use of the general inequality between arithmetic and geometric
means – the final answer can be found.

H196 The energy of an ultra-relativistic particle is proportional to the mag-
nitude of its linear momentum. Applying the laws of conservation of energy and
linear momentum, it can be shown that, if the particles’ linear-momentum vectors,
before and after the collision, are drawn from a common point, their ends lie on a
familiar curve.

H197 Calculate the required radius of the electron’s circular trajectory.

H198 According to Heisenberg’s uncertainty relationship, a particle forced
into a space of finite size must have some linear momentum, and so it exerts a
pressure on the containing walls. An estimation of this pressure can be based on a
classical physics model that treats the neutron as a small ball bouncing back and
forth between walls; dimensional analysis can also be helpful.

H199 Bohr’s quantum condition can be generalised for systems consisting of
two particles as follows: the total angular momentum of the system is required to
be an integral multiple of h̄ = h/(2π).

H200 Fuel consumption can be converted in the normal way. To find a physical
interpretation for its SI unit value, some imagination is needed.
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S1 a) Firstly, we note that the parallel trajectories of the problem define a plane
in three-dimensional space and that all motions are confined to that plane. Thus,
although in general the notation employed refers to three-dimensional vectors, here
it describes only two-dimensional ones and the notion of a crossing point P is well
defined.

Let the velocities of the two bodies be v1 and v2 in the original reference frame
K. Since these are parallel vectors, v1 × v2 = 0.

If another reference frame K′ moves with constant velocity v0 relative to K, the
velocities in this new frame are given by

v′
1 = v1 − v0 and v′

2 = v2 − v0.

The two trajectories will cross each other if vectors v′
1 and v′

2 are not parallel,
that is

v′
1 × v′

2 = (v1 − v0) × (v2 − v0) = (v2 − v1) × v0 = 0.

This condition can be satisfied if the magnitudes of the two parallel velocities are
different, and the relative velocity v0 of the two frames is not parallel to them (see
Fig. 1).

Fig. 1

91
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b) Taking the origin of the reference frames to be the position of body (1) at time
t = 0, the position vectors of the bodies in K at time t are

r1(t) = v1t and r2(t) = v2t + d,

where d is the relative position vector of the two bodies at t = 0 (see Fig. 2).

Fig. 2

In frame K′ the position vectors are

r′
1(t) = (v1 − v0) t and r′

2(t) = (v2 − v0) t + d.

If the two bodies meet at the crossing point P at time t0, then

r′
1(t0) = r′

2(t0),

that is

(v1 − v2) t0 = d.

Since v1 and v2 are parallel to each other, this condition can only be satisfied if d
is parallel to both, i.e. the starting position of body (2) lies on the (straight-line)
path of body (1). This implies that in frame K the trajectories of the two bodies are
not only parallel, but coincident with each other. The ‘crossing’ should be more
accurately described as an ‘overtaking’.

We can come to the same conclusion using a slightly different approach. Sup-
pose that in reference frame K′ one of the bodies reaches the crossing point at
time t1, whereas the other body arrives there at time t2. Symbolically, r′

1(t1) =
r′

2(t2). The required relative velocity of the two frames can thus be found from the
condition

(v1 − v0) t1 = (v2 − v0) t2 + d.

This yields

v0 = d + v2t2 − v1t1
t2 − t1

.
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It can be seen from this that the smaller the time difference between the bodies’
arrivals at the crossing point, the larger the relative velocity v0 required, but that
the limiting condition of t1 = t2(= t0) cannot be met for any pair of truly distinct
trajectories in K.

Note. The general result of this analysis can be expressed more simply as follows.
If the bodies meet (they are at the same point at the same time) when viewed in
frame K′, they also meet when viewed in frame K. Two bodies moving parallel
to each other can only meet if their trajectories coincide.

S2 Since Ann is moving directly towards Bob, his position, B in the figure,
must lie on the tangent to the carousel at Ann’s position A. Thus A, B and C,
the centre of the carousel, must form a right-angled triangle. Using the given
geometrical data, it follows that the distance between Ann and Bob at the given
moment is 6

√
3 m. It also follows that the tangential speed of the carousel is

1 m s−1, and that its angular velocity is therefore ω = 1
6 rad s−1.

If Ann were sitting at the centre of the carousel, she would see the whole world
around her rotating with the same angular speed ω, but in the opposite direction.
That means she would observe Bob standing 12 m away from the centre of the
carousel, but moving with a speed of 1

6 ×12 = 2 m s−1 in a direction perpendicular
to the line joining him to the centre of the carousel. Although Ann is not sitting at
the centre of the carousel, but at its edge, the same conclusion applies – namely
that, according to Ann, Bob’s speed is 2 m s−1. On the left in the figure, the
relative motion can be seen from the point of view of Bob (frame of reference K);
on the right is the same situation from Ann’s point of view (frame K′).

The frame of reference K is inertial, but frame K′ (i.e. the rotating carousel) is
not, and so the Galilean transformation does not apply. According to Bob, Ann is
moving directly towards him with a speed of 1 m s−1; however, from the rotating
frame K′, Ann observes that Bob is not moving directly towards her and that his
speed is different, namely 2 m s−1.

Bob’s velocity in frame K′ can be resolved into two perpendicular components,
as shown on the right-hand side of the figure. The magnitude of the component
pointing towards Ann has the (perhaps expected) value of 1 m s−1, whereas that
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of the component perpendicular to this is
√

3 m s−1. This latter value can be
understood as Ann observing Bob moving at right angles to her line of vision with
a speed of ω × 6

√
3 m = √

3 m s−1.

S3 Let us solve the problem in a frame of reference fixed to the cart; here the
cart is at rest but the road and meadow are moving. The cart and the boy will arrive
simultaneously at some point on the road if, in this frame, the boy runs directly
towards the cart. The boy’s velocity can be found in the moving reference frame if
we add velocity −v to the boy’s velocity measured in the frame fixed to the ground.
The geometrical arrangement is shown in the figure.

First, connect the initial positions of the boy and the cart; this line shows the
direction in which the boy should run. Now draw a circle with radius u around the
arrowhead of velocity vector −v. With luck – he can run fast enough, and the ratio
b/a is not too large – this circle crosses the line of the cart–boy direction at two
points. These two crossing points set the extreme directions of the boy’s possible
(i.e. successful) runs.

If he runs ‘so as to meet’ the cart with velocity vector u1, then they meet at
point P1, or if he runs ‘so as to catch up with’ the cart with velocity vector u2,
then they meet at P2. If the boy runs with speed u in any direction between these
two extremes, he reaches the road before the cart arrives; he could have run more
slowly. Note that in the figure each of these vectors is shown twice, once (as a
velocity) when their directions are determined using the circle centred on −v, and
once (as a position vector) to show the actual path taken by the boy.

The figure can be used to find how fast the boy has to be able to run to just
catch the cart. If we were to draw a circle with a radius corresponding to this
minimal speed umin around the arrowhead of velocity vector −v, then it would
have the cart–boy direction line as a tangent (i.e. the two crossing points referred
to above coincide). Accordingly, the boy should run in a direction perpendicular to
this line with a speed of umin = v sin θ , where the angle θ can be calculated using
the identical angle properties of the figure: tan θ = b/a. If the boy runs with the
minimal speed umin in the proper direction, then he meets the cart at point Pmin.
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S4 In a reference frame K fixed to the bank, we denote Joe’s starting point by
A, his landing position by P, and the position of the nugget by B. As recommended
in the hint, we also use a reference frame K′ that moves with the river water; in this
frame, the corresponding points are A′, P′ and B′.

In frame K′ the bank appears to be moving with speed v in the opposite direction
to that of the original current, Joe is paddling with speed u in still water, and his
hiking pace along the bank is v + u. By the time Joe lands, his starting point has
moved to A′, and the nugget to B′, as shown in the figure.

In frame of reference K′, Joe’s trajectory reminds us of light rays refracted at
the interface between two different media, so we can apply Fermat’s principle to
find the optimal path. If Joe wants to reach the nugget in the shortest time, then he
has to choose the track that a light ray would follow when passing out of a medium
with refractive index n = (v + u)/u and into a vacuum. In this case, with the exit
ray parallel to the interface, the angle of incidence α is simply the critical angle for
total internal reflection; this is given by sin α = 1/n (Snell’s law with the angle of
refraction equal to π/2). But, from simple geometry, α = θ .

This means that, in frame K, Joe must paddle in a direction that makes an angle
π/2 + θ with the drift velocity of the water, where

θ = sin−1

(
u

v + u

)
. (1)

This argument based on Fermat’s principle is only correct if, in frame K′, the gold
nugget, travelling with speed v, passes point P′ before Joe reaches it, i.e. for the
value of θ found earlier,

v ≥ u sin θ . (2)

In the alternative situation (v < u sin θ), it is a waste of his time for Joe to land
downstream of the nugget, and it is best for him to paddle so that in frame K his
net velocity is perpendicular to the river bank, taking the shortest route across (and
not hiking at all). The required angle θ is then
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θ = sin−1
(v

u

)
. (3)

By equating the values of θ given by equations (1) and (2), we can obtain the
critical value for u/v that separates the two strategies:

v

u
= u

v + u
i.e. u2 − uv − v2 = 0.

This yields

u

v
=

√
5 + 1

2
≈ 1.618,

which is the value of the well-known golden section.
Therefore, we can state that, if Joe is fast enough (u ≥ 1.618v), he reaches the

nugget in the shortest possible time if he moves straight towards it (i.e. perpendic-
ularly to the river bank). In the limiting case, Joe has to paddle in the direction that
makes an angle with line AB of θmax ≈ sin−1(1/1.618) = 38.2◦.

Whether Joe is faster or slower than the critical speed, he reaches his target
as quickly as possible if he paddles in a direction making a smaller angle than
θmax with the line perpendicular to the river bank. Note that the required angle θ

(0 < θ < θmax) approaches zero if either Joe’s speed approaches infinity (equation
(3)) or it approaches zero (equation(1)).

Note. In general, the same optimal angle θ corresponds to two different boat
speeds, and we can find a connection between them by equating the sines of these
angles: u1/(v + u1) = v/u2, where u1 is the slower and u2 the faster paddling
speed. From this equation, we get v2 = u1(u2 − v), i.e. the geometric mean of u1
and u2 − v is always equal to v (the drift velocity of the river).

S5 In principle, several outcomes are possible, depending on the actual values
of the friction and the speeds. In the case of small friction and a large initial speed,
the disc flies across the table with virtually no change in its velocity. If the friction
is large and the initial velocity is small, then the disc does not get across the
conveyor belt, but ‘sticks’ to it, and the moving band carries the disc to the right-
hand edge of the table. This latter possibility might suggest that it could be a good
idea to describe the phenomenon not in a frame of reference K fixed to the table,
but rather in a frame K′ that moves with the conveyor belt. We will see that the
solution becomes relatively simple if the coordinate system K′ is used.

In the reference frame K′ fixed to the moving band, the disc slides slantwise
across the band, and its initial velocity is

v′
1 =

√
v2

0 + V2 = 5 m s−1.
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As a result of the frictional force, the disc’s motion is one of uniform deceleration
along a straight line, and if it does not lose all of its energy, the sliding disc exits
from the band and onto the smooth table; this case is shown in the figure.

The path length of the disc across the band is

s = d
v′

1

v0
= d

√
1 + V2

v2
0

= 1.25 m.

Its deceleration is constant and has magnitude μg, and so its final speed (from the
work–kinetic energy theorem) is

v′
2 =

√
v′2

1 − 2μgs ≈ 3.57 m s−1.

So, in practice, the disc does leave the conveyor belt. To find the exit point of the
disc, we will need to know the time t1 the uniformly decelerated disc takes to cross
the band:

t1 = 2s

v′
1 + v′

2

≈ 0.29 s.

We now return to the frame of reference K fixed to the table. In this frame, the
band moves a distance Vt1 to the right, and the disc moves a distance (V/v0)d to
the left, relative to the band. So, the displacement of the disc, until it exits from the
belt, is

�x1 = Vt1 − d
V

v0
≈ 0.125 m

to the right. At the exit point, the component of the disc’s velocity, perpendicular
to the edge of the band, is the same in both frames of reference:

v2,y = v′
2,y = v′

2

v′
1

v0 ≈ 2.86 m s−1.
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The velocity component parallel to the edge of the band, in the frame K, is

v2,x = V − v′
2,x = V − v′

2

v′
1

V ≈ 0.86 m s−1.

The time taken to cross the d = 1 m wide, frictionless region, and reach the edge
of the table, is

t2 = d

v2,y
= 0.35 s,

and the consequent displacement of the disc to the right is

�x2 = v2,xt2 ≈ 0.301 m.

Thus the total displacement of the disc to the right is �x1 + �x2 = 0.426 m. This
is less than 1.5 m and so the exit point is on the table edge parallel to the belt
(rather than on its right-hand edge) and at a distance of 42.6 cm to the right of its
midpoint.

Note. In the reference frame K′ fixed to the conveyor belt, the direction and
magnitude of the disc’s acceleration are both constant, and so, in the frame K
fixed to the table, the trajectory of the disc, while it is on the belt, is a parabolic
arc with its axis parallel to the direction of the acceleration.

S6 Solution 1. a) Using the simplification given in the problem, it can be
stated that the magnitude of the boy’s acceleration can never be more than μg.
Its direction can be chosen freely, but should that direction be constant during the
turn? Or is it better to continuously change the direction of the acceleration?

The answer can be found if the motion is analysed in the vx– vy coordinate
system, for which the axes are the east (x) and north (y) components of the velocity
(see Fig. 1).

Fig. 1

Our aim is to change the initial velocity vector v1 = (0, v) to the final one
v2 = (v, 0) as quickly as possible. As the acceleration is nothing more than the
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rate of change of velocity, i.e. the velocity of the tip of the velocity vector in the
vx– vy plane, in the optimal case, the tip of the velocity vector must move along a
straight line between the end-points of vectors v1 and v2. Furthermore, it must do
so with maximum speed (in this velocity coordinate system), corresponding to the
maximal acceleration μg of the runner. So the minimal time for his turn is

t = |v2 − v1|
μg

=
√

2v

μg
≈ 7.2 s.

b) The boy’s acceleration vector is constant throughout, with magnitude μg,
and directed to the southeast (it makes an angle of 45◦ with the x-axis), and so
his trajectory during the turn (in the same way as for projectiles) is a parabola, as
shown in Fig. 2. The parabola has its axis in the northwest–southeast direction, and
the trajectory is completed by tangential straight-line segments at the end-points A
and B of the parabolic arc.

Fig. 2

Note. It can be shown that the equation of the boy’s trajectory, between A and B, is

y = v

√
2
√

2

μg

√
x − x,

in the coordinate system shown in Fig. 2, which has its origin at point A.

Solution 2. a) We use the inertial frame of reference K′ that moves with the
boy’s initial velocity v1. While in the original frame K (fixed to the ice), the initial
velocity vector v1 must be changed to the velocity vector v2, in the coordinate
system K′, the boy is initially at rest (v′

1 = 0), and his final velocity is v′
2 = v2 −v1

in a southeasterly direction (see Fig. 3). The magnitude of the final velocity is,
from Pythagoras’s theorem, |v′

2| = √
2 v.

In a Galilean transformation, the acceleration does not change, so in the frame
K′ the boy’s maximum possible acceleration is also μg. It is obvious that, for the
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Fig. 3

fastest turn, he must accelerate towards the southeast throughout. So the minimal
time for the fastest change of direction is

t = |v′
2|

μg
=

√
2 v

μg
≈ 7.2 s,

which is in line with the result of Solution 1.
b) In the reference frame K′, the boy is producing uniformly accelerated recti-

linear motion. In other frames of reference – those whose velocity relative to K′ is
not parallel to the runner’s trajectory in K′ – the trajectory appears as a parabola.
This is why, in the original frame K, the boy’s trajectory has this form.

S7 The position of the pendulum, of length �, is specified by the rotational
angle ϕ measured from its initial (horizontal) position, as shown in Fig. 1.

Fig. 1

The tangential acceleration is due to the tangential component of the gravita-
tional force:

at = g cos ϕ.

The speed of the bob can be found from the conservation of mechanical energy,
the bob having descended vertically through a distance � sin ϕ:

v = √
2g� sin ϕ.
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So the centripetal acceleration is given by

acp = v2

�
= 2g sin ϕ.

The x (horizontal) and y (vertical) components of the acceleration of the bob are
thus

ax = acp cos ϕ + at sin ϕ = 3g sin ϕ cos ϕ,

ay = acp sin ϕ − at cos ϕ = 2g sin2 ϕ − g cos2 ϕ.

These expressions can be transformed using trigonometric identities into

ax = 3
2 g sin(2ϕ), ay = 1

2 g − 3
2 g cos(2ϕ).

This is the parametric form of the equation for a circle, which can also be written as

a2
x + (ay − 1

2 g)2 = ( 3
2 g)2.

The locus of the end of the acceleration vector a of the pendulum bob is a circle of
radius 3g/2 centred on (0, g/2), as shown in Fig. 2. The initial release corresponds
to the point (0, −g) and the circle is traversed in an anticlockwise direction.

Fig. 2

Note that, during the first ‘half-swing’, i.e. until the pendulum is horizontal with
its bob at rest for the first time, the complete circle is traversed. At this point the
acceleration vector reverses direction and the whole circle is covered again, but in
a clockwise sense.

S8 Let the length of the pendulum be �. Along the arc AP the vertical acceler-
ation of the bob is less than or equal to g (with equality only at the initial point).
Correspondingly, the time required to cover this arc is clearly greater than it would
be if the bob were to fall freely between the height levels of A and P:
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tAP >

√
2� sin 30◦

g
=

√
�

g
. (1)

Next, let us divide the arc PB into two equal sections, PQ and QB.

At points P and Q the speeds of the bob can be found using the law of conservation
of energy:

vP = √
2g� sin 30◦ = √

g�, while vQ = √
2g� sin 60◦ =

√√
3g�.

The bob clearly covers the �π/6 long arcs PQ and QB more rapidly than if it had
moved along the first section with a constant speed vP, and along the later one with
speed vQ. As a formula:

tPB <
�π
6vP

+ �π
6vQ

≈ 0.92

√
�

g
. (2)

Comparing the inequalities (1) and (2), it can be seen that tAP > tPB, and so we
conclude that PB is the arc that is traversed in a shorter time.

S9 The focal point F lies on the vertical axis of symmetry of the parabola.
Let the distance between F and the launch point P be d, and the launch angle,
measured from the vertical, be θ . Then, the angle between the line PF and the
launch direction is also θ . This follows from the laws of reflection, the geometrical
properties of parallel lines and the fact that rays coming from its focus are reflected
by a parabolic mirror parallel to its axis of symmetry (see right-hand side of figure).
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The projectile reaches the top of its flight in a time t = (v0 cos θ)/g, and its
horizontal displacement at that time is

x = v0t sin θ = v2
0

2g
sin(2θ).

The distance of the focus from the launch point can be found with the help of the
right-angled triangle shown on the left-hand side of the figure:

d = x

sin(2θ)
= v2

0

2g
.

Note that this result is independent of the launch angle. The left-hand part of the
figure also shows that, if 2θ = 90◦, i.e. if the launch angle is 45◦, then the focus
and the launch point are at the same altitude.

Note. Continuing the argument given above, the position of the parabola’s direc-
trix can also be deduced. As the axis of the parabolic trajectory is vertical, its
directrix must be horizontal. From the definition of a parabola, all points on it
are equidistant from the directrix and the focus. In particular, this applies to the
launch point P; the directrix is therefore a distance d = v2

0/(2g) above P. As must
be the case, this distance is independent of the launch angle.

If the initial velocity v0 were vertically upwards, then the maximum height the
projectile would reach would be v2

0/(2g), the same value as the height above P
of the directrix. This means that we can consider the directrix as a geometrical
analogue of the total energy of projectiles. The distance between the directrix
and any particular point of the parabolic trajectory is directly proportional to the
kinetic energy of any projectile at that point that subsequently follows the given
parabolic path.

S10 Solution 1. The path of the projectile can be described using the coordinate
system shown in Fig. 1.

Fig. 1

The horizontal motion (along the x-axis) is uniform and

x(t) = tv0 cos θ , (1)

where θ is the launch angle, measured from the horizontal. The vertical uniformly
accelerating motion is described by the following equation:
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y(t) = −g

2
t2 + tv0 sin θ + h. (2)

Obtaining an expression for the time from equation (1), and then inserting it into
equation (2), gives the equation of the trajectory as

y(x) = − g

2v2
0 cos2 θ

x2 + x tan θ + h.

Its horizontal displacement, d, from the foot of the tower when a projectile hits the
ground is now found by setting y = 0, yielding a quadratic equation in x whose
roots give the required value(s) of d.

To simplify the expressions involved, it is useful to rewrite the initial speed in
the form v0 = √

2gH, where H is a constant with the dimensions of length.15

Incorporating this change of notation and setting y(d) = 0 gives the following
equation:

0 = − d2

4H cos2 θ
+ d tan θ + h.

Using the trigonometric identity 1/cos2 θ = 1 + tan2 θ and the notation u = tan θ

reduces it to

(1 + u2)d2 − 4uHd − 4hH = 0.

This quadratic equation for d can, if d is given, also be written as a quadratic
equation in u:

d2u2 − 4dHu + (d2 − 4hH) = 0.

Any given distance d can only be reached if this equation has at least one real
root for u, corresponding to at least one achievable launch angle θ in the range
−π/2 < θ < π/2. There will be such a root provided the discriminant of the
quadratic equation is non-negative:

(2dH)2 − d2(d2 − 4hH) ≥ 0, which reduces to d ≤ 2
√

H2 + hH.

The limiting case of equality corresponds to the longest projectile distance, and
using H = v2

0/(2g), the final result can be expressed as

dmax = v0

g

√
v2

0 + 2gh.

Solution 2(a). Let us denote the initial velocity vector by v0, the touchdown
velocity vector by v1, the total displacement vector of the motion by r, and the
gravitational acceleration vector by g (see Fig. 2).

15 This constant H has an understandable physical interpretation: a body released from rest at this altitude would
reach the ground with speed v0.
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Fig. 2

The acceleration of a projectile is constant, and so

v1 − v0

t
= g, (3)

where t is the time between the launch and the touchdown. The velocity is changing
uniformly with time, and so the average velocity is equal to the arithmetic mean of
the initial and final velocities, that is

v1 + v0

2
t = r. (4)

The scalar product of equations (3) and (4) gives

v2
1 − v2

0

2
= g · r = gh,

which means that the magnitude of the touchdown velocity is

v1 =
√

v2
0 + 2gh.

This result is not surprising, because it follows directly from the conservation of
energy.

Much less obvious is the result of taking the vector product of equations (3) and
(4). Using the facts that a × b = −b × a and a × a = 0 for any vectors a and b, we
obtain

v1 × v0 = g × r.

Let us take the absolute values of both sides of this equation:

|v1 × v0| = |v0| · |v1| sin γ = v0

√
v2

0 + 2gh sin γ = |g × r| = gd, (5)

where γ is the angle between the directions of the initial and final velocities. The
final equality here is justified by noting that, since g is vertical, only the horizontal
component of r contributes to the cross-product.

From equation (5) it can be seen that d is largest if γ = π/2, i.e. that vectors v0

and v1 are perpendicular to each other. The longest projectile distance is then
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dmax = v0

g

√
v2

0 + 2gh,

an outcome in line with the result of Solution 1.
In this optimal situation, with the initial and final velocities perpendicular to

each other, we can use the fact that the horizontal component of the velocity is
constant to deduce that v0 cos θ = v1 cos(π/2− θ) = v1 sin θ . That is, for maximal
range, the launch angle θ should be such that

tan θ = v0

v1
= v0√

v2
0 + 2gh

.

Solution 2(b). The final steps of Solution 2(a) can be carried through using
graphical, rather than algebraic, methods – in essence, by considering vector cross-
products in terms of the areas, rather than the vectors, that they define.

Consider the velocity vector parallelogram KBCA defined by the initial and final
velocity vectors (see Fig. 3), and its relationship with equations (3) and (4).

Fig. 3

Let us calculate the area T of the parallelogram in two different ways: firstly
using the expression T = |v0| · |v1| sin γ , and then as the sum of the areas of two
(identical) triangles,

T = AB · KM = gt
d

t
= gd.

To obtain this latter expression we have used the fact that line AB is vertical, and
that, from (3), its length is gt. Similarly, because of condition (4), the length of KD
is r/t, and its horizontal projection is KM = d/t.

Equating the two different calculations of the area T we get that

d = 1

g
|v0| · |v1| sin γ ≤ v0

g

√
v2

0 + 2gh = dmax,

which is the same result as equation (5) – and leads to the same conclusion, that,
for maximal range, γ must be π/2.
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The result for the launch angle θ required for maximal range also follows,
because, then, the right-angled triangles KMA and BKA are similar, and so

tan θ = AM

KM
= AK

BK
= v0

v1
= v0√

v2
0 + 2gh

.

Solution 3. Denote the launch point of the projectile by P, the touchdown point
by Q, and the foot of the tower (which is also the origin of the coordinate system
shown in Fig. 4) by O. The length of PO is just the height of the tower, and so is
equal to h.

Fig. 4

According to the solution starting on page 102, if a projectile is thrown in any
direction with initial speed v0, the focal point F of its parabolic trajectory must lie
on a circle k1 that has centre P and radius v2

0/(2g). Consequently,

PF = v2
0

2g
.

The directrix e of the parabola is horizontal, and its distance from P is the same
as that of the focus; consequently, the directrix must touch that same circle.16 The
touchdown point Q lies on the parabola, and so its distance from the directrix is the
same as that from the focus F, that is

FQ = h + v2
0

2g
.

It follows that a circle k2, with centre Q and radius FQ, also touches the directrix.
In general, circles k1 and k2 have two intersections (or none). These are the focal

points of two different parabolas that have the same touchdown point. This occurs
when the distance PQ is less than the sum of the distances PF and FQ. However, if
the launch angle is just right, the intersection points coincide with each other, and
the two circles just touch each other (at the focus of the parabola). In this case the

16 Recall that, if v0 is fixed, the position of the directrix is independent of the launch angle.
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distance � between the launch and touchdown points (and so also the horizontal
displacement) will be as large as possible, and given by

� = PQ = PF + FQ = h + v2
0

g
.

Using Pythagoras’s theorem on triangle PQS, as indicated in Fig. 4, the maximal
horizontal distance covered by the projectile can be calculated:

dmax =
√

�2 − h2 = v0

g

√
v2

0 + 2gh,

in agreement with our previous results.

Note. All of our results remain valid if h < 0 (provided v2
0 > 2g|h|). In this case

a possible phrasing of the same physics problem could be something like this:
‘A man shovels a pile of sand from the bottom of a ditch of given depth h.

In which direction should he throw the sand, if he wants it to be as far away as
possible from the ditch? And how far is that? Assume that the initial speed of the
sand is independent of the direction in which it is thrown, and that the sand does
not hit the ditch walls.’

S11 Solution 1. We use the coordinate system shown in Fig. 1 (in which y is
measured downwards).

Fig. 1

The trajectory of a water jet flowing, with (horizontal) velocity v, from a hole
made at height h can be obtained from the formulae for projectile motion:

y(x) = −h + g

2v2
x2.

Further, according to Torricelli’s law, the initial speed of the water jet is
v = √

2g(H − h).
The equation of the incline is y = x tan θ , and if we substitute for y and v into the

equation for the (parabolic) trajectory, we obtain the following quadratic equation
for the horizontal coordinate of the point of impact:

x2

4(H − h)
− x tan θ − h = 0. (1)
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Since 0 ≤ h < H and the constant term (−h) is negative, this equation has exactly
one positive real root (x+), but its maximum value as a function of h requires
considerable calculation. Fortunately, there is an easier way to proceed.

We consider equation (1) in the context of a given position for the impact (i.e. a
fixed x) and find the value(s) of h corresponding to this particular x. With x fixed,
equation (1) can be rearranged as a quadratic equation in h:

h2 + (x tan θ − H)h +
(

x2

4
− Hx tan θ

)
= 0. (2)

This has a real (i.e. physically achievable) root if its discriminant (which happens
to be factorisable) is non-negative, i.e.

(x tan θ − H)2 − x2 + 4Hx tan θ = [x(tan θ + 1) + H][x(tan θ − 1) + H] ≥ 0.

The expression in the first square brackets is clearly positive, and so the expression
in the second square brackets must not be negative. This means that x must satisfy
the following inequality17

x ≤ H

1 − tan θ
. (3)

When the equality holds, the discriminant is zero, and the value of x is the largest
possible that corresponds to a physically achievable value for h.

It follows immediately that the longest possible impact distance on the incline is

d = x

cos θ
= H

cos θ − sin θ
. (4)

The corresponding height of the hole can be obtained by substituting result (3),
with equality holding, into equation (2) and solving for h, obtaining the (repeated)
root

h = 1 − 2 tan θ

2 − 2 tan θ
H. (5)

As h cannot be negative, our results are valid only if tan θ < 1/2 (i.e. θ < 26.6◦).
If θ > 26.6◦, then inequality (3) is not applicable. Rather, a water jet flowing from
the bottom of the vessel provides the largest impact distance, with a horizontal
projection of x = 4H tan θ . In this case, instead of (5) we have h = 0, and (4) is
replaced by

d = 4H tan θ

cos θ
.

17 Provided tan θ < 1, which it is, as we will see later.
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Solution 2. A water jet flowing out through a hole in the wall of the vessel follows
a parabolic trajectory with a horizontal directrix and a focus F that lies on the y-axis
of the coordinate system shown in Fig. 2.

Fig. 2

In the solution starting on page 102, it is proved that, for a projectile with initial
velocity v, the distance between the focus of the parabola and the launch point is
v2/(2g), independent of the launch angle. Thus, for a jet originating at a height h,
which has v = √

2g(H − h), the focus F lies a distance H − h directly below the
hole. But it is also the case that every point of any parabola (including the launch
point) is as far from its focus as it is from its directrix e. It follows that the directrix
is at a height of H − h above the launch point. In other words, the directrix lies in
the surface of the water in the vessel, whatever the value of h.

Consider an arbitrary point P on the incline, and denote the point on the directrix
directly above it by Q, as shown in Fig. 2. If there is at least one possible water
jet trajectory passing through P, then its focus is as far from P as P is from the
directrix e. Now consider a circle, denoted by k, that has centre P and radius PQ.
Suppose, firstly, that the position of the chosen point P is such that circle k has
no common point with the y-axis of the coordinate system. This implies that there
is no suitable launch point on the cylinder, that no parabolic trajectory could pass
through P, and that no water can reach this spot.

Now, if we let P approach the vessel along the incline, at some particular point
P′, the associated circle k′, with centre P′ and radius P′Q′, touches the y-axis. The
point at which it touches gives the focus F of the parabolic path followed by water
that falls the maximum distance down the slope.

From Fig. 2 we can see that

P′F = OF + H and OF = P′F · tan θ ,

from which it follows that P′F = H/(1− tan θ). Further, the water jet falling at the
maximal distance reaches the incline at point P′, which is a distance
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P′O = P′F
cos θ

= H

cos θ − sin θ

from the bottom of the vessel.
The launch point is half-way between the directrix and the focus, and so we have

that H − h = 1
2 P′Q′ = 1

2 P′F. Using this and the result for P′F, we conclude that
the hole should be drilled at a height

h = 1 − 2 tan θ

2 − 2 tan θ
H

from the bottom of the vessel.
If the incline is steep enough, it can happen that the distance OF is larger than H

(corresponding to a launch point below ground). By investigating the (physically)
limiting case of OF = H, we can obtain the critical angle θ∗ for the slope of the
incline:

tan θ∗ = OF

P′F
= OF

P′Q′ = H

2H
= 1

2
, that is, θ∗ ≈ 26.6◦.

If θ > θ∗, the best that can be done is to drill the hole at the bottom of the vessel
(at O, where h = 0). Then, circle k′ no longer touches the y-axis, but crosses it
at point O. The maximal distance P′O can be found with the help of conditions
OF = H and P′O = P′Q′, which produce an equation of the form

x2 + (x tan θ − H)2 = (x tan θ + H)2

for the x coordinate of the impact point. This gives x = 4H tan θ and implies that

P′O = 4H tan θ

cos θ
.

All of these conclusions are in line with those from the first solution.

S12 It is helpful to consider first a side-on photograph of an arrow in (straight-
line) flight. If the exposure is not too long, only the head and fletching of the
arrow are blurred. The various points of most of the shaft cannot be distinguished
from each other because their images become sequentially superimposed during
the exposure; consequently, most of the shaft of the arrow seems sharp.

Equally, the different parts of the spokes of the bike cannot be distinguished
from each other. This is why a point on a spoke that has its velocity directed along
the spoke (as a result of the combined translation and rotation of the wheel) seems
more or less sharp in the photo. For the sake of clarity, Fig. 1 shows only two
spokes, each in five consecutive positions with very short time intervals between
them. Notice that, as well as point O (the momentary rotational axis of the wheel),
point P seems comparatively sharp in this ‘stroboscopic’ image. Point P is not
the image of any particular point of the spoke, but identifies where adjacent spoke
points have the same position in the photo.
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Fig. 1

What property characterises points like P? The crucial criterion is that the direc-
tion of the velocity vector of a point on the spoke exactly coincides with the
direction of that particular spoke. Since the instantaneous centre of rotation is O,
this direction of motion is perpendicular to OP. However, this is required to be the
same as direction TP, where T is the centre of the wheel, as shown in Fig. 2.

Fig. 2

Since OPT is a right angle, it follows from one of the theorems attributed to
Thales of Miletus (‘the angle in a semicircle is a right angle’ and its converse) that
all such points P lie on a circle with diameter OT . Where the bicycle spokes cross
this (theoretical) circle define the sharp parts of the photographic image.

Note. As the spokes of real bicycles are not exactly radial, but always cross each
other, in practice one-half of the unblurred points are outside, and the other half
are inside, the ‘Thales circle’ found in this solution.

S13 In order to keep our equations as simple as possible, we use units of time
and distance in which the radius of the wheel and the bicycle’s speed have unit
value. With this choice, the numerical value of the wheel’s angular velocity will
also be unity.

Further, we take a coordinate system (in real space) such that the horizontal
positive x-axis is at ground level and parallel to the bike’s velocity, whereas the
positive y-axis points vertically upwards on the finishing line. For the photo-finish
picture, our coordinate system will use capital letters X and Y , with Y measured
‘vertically’ and X, representing time, plotted along a ‘horizontal’ axis.
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When the hub of the bike’s front wheel is at the point (x, y) = (−1, 1) (and
the foremost point of the wheel has just reached the finishing line at x = 0), the
equation of a (radial) spoke that makes an angle θ with the horizontal is

y − 1 = (x + 1) tan θ .

After time t the spoke has rotated through an angle of −t, and the wheel’s displace-
ment along the positive x-axis has increased by t; the equation of the spoke at this
time has become

y − 1 = (x − (−1 + t)) tan(θ − t).

On the photo-finish picture, all points lying on the y-axis, i.e. at x = 0, are recorded
at a ‘height’ of

Y = y(t)
∣∣
x=0 = 1 + (1 − t) tan(θ − t)

and placed horizontally at the point X = −t (in accord with the unit speed).
The resulting ‘curved image’ of the spoke in the photo-finish image therefore

has the equation

Y(X) = 1 + (1 + X) tan(θ + X).

The result of plotting this function for different values of θ , say at 20◦ intervals, is
shown in the figure.

The spokes appear on the picture grossly distorted, a situation which, neverthe-
less, agrees very well with real electronic photo-finish pictures of bicycle races
(such as can be found on the Internet, for example).

The rim and the tyre of the wheel appear in the image as undistorted circles,
because a rotation transforms a circle into a circle, and the translation of the wheel
is properly taken into account by the ‘electronic shift’ of the image points.
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S14 The problem is equivalent to the following question. For how long may
we put one of our fingers, held stationary with respect to the ground, between the
spokes of the rolling wheel without touching them?

The motion of the spokes of the rolling cartwheel is quite complicated, and an
analytic solution to the problem is difficult. Instead of attempting this, let us tackle
the question using a graphical method. To do this, we stick a paper disc onto the
base of a convenient circular cylinder (e.g. a jar or a tin), and, while the cylinder
is rolled along a table, the tip of a felt pen (stationary with respect to the table) is
held against the paper disc, as shown in Fig. 1.

Fig. 1

What we will get are the curves shown in Fig. 2, the different curves correspond-
ing to different heights of the pen tip above the surface of the table. In the actual
figure shown, the height of the pen has been changed between 0 and 2R in eight
steps of R/4, where R is the radius of the rolling cylinder.

Fig. 2

In order to maximise the time available for the passage of the bolt, we have
to choose the curve for which the horizontal displacement of the rolling cylinder
is maximal, but subject to the constraint that the pen tip remains between two
successive ‘spokes’ (on the paper disc, the longest curve that lies entirely between
two radii with an angle of 360◦/12 = 30◦ between them). We may choose only
from those curves that do not cross any spokes, or, more precisely, if they do,
then only its length between the crossing points may be considered. The required
optimal curve can be identified as the one that is just touched by the two successive
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‘spokes’. As seen in Fig. 2, this is a curve very close to the one for which the pen
height was R/2. From this heuristic approach, we can conclude that the optimal
result is obtained if the pen tip is at a height of approximately 0.5R above the level
of the table.

Thus, the crossbow bolt should be fired between two spokes at a distance of 0.5R
from the axis of the wheel. At this height, the length of a horizontal chord of the
wheel is 2

√
1 − (0.5)2 R ≈ 1.7R; the bolt may remain between the spokes for as

long as it takes the axis to move this distance. The time for this is

t = 1.7 × 0.5 m

15 m s−1
≈ 0.057 s.

So the speed of the bolt should be at least

v = 0.2 m

0.057 s
≈ 3.5 m s−1.

Notes. 1. We can find a more accurate result using calculus, together with the
numerical solution of a trigonometrical equation. It shows that the optimal posi-
tion for firing the bolt is at a distance of 0.524R from the axis of the wheel. So,
the graphical method gave a good approximation.

2. In practice, gravity will have some effect on the result, in that a certain
amount of vertical displacement will take place during the flight. This can be
minimised by aiming slightly above horizontal to ensure that the bolt is at the top
of its flight at the midpoint of its passage through the wheel. For the calculated
transit time of t = 57 ms, the minimal vertical displacement of the bolt is
�h = 1

2 g(t/2)2 ≈ 4 mm; this is negligible compared to the length of the bolt
and the radius of the wheel.

S15 a) The change in gravitational potential energy is the same whichever
path is followed between A and B, and so – if there is no friction – the final kinetic
energy, and hence the final speed, of the bob must be the same in the two cases.

Fig. 1

In order to compare the transit times, consider two small arcs, denoted by PQ
and RS, which are reflections of each other in the line AB, and are therefore of equal
length, as shown in Fig. 1. As segment RS is ‘lower’ than PQ, the small bob’s speed
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v2 along this segment of path (2) is larger than the speed v1 along the corresponding
segment PQ of path (1); that is, the bob traverses the arc RS in a shorter time than it
would take to cover arc PQ. The same argument, and conclusion, applies to every
pair of corresponding segments, and hence also for the whole motion. In other
words, the bob reaches point B more quickly by following trajectory (2).

b) When there is significant friction, the final speeds can be compared using the
work–kinetic energy theorem. The gravitational potential energy lost during the
descent is the same for both trajectories, but the work done against friction may be
different.

Again, consider two small segments of arc, one on each curve, and denoted by
XY and VW (see Fig. 2). This time, they are defined to be reflections of each other
in the midpoint C of the straight line AB; with this choice, their lengths and slopes
are identical.

Fig. 2

The centripetal acceleration of the sliding bob is provided by the (directional)
sum of the normal force exerted by the surface and the component of the gravita-
tional force that is perpendicular to the velocity. Because of the identical slopes
of the two small segments in question, these perpendicular components of the
gravitational force are the same in both cases.

On both trajectories, the centripetal acceleration is directed towards the centre
of the corresponding arc: on path (1) it is directed obliquely ‘downwards’, and on
path (2) obliquely ‘upwards’. As a result, on segment XY the normal force N1 has
to be less than the perpendicular component of the gravitational force, whereas
on segment VW the normal force N2 has to be greater than it. This argument is
independent of which pair of small segments – centrally symmetrical about C –
are chosen. So, for each point pair on the two trajectories, it is true that N1 < N2;
and the same inequality is valid for the magnitudes of the resistive frictional
forces, F1 < F2. The work done against friction is larger along path (2), and the
corresponding final bob speed will be smaller.
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The above arguments are clearly irrelevant if the friction is so large that either
the bob does not have enough initial potential energy to complete the whole of path
(2), or it cannot even start to move on path (1).

S16 There are several forces acting on the bike, but in this problem we need to
take into consideration only their components parallel to its velocity. For gravity,
this component is ±mg sin θ , where θ is the angle of the incline above the horizon-
tal; the sign depends upon the direction of travel. The drag force is proportional to
the square of the speed, because it is proportional to the kinetic energy of the air
(along a unit length of the road) disturbed by the bike.18

The forces exerted on the pedals by the rider’s feet produce a torque, which –
through the transmission system – is converted into a backwardly directed force
exerted on the road by the rear-wheel tyre. In reaction to this force, the road exerts
a frictional force on the wheel.

Denote the cyclist’s top speeds, uphill, downhill and on a flat road, by v1, v2

and v3, respectively. In each case the bike’s speed is constant and therefore its
acceleration is zero. The equation of motion for the bike moving uphill is

F1 − mg sin θ − kv2
1 = 0, (1)

where F1 is proportional to the ‘effort’ produced by the rider’s legs, and is the
frictional force that pushes the bike forwards; k is a constant dependent on, among
other things, the density of the air. Similar equations can be written for when the
bike moves downhill or along the flat:

F2 + mg sin θ − kv2
2 = 0, (2)

F3 − kv2
3 = 0. (3)

a) If the biker’s ‘maximal effort’ is interpreted to mean that the frictional reac-
tion force generated as the result of his or her efforts is the same in each of the
three cases, then

F1 = F2 = F3. (4)

The addition of equations (1) and (2) yields

F1 + F2 − k(v2
1 + v2

2) = 0.

Comparing this result with (3) and (4) gives immediately that

2kv2
3 − k(v2

1 + v2
2) = 0,

18 The average speed of the air that is put into motion is roughly equal to the cyclist’s speed.
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from which we can deduce that

v3 =
√

v2
1 + v2

2

2
=

√
122 + 362

2
km h−1 ≈ 27 km h−1.

Note. We get a similar result even if we assume that, in addition to the forces
considered above, rolling friction and friction in the bike’s bearings and sprockets
are significant. In this case, the equation of motion (1) is modified to

F1 − mg sin θ − kv2
1 − k∗ − μmg cos θ = 0,

where k∗ and μ are coefficients characterising bearing and rolling friction, respec-
tively. The other two equations are similarly modified.

From these modified equations of motion it can be deduced that

v2
3 = v2

1 + v2
2

2
− mg

k
μ(1 − cos θ). (5)

Bearing in mind the fact that roads suitable for cycling are not really steep (that is,
cos θ ≈ 1), and, moreover, the coefficient of rolling friction is usually very small,
we see that the last term on the right-hand side of equation (5) is negligible.19 If
this final term can be neglected, our previous result is recovered.

b) If the phrase ‘maximal effort’ is interpreted to mean that the cyclist produces
his or her maximum power, then instead of (4) we should write equalities for the
various products of force and speed:

F1v1 = F2v2 = F3v3.

From the first equality, using (1) and (2), we obtain

mg sin θ = k
v3

2 − v3
1

v1 + v2
. (6)

From the equality F1v1 = F3v3, together with (1) and (3), it follows that

mg sin θ = k
v3

3 − v3
1

v1
. (7)

Comparing (6) and (7) we get an expression for the required speed:

v3 = 3

√
v1v2(v

2
1 + v2

2)

v1 + v2
= 3

√
12 × 36 × (122 + 362)

48
km h−1 ≈ 23.5 km h−1.

Notes. 1. It is worth remarking that the rider (as part of the moving system) can
produce only internal forces, forces which – without the (external) frictional
force – could not keep the bike moving. However, the frictional force does no

19 Unless mg/k is very large; the terminal speed of free fall of a human body is about 200 km h−1 and this would
suggest that the reduction in the calculated value of v3 might be as much as 2 % for μ = 0.05 and θ = 10◦.
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work, because the lowest point of the wheel, which rolls without slipping, does
not move relative to the ground. The work is done at the application points of the
internal forces, namely at the pedals.

2. For bikes with gearshifts the ‘pedal force’ required can be either increased or
decreased, as the rider wishes; in such cases, interpretation a) of ‘maximal effort’
has no realistic meaning.

3. The top speed for cycling on a flat road lies between v1 and v2, and is, in
some way, their mean value. For interpretation a), this mean (Q) is the root mean
square (r.m.s.), while the mean for case b) with the identical powers is 3

√
G2Q2/A,

where A is their arithmetic mean and G their geometric one.

S17 The equation of motion for a biker (bike plus rider!) of total mass m
coasting down a slope of angle θ with speed v is

ma = mg(sin θ − μ cos θ) − kv2,

from which (using the condition a = 0) the terminal speed on the very long slope
can be found:

vmax = C

√
m

k
. (1)

Here C is a constant, and has the same value for both Ann and Bob. As the ratio
m/k is 110

60 × 1
1.5 = 1.22 times larger for Bob than for Ann, his terminal speed is

also larger.
After a biker has left the slope and moved onto the horizontal road with initial

speed v0 = vmax ∼ √
m/k, he or she is decelerated by friction in the bearings and

air drag. It is more convenient to investigate the speed decrease as a function of
horizontal position, x, rather than of time. In accord with the work–kinetic energy
theorem, it is true for both bikers that

d(mv2/2)

dx
= −μmg − kv2(x).

The solution to this equation gives the total path length over which the initial speed
v0 decreases to zero. It is convenient to introduce the dimensionless variable f (x) =
v2(x)/v2

0, which decreases from 1 to 0 during the horizontal motion.
Making this change of variable yields

mv2
0

2

df

dx
= −μmg − kv2

0 f (x),

which can be rearranged, using equation (1) and the fact that v0 = vmax, to read

df (x)

dx
= − k

m
[2f (x) + K]. (2)

Here K is a constant that is independent of both k and m.
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Bob’s value for k/m is smaller than Ann’s, and so from equation (2) it follows
that, along any particular segment of the road �x, and for the same value of f (x),
the magnitude of the loss (|�f |) in the ratio of squared speeds is smaller for Bob
than it is for Ann. This means that Bob coasts a greater distance before stopping
than Ann does and so wins the ‘free-wheel bike race’.

S18 If the feather is moving in a stationary orbit, then that orbit must be a
circle centred on the rotation axis. This is because, relative to a rotating frame
of reference centred on the end of the crop, the feather is at rest. Because of the
infinitesimally small mass of the feather, we can ignore gravity, and the forces
determining its motion are much simplified: the tension in the thread and the air
drag force balance each other.

Let the length of the crop be R, and that of the thread be L. The air drag force
is directly opposed to the velocity. It follows that the thread tension, and so the
thread itself, must also lie along this direction. In other words, the straight line of
the thread is a tangent to the feather’s orbit.

The radius r of the circular trajectory can be found by considering the intersec-
tion of the Thales circle k1 (with diameter R)20 and the circle k2 which has a radius
L and is centred on the moving end of the crop (see figure):

r =
√

R2 − L2.

If the thread is longer than the crop, then the feather has no stable (stationary)
trajectory.

S19 The equation of motion of a pearl of mass m moving under gravitational
and viscous forces is

m
dv(t)

dt
= mg − kv(t).

20 See the solution that appears on page 112.
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The coefficient k in the expression for the viscous drag can be found from the
equation for the terminal velocity:

0 = mg − kv1, giving k = mg

v1
.

Here, and later, we use the fact that g and v1 are parallel to convert from vector
expressions to scalar ones, and vice versa. After substitution for k, the equation of
motion becomes

dv(t)

dt
= g − g

v1
v(t). (1)

Rather than working directly with the pearl’s velocity, it is more convenient to
consider the difference between it and the terminal velocity, i.e.

u(t) = v(t) − v1. (2)

Writing v(t) = v1 + u(t) in equation (1), we obtain

du(t)

dt
= g − g − g

v1
u(t) = − constant · u(t). (3)

This means that the magnitude of vector u(t) gradually (but not uniformly)
decreases to zero from an initial value of v2 − v1, while its direction remains
unchanged. We can therefore write

u(t) = (v2 − v1)λ(t), (4)

where λ(0) = 1, and λ(t) decreases to zero after a sufficiently long time.21

a) Returning to the original question, we combine (2) and (4) to obtain the pearl’s
velocity in the form

v(t) = [1 − λ(t)]v1 + λ(t)v2.

Geometrically, this means that the pearl’s velocity vector moves along the straight-
line segment that joins the horizontal initial velocity vector v2 to the terminal
velocity vector v1; in Fig. 1 this is the line AB.

It can be seen from the figure that the minimal speed vmin corresponds to the
perpendicular distance from the vector origin O to the line segment AB. Since the
right-angled triangles OPB and AOB are similar, we have

OP

OB
= AO

AB
.

This, together with help from Pythagoras’s theorem, gives as the final answer

21 The elementary solution to differential equation (3) shows that λ(t) is a decreasing exponential function with
decay constant g/v1 – similar to that governing the time dependence of radioactive decay.
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Fig. 1

vmin = OP = v1v2√
v2

1 + v2
2

.

b) If the initial velocity of the pearl is not horizontal, but makes an angle θ with
and below the horizontal, then A will be some point on the circle that has centre O
and radius v2.

Fig. 2

For v2 < v1, as shown in Fig. 2, the speed of the pearl will monotonically
increase provided

θ > ϕ = sin−1

(
v2

v1

)
.

Note. If v2 > v1, it is obvious that the speed of the pearl must decrease during
some part of the descent. It can be proved that if θ < sin−1(v1/v2), the speed
decreases initially, but later increases; if θ is greater than this critical angle, v(t)
always decreases.

S20 Suppose that the small ball is not lifted from the table-top just after the
release. If this supposition is correct, then the acceleration of the smaller ball is
horizontal at that moment. Denote this acceleration by a, as in the figure.
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As M is much greater than m, the larger ball is practically in free fall, and its
downward acceleration is g. It follows that the length of thread between the smaller
ball and the pulley also decreases with acceleration g. But this acceleration of the
thread must be equal to the component of the small ball’s acceleration that lies in
that same direction, i.e.

a cos 45◦ = g, (1)

implying that a = √
2 g.

As this horizontal acceleration is produced by the horizontal component of the
tension F in the thread, this component must have a magnitude of

√
2 mg. Fur-

ther, since the thread is aligned at 45◦ above the horizontal, the upward vertical
component of F must have the same value. This means that the ball of mass m
experiences both a vertically upward force of

√
2mg and a downward gravitational

force of mg. Since the surface of the table can exert only upwardly directed normal
forces, the net vertical component of the smaller ball’s acceleration cannot be zero.
This contradicts our initial supposition, which must therefore be wrong; thus, the
smaller ball is lifted from the table-top immediately after the release.

Note. Equation (1) indicates that a > g, and this might seem surprising; a =
g cos 45◦ might have seemed a more plausible result. However, it is sometimes
difficult to visualise accelerations at a particular instant, as there are no ‘visible’
distances involved. To express the situation in ‘more concrete’ terms, we may
consider it relative to a set of x–y axes, where the point at which the thread first
touches the pulley is (0, h) and the small mass is at (−x, 0), with 0 ≤ x ≤ h.
Then, the speed at which the mass–pulley segment of thread shortens is clearly gt
(t ≥ 0) and we can write

d

dt
[(−x)2 + h2]1/2 = −gt.

From this, after some careful calculus, we find that

a(t) = d2x

dt2
= (x2 + h2)1/2

x
g − h2

x3
g2t2,

yielding a = √
2 g when t = 0 and x = h (corresponding to the 45◦ angle of the

problem), thus confirming result (1).
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S21 Consider the limiting case, when the angular frequency ω of the vibration
is such that the pearl of mass m is on the brink of flying away from the rod. In this
special situation, the pearl would not slide down to the pivot even if there were no
disc, so the only forces acting on the pearl are the normal force N due to the rod
and the gravitational force mg (see figure).

The horizontal displacement of the pearl, as a function of time, is

x(t) = −d sin θ ≈ −θ(t)d = −θ0d sin ωt,

where we have used the fact that the angular displacement θ(t) is small. Accord-
ingly, in the horizontal direction, the pearl’s motion is harmonic to a good approx-
imation, and so its acceleration is

ax(t) = θ0ω
2d sin ωt.

This acceleration is provided by the horizontal component of the normal force N
exerted by the rod:

max(t) = N cos θ(t) ≈ N.

From this, we can find the vertical component of the normal force as a function of
time:

Ny = N sin θ(t) ≈ Nθ(t) = mθ2
0 ω2d sin2 ωt.

Under this time-varying upward force Ny, the pearl will separate from the disc
and slide up the rod when the time-averaged value is larger than the gravitational
force. The average value of the sin2 function over a whole number of (half-)cycles
is 1

2 , and so22

〈Ny〉 = mθ2
0 ω2d〈sin2 ωt〉 = 1

2
mθ2

0 ω2d.

22 This is a similar procedure to that used to determine the Joule heat produced in a.c. circuits.
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It follows that the condition for the pearl to fly off the end of the rod is

1

2
θ2

0 ω2d > g,

and, from this, that the required frequency f is

f = ω

2π
>

1

2π

√
2g

θ2
0 d

.

The distance dependence of the critical frequency (∼ 1/
√

d) shows that the
required frequency decreases as the distance from the pivot increases, and so if the
pearl does separate from the disc at some frequency, then, since its time-averaged
acceleration is always upwards, it will continue to do so and eventually leave the
rod. Finally, we note that the correct result is

√
2 times larger than the naive answer.

S22 The forces acting on the block of mass m are the gravitational force mg,
the normal reaction force N of the board and the frictional force F (kinetic or
static). The direction of the frictional force may or may not change during one cycle
of the board’s vibration. The equations of motion, in the directions perpendicular
to and parallel to the incline are

N − mg cos α = 0 and F + mg sin α = ma.

The positive direction of the acceleration a has been chosen to be down the slope
(see Fig. 1).

Fig. 1

The connection between the magnitudes of the static frictional force and the
normal force is the inequality F ≤ μN, while that for kinetic friction is the simple
equation F = μN. The acceleration that the frictional force produces in the block
is largest when the block is sliding, and the (relative) velocity of the block with
respect to the board is in the negative direction. In this case

amax = g(sin α + μ cos α),

and, inserting the data, we get amax ≈ 5.6 m s−2. The maximal acceleration of the
board, resulting from its harmonic oscillation, is Aω2 = 250 m s−2, which is more
than 40 times larger than amax. We conclude that the block starts to slide almost
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immediately after the start of the vibrations. We will see later that the block does
not adhere to the board at any point in the ensuing motion. Consequently, the only
frictional force acting on the block is a constant-magnitude kinetic one – though
its direction is constantly reversing.

It follows from the previous paragraph that the acceleration of the block has only
two different values during its motion:

a± = g(sin α ± μ cos α), (1)

and since, from the given data, μ (0.4) > tan α (0.18), a+ is positive and a− is
negative. The a+ phase lasts until the (signed) speed of the board is larger than the
speed of the block, and the situation is just the opposite for the a− phase.

In the graph shown in Fig. 2, the velocities of the board and the block are plotted
as a function of time. The latter is piecewise linear with two different gradients,
namely a+ and a−. As |a+| > |a−|, the average velocity of the block over one
period (the ‘drift velocity’), increases all the time, and the block drifts downwards
on the board.

Fig. 2

The increase of the drift velocity continues until the average acceleration of
the block becomes zero. After that, the velocity of the block fluctuates around a
constant value vdrift (see Fig. 3). Because of the relatively large frequency of the
board’s vibrations, this steady (stationary) state of the motion is achieved quite
quickly, and so, in our estimation of the total time for the motion, that for the
initial transient stage can be neglected.

The condition for a steady drift is that the average acceleration over a complete
cycle is zero:

〈a〉 ≡ a+t+ + a−t−
T

= 0, (2)

where the definitions of t+ and t− will be clear from Fig. 3. Of course, we also have

T = t+ + t−. (3)
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Fig. 3

From equations (1)–(3), we can find the time interval t+:

t+ = a−
a− − a+

T =
(

1 − tan α

μ

)
T

2
. (4)

The drift velocity can be calculated from the condition that the acceleration of
the block changes direction when the block and the board have the same velocity.
Neglecting the fluctuations in the drift velocity, which are small compared to its
value, we see from Fig. 3 that

vdrift ≈ Aω sin
(π

2
− ω

t+
2

)
= Aω cos

(
ω

t+
2

)
.

Finally, after result (4) has been inserted into this expression, it yields

vdrift = Aω cos

[(
1 − tan α

μ

)
π
2

]
= Aω sin

(
π tan α

2μ

)
.

Using the given numerical data, we find that vdrift ≈ 0.32 m s−1, and so the
estimated time of the block’s motion is

t = L

vdrift
≈ 18.8 s.

The remaining task is to prove that the block does not in fact adhere to the
board. Adherence requires two conditions to be satisfied: one of them is that, at
the relevant moment, the velocities of the block and the board must be the same;
the other is that, at that same time, the magnitude of the board’s acceleration must
be less than |a+| or |a−|, according to whether the board is moving downwards or
upwards, respectively. The first condition is fulfilled each time the board reverses
direction, but this momentary ‘sticking’ is not considered a real adherence in our
model calculation. At those moments the kinetic frictional force changes direction,
but this reversing process is so fast that the displacement of the block during the
brief time it takes is negligible.
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It can be seen from the velocity–time graph that the two conditions can occur
only if the acceleration of the board is very small, i.e. when its speed is near its
maximum (almost Aω). But the block cannot attain such a speed, because the drift
velocity of ≈ 0.32 m s−1, which is smaller than the required speed of ≈ 0.5 m s−1,
sets in sooner. So the block always slides during its journey down the incline.

Note. In our solution it was assumed that the time taken for the first transient stage
of the motion (whereas the block’s speed attains the drift velocity vdrift) is short.
A detailed calculation shows that the range of this time interval is

τ ≈ Aω

μg cos α
≈ 0.13 s,

and so the error introduced into our estimation by ignoring it is really quite small,
some 1–2 %.

S23 Consider the work done as the length of the cord is changed by �� < 0,
i.e. the loose end of the cord is lifted through a distance |��|. This work is equal
to the change in the total mechanical energy of the pendulum bob. If the energy is
expressed in terms of the current length � of the pendulum and the linear amplitude
A of its swing, it can be shown, as below, that the angular amplitude (� = A/�) of
the motion increases due to the work done, but that A decreases.

In what follows we make use of the very slow change in � (measured from
the ceiling to the bob), i.e. for a single swing its fractional change |��|/� � 1.
With this condition, the other quantities characterising the motion also change
very slowly, and (to first order) can be considered constant during a single swing.
Further, the tension F in the cord can be replaced by its time-averaged value F.

The instantaneous angular displacement ϕ(t) and velocity v(t) of the pendulum
can be described as functions of time in terms of simple harmonic motion:

ϕ(t) = � sin(ωt) and v(t) = ��ω cos(ωt), (1)
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where ω = √
g/� is the angular frequency corresponding to the current length of

the pendulum.
It is true that only the component mg cos ϕ of the gravitational force mg con-

tributes to the tension in the cord, but this tension also provides the centripetal
acceleration mv2/�. So the tension in the cord (for small-angle swings) is

F(t) = mg cos ϕ + mv2

�
≈ mg

(
1 − ϕ2

2

)
+ mv2

�
.

Using equations (1) and the expression for ω we get:

F(t) = mg + mg�2

(
−sin2(ωt)

2
+ cos2(ωt)

)
,

and because sin2 ϕ = cos2 ϕ = 1/2, its time-averaged value is

F = mg

(
1 + �2

4

)
. (2)

The total mechanical energy of the pendulum is (taking the zero of the gravita-
tional potential energy to be at the ceiling)

E = −mg� + 1

2
mv2

max = −mg� + 1

2
m�2�2ω2,

which can be expressed, using ω = √
g/�, as

E = mg�

(
−1 + �2

2

)
. (3)

When the length of the pendulum is changed by a small amount ��, and the result-
ing change in the angular amplitude is ��, the small change in the mechanical
energy can be calculated using expression (3) as follows:

�E = mg��

(
−1 + �2

2

)
+ mg����. (4)

Let us now apply the work–kinetic energy theorem for a single swing of the
pendulum (remembering, when needed, that �� is negative):

F |��| = �E,

which can be written using equations (2) and (4) as

−mg��

(
1 + �2

4

)
= mg��

(
−1 + �2

2

)
+ mg����,

After some rearrangement this yields

��

�
= −3

4

��

�
> 0, since �� < 0. (5)
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This inequality shows that the maximal angular extent of the swings increases
slowly with the decrease in the pendulum length. However, by contrast, the hori-
zontal amplitude A = �� decreases, because

�A

A
= ��� + ���

��
= ��

�
+ ��

�
= +1

4

��

�
< 0.

Note. Let us multiply both sides of the equality in equation (5) by �3�4. After
some rearrangement, we get

4�3�3�� + 3�2�4�� = 0.

This can be written in the alternative form

�(�3�4) = 0,

showing that, although the length of the pendulum is decreasing slowly, the quan-
tity �3�4 does not change.

From this ‘conservation law’, it follows that (to a good approximation) the ratio
of the kinetic energy of the pendulum E∗ = E + mg� (the total energy without
its gravitational component) to its angular frequency ω remains constant during a
gradual change of the pendulum length:

E∗

ω
=

1
2 mg��2

√
g/�

= m
√

g

2

√
�3�4.

This kind of quantity (one that hardly changes during a slow change of a parame-
ter) is called an adiabatic invariant. Such invariants are of great importance in
quantum theory. The quantised energy levels of ‘vibrating systems’ (quantum
harmonic oscillators), parallelling the swings of a classical pendulum, are given
by formulae of the form

En = (n + 1
2 )h̄ω (n = 0, 1, 2, . . .).

The adiabatic invariant character of the quotient E/ω guarantees that, in the course
of a slow change of an external parameter (� in our case), corresponding to exter-
nal work being done on the system, the quantum number n remains constant.
The ‘index’ n of the quantum state can be changed only by a disordered energy
transfer, that is by heat (see Solution 2 on page 463).

S24 Let us denote the position vectors of the carabiners, measured from an
arbitrary point O, by r1, r2, r3 and r4, and that of the mountaineer’s equilibrium
position by r0. The condition for equilibrium is

mg +
4∑

i=1

ki(ri − r0) = 0,

which gives

r0 =
mg +

∑
kiri∑

ki

.
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If the mountaineer is displaced from this point to the position r = r0 + x, then
the net force acting on his body is

F(x) = mg +
4∑

i=1

ki(ri − r0 − x),

which can be simplified using the first equation above to read

F(x) = −x
4∑

i=1

ki.

From this, it can be seen that the mountaineer attached to these idealised springs
(with zero unstretched lengths) moves as though a single spring with spring con-
stant

∑4
i=1 ki is pulling him back to the equilibrium position. It is somewhat sur-

prising that this result does not depend on the mass of his body, or on the positions
of the fixed carabiners, and not even on the direction of the initial displacement.

The period of the motion is

T = 2π

√√√√√√
m

4∑
i=1

ki

= 1.6 s.

S25 First of all, we investigate whether the rubber eraser will start moving at
all. It will do so provided that mg sin α > μmg cos α, i.e. μ < tan α = tan 45◦ = 1.
This is clearly the case, since μ = 0.6. So, the eraser will start moving.

A calculation of the work done against friction can be carried out, to any given
degree of accuracy, only by using a computer. The trouble is that the determination
of how the normal force acting on the eraser varies with position is difficult.
However, it is certain that the frictional force is always larger than its initial value of
μmg cos α = μmg cos 45◦ = μmg/

√
2. This is because, after the initial release, the

angle with the horizontal made by the slope on which the eraser moves decreases,
and, in addition, the track has to provide a centripetal force for the moving eraser.

The path to reach the lowest point of the track would be one-eighth of a circle,
with a length of Rπ/4. The work done against friction can now be underestimated
by taking the normal force as if it always had its initial value:

|Wf| > |Wund| = μmg√
2

Rπ
4

≈ 0.333mgR.

The gravitational potential energy difference between the initial position and the
bottom of the track is

�Ep = mgR(1 − cos α) = mgR(1 − cos 45◦) ≈ 0.293mgR.
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It can be seen that |Wf| > �Ep, i.e. the work to be done against friction is clearly
larger than what can be provided by the gravitational potential energy. So, the
rubber eraser cannot reach the very lowest part of the track.

Note. One might be wondering how large the coefficient of friction might be while
still letting the eraser slide to the bottom of the track. A complete description of
the motion is given by the following differential equation:

mRϕ̈ = −mg sin ϕ + μm(g cos ϕ + Rϕ̇2),

where ϕ is the angle the radius vector to the eraser makes with the vertical, and
has an initial value of π/4.

Treating the dimensionless quantity y(ϕ) = (R/g)ϕ̇2, which is proportional to
the kinetic energy of the eraser, as a function of ϕ, the equation of motion takes
the form

1
2 y′(ϕ) − μy(ϕ) = − sin ϕ + μ cos ϕ.

With the boundary condition y(0) = 0 (i.e. the eraser just stops at the bottom of
the track), the solution to the above equation is

y(ϕ) = 6μ

4μ2 + 1
sin ϕ + 2 − 4μ2

1 + 4μ2
(cos ϕ − e2μϕ).

The speed of the rubber eraser is also zero when ϕ = π/4 (at the start of the track),
and this condition is also met if the (critical) value of the coefficient of friction
satisfies the following equation:

1 + 3μ − 2μ2

1 − 2μ2 = √
2 eμπ/2.

Numerical solution of this equation yields μ ≈ 0.37. This value does not depend
on either the radius R of the track or the gravitational acceleration g.

S26 The very slow motion of the box means that there is no need to concern
ourselves with kinetic energy. Because, at the end of the motion, the box arrives
back at its initial position, the total change in gravitational potential energy is zero.
So, the energy used, W, is entirely dissipated in working against the frictional
force F:

10 J = W = 2FL = 2(μmg cos θ)

(
h

sin θ

)
= 2μmgh

tan θ
, (1)

where the length of the incline is denoted by L and its inclination by θ .
We are given that the coefficients of static and kinetic friction are equal, and also

that the box does not spontaneously slide on the incline. The latter implies that

μmg cos θ ≥ mg sin θ , that is μ ≥ tan θ .
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Putting this result for the coefficient of friction into equation (1) yields the
inequality

10 J ≥ 2mgh,

from which, using the approximation mg ≈ 10 N, we get h ≤ 0.5 m. So the height
of the incline is at most half a metre.

Note. It can be shown that, if the box is pulled up the incline, then the work done
(see figure) is

Wup = mgL sin θ + μmgL cos θ = mgh + μmgx.

Correspondingly, the work done when the box moves down the incline is

Wdown = −mgL sin θ + μmgL cos θ = −mgh + μmgx.

So, the total work W done against friction on the incline is related to the length
x of its base (shown in the figure) by W = 2μmgx; from this it follows that
μx = 0.5 m.

This means that, with a given value for the total work done, the length of the
incline’s base depends only on the coefficient of friction (it does not depend upon
the angle of the incline): x = (0.5/μ) m. Now, the height h of the incline is
given by x tan θ = 0.5 tan θ/μ ≤ 0.5, since the ‘no-slide’ condition showed that
μ ≥ tan θ . Thus the maximum possible value of h is 0.5 m.

S27 Denote the masses of the magnets by m1 and m2, and the distance between
their centres of mass by x. During the motion, x decreases from an initial value
of d + d0 to d0. Denote the interaction energy of the magnets at this general
position by −W(x), with its zero level chosen to be in the initial configuration, i.e.
W(d + d0) = 0.

When the centres of mass of the magnets are a distance x apart, the total work the
magnets have done upon each other, through their interaction forces, is just W(x).
In principle, this function can be calculated using the characteristic properties of
the magnets, and applying the laws of magnetostatics – fortunately, the explicit
form of this function is not needed in the following.

When the magnet with mass m1 is released, its speed can be calculated using the
law of conservation of energy:

1

2
m1v

2
1 = W(x),
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and so

v1(x) ≡ −dx

dt
=

√
2W(x)

m1
,

from which the time lapse until the collision is

T1 = −
∫ d0

d+d0

1

v1(x)
dx = √

m1

∫ d+d0

d0

1√
2W(x)

dx. (1)

Similarly, we get the time interval between the release of the second magnet and
the subsequent collision:

T2 = √
m2

∫ d+d0

d0

1√
2W(x)

dx. (2)

When both magnets are released simultaneously, their common centre of mass
(CM) remains at rest during the motion. The common CM divides the distance
between the magnets into two parts in the ratio of their masses (see figure) and the
same ratio holds for the speeds of the bodies:

v1

v2
= m2

m1
. (3)

According to the law of conservation of energy, we must have

1

2
m1v

2
1 + 1

2
m2v

2
2 = W(x),

from which – using (3) – the speed of one of the bodies (say, the one on the left) is

− m2

m1 + m2

dx

dt
≡ v1(x) =

√
2W(x)

m1(1 + m1/m2)
.

From this, the time interval until the collision can be calculated in the same way as
previously:

T3 =
√

m1m2

m1 + m2

∫ d+d0

d0

1√
2W(x)

dx. (4)

In equations (1), (2) and (4), we have three ratios that are all equal to the same
(unevaluated) integral of the same function, so we can write

m1

T2
1

= m2

T2
2

=
(

m1m2

m1 + m2

)
1

T2
3

.
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From this multiple equality, we can now eliminate the two masses, obtaining the
time interval in question in the form

1

T2
3

= 1

T2
1

+ 1

T2
2

,

that is

T3 = T1T2√
T2

1 + T2
2

= 0.48 s.

Note. The result is the same for any force law between the bodies, provided they
are not rotated. If the force has an inverse-square dependence, as in Newton’s
universal gravitational law acting on point-like or spherical bodies, or a linear
one as in Hooke’s law, then the time intervals can be calculated explicitly by
evaluating the integrals involved. In each case the result vindicates our more
general argument.

S28 If the gravitational attraction of the ball were much larger than that due to
the Earth, then the two liquid surfaces would coincide with the same equipotential
surface of the ball’s gravitational field. These surfaces are spheres centred on the
ball; so the length of the liquid column in the left arm would clearly be greater than
the corresponding length in the right arm.

When the gravitational effects of both the Earth and the ball are significant, the
equipotential surfaces are neither horizontal planes (as measured in the Earth’s
frame) nor spheres centred on the ball. Rather, the free liquid surfaces coincide
with an equipotential surface that is intermediate between these two – in general
terms, an ‘incline’ with an increasingly downward inclination from left to right
(see figure). We can therefore conclude that the level of the liquid in the left-hand
arm will rise, whereas that in the right will sink.

It is possible to strengthen the qualitative reasoning given above with a semi-
quantitative analysis, as follows.

The original situation (in which the liquid levels in the two arms are the same)
cannot be the new equilibrium state because we can find another arrangement, only
marginally different from the original, in which the energy of the system is lower.
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Let us transport, hypothetically, a small amount of the liquid (say, a layer of
height ε) from the top of the right arm to the top of the left one. The mass �m of
this amount of liquid is proportional to ε, and so the increase in its gravitational
potential energy in the essentially uniform field of the Earth (using the well-known
formula mgh, with ‘h’ increasing by ε/2) is proportional to ε2.

However, the action also changes the (negative) gravitational energy of the same
amount of liquid in the field of the heavy ball. As the ball, of mass M, is very close
to the tube, this field is not uniform and the change in potential energy is given by

−GM�m

(
1

r2
− 1

r1

)
,

where r1 and r2 are the distances of the transferred liquid from the centre of the
ball before and after the transportation, respectively. As r2 < r1, this change
represents a decrease in the potential energy, and because �m ∝ ε, this decrease
is proportional to ε.

Since, in this thought experiment, ε can be made arbitrarily small, the quadratic
gain can be made smaller than the linear loss, whatever the relative sizes of the ball
and Earth. Therefore, the energy of the whole system decreases in such a process.
This shows the non-equilibrium nature of the original situation, and why the liquid
level moves upwards in the left arm until it reaches a position where any further
mass realignment would not decrease the total energy.

S29 Suppose that our aim is to produce, at the origin of our coordinate system,
the greatest possible gravitational field along the x-axis. Consider a small piece of
plasticine of volume �V whose position vector is of length r and makes an angle
ϕ with the x-axis. It produces a gravitational field

�g = G
��V

r2

at the origin (where � is the density of the plasticine). Its x component is �gx =
�g cos ϕ, and so the contribution per unit volume of the plasticine to the required
gravitational field component is

�gx

�V
= G�

cos ϕ

r2
.

This specific contribution is the same for all parts of the plasticine for which the
fraction cos ϕ/r2 has the same value. Such ‘level surfaces’ can be described in a
polar coordinate system (with the x-axis as the polar axis) by the equation

r(ϕ) = a
√

cos ϕ, (1)

where the constant a characterises and differentiates the various ‘level surfaces’
(see figure). The larger the value of a, the further the surface is from the origin on
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average, and the smaller the specific contribution, �gx/�V , to the required field
made by points on that surface.

Imagine that a given (solid) volume of plasticine is initially moulded so that its
surface has the shape of a ‘level surface’, and denote this surface by S. Changing
the surface in any way must involve moving some part of the plasticine from the
interior to the exterior of surface S; inevitably its contribution to the required field
decreases. This means that the gravitational acceleration at the origin is as large as
possible if the plasticine is moulded to the shape given by equation (1).

Notes. 1. By using the volume V of the plasticine, the coefficient a in equation
(1) can be evaluated. Transforming the polar coordinates (r, ϕ) into Cartesian
coordinates, we get

x = r cos ϕ = a(cos ϕ)3/2, y = r sin ϕ = a(cos ϕ)1/2 sin ϕ.

In terms of these, the volume of the plasticine (as a solid of revolution) is

V =
∫ a

0
πy2(x) dx = −3π

2
a3

∫ 0

π/2
(cos ϕ)3/2 sin3 ϕ dϕ = 4π

15
a3.

From this, a can be expressed in terms of V , and the polar coordinate equation
describing the optimal shape for the plasticine is

r(ϕ) = 3

√
15V

4π
√

cos ϕ.

2. A more formal analysis gives the same result for equation (1), though the
mathematics called upon (the calculus of variations with constraints) is more
advanced than that we normally use.

We first note that the distribution must be symmetric about an axis passing
through the origin, because otherwise an improvement could be made by moving
some material to a different azimuth. For a similar reason, all material must be on
the same side of a plane containing the origin.

As previously, we take the x-axis as this axis of symmetry, and the plane as
ϕ = π/2. Considering only the non-cancelling axial component of the
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gravitational force, i.e. with the cos ϕ factor included, we have

d2g = G�
2πρ

ρ2 + x2

x

(ρ2 + x2)1/2
dx dρ.

Integrating this with respect to ρ from 0 to R(x) (the radius of the surface at the
current value of x) gives

dg ∝
[

x

x
− x

(R2 + x2)1/2

]
.

So we need to choose R(x), which gives the surface shape we seek, so as to
maximise ∫ X

0

[
1 − x

(R2 + x2)1/2

]
dx,

subject to
∫ X

0 R2(x) dx = constant. A secondary boundary condition, which need
not concern us here, is that R(x > X) = 0.

Using the calculus of variations with a constraint (handled via a Lagrange
multiplier λ), but with no derivatives involved, yields

xR

(R2 + x2)3/2 = 2λR.

Clearly R = 0 gives a minimum and can be discarded, leaving x ∝ (R2 + x2)3/2.
But if the (cylindrically symmetric) surface is expressed in spherical polar

coordinates (r, ϕ), we have that R2+x2 = r2 and x = r cos ϕ, and so it follows that

r = a(cos ϕ)1/2,

so reproducing equation (1). The value of the constant a is determined, as before,
by the total volume of plasticine available.

S30 Around a very long cylinder, the gravitational field has cylindrical sym-
metry, the direction of the field (sufficiently far from the ends of the cylinder) is
radial, i.e. perpendicular to the axis of the cylinder, and its magnitude at any point
depends only on the distance of the point from the cylinder’s axis.
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We draw analogies between a mass m (the ‘gravitational charge’) and an electric
charge q, between the gravitational constant G and 1/(4πε0), and between the
gravitational acceleration g = F/m and the electric field strength E = F/q. In
both cases, F is the force acting upon the ‘charge’ (real or analogous).

Using these, and the analogy between Newton’s universal gravitational law and
Coulomb’s law, we can say that the number of gravitational field lines – the product
of the area of a closed surface and the component of the gravitational acceleration
g that is perpendicular to it – is 4πGm, where m is the total mass contained within
the surface. Accordingly, for a coaxial cylinder of length L and radius r (r > R)
that surrounds the planet, we have

g · 2πrL = 4πG · πR2L�, that is g(r) = 2πG�R2

r
. (1)

Here, � denotes the average density of the planet, which is assumed to have a
cylindrically symmetric mass distribution.

a) Using the form of the gravitational field strength, the first cosmic velocity can
be found. The condition for the orbital motion of a point-like body with mass m
around a circular trajectory of radius r is

mg(r) = m
v2

c,1

r
,

from which using (1), and the data supplied in the question, the orbital velocity is
determined as

vc,1 = R
√

2πG� = 9.7 km s−1.

This result is independent of the radius of the circular orbit (so long as it is much
less than the length of the planet). In particular, it applies to the case r = R, and so
this value is also the first cosmic velocity for this ‘sausage’ planet.

It is
√

3/2 times larger than the first cosmic velocity for Earth, which is given by

vEarth
c,1 =

√
GMEarth

R
= R

√
4

3
πG� = 7.9 km s−1.

b) The period of a satellite orbiting in a circle of radius r is 2πr/vc,1, so if the
rotational period of the planet around its axis is T0 = 1 day, then the radius of the
trajectory of a ‘geostationary’ communications satellite is

r0 = T0vc,1

2π
= R

√
T2

0 G�

2π
= 1.33 × 108 m.

In the case of the Earth, the corresponding distance is

rEarth
0 = R

3

√
T2

0 G�

3π
= 4.2 × 107 m.



140 200 More Puzzling Physics Problems

The relationship between the two distances can be written in the form

r0 =
√

3(rEarth
0 )3

2R
.

That they are not proportional to each other is accounted for by the fact that one
case is effectively two-dimensional, whereas the other is three-dimensional. So
the ‘geostationary’ communications satellite orbits at an altitude of r0 − R ≈
127 000 km above the surface of the long, cylindrical ‘sausage’ planet.

c) The second cosmic velocity (i.e. the escape velocity) is very large, and its
precise value depends upon the actual length of the planet. For a planet of infinite
length, the escape velocity is also infinite. This is because escape from a gravita-
tional field with an r−1 strength dependence is impossible using a finite amount of
energy.

In order to prove this, consider a series of distances increasing in geometric
progression: rn = r0α

n (α > 1 and, let us say, r0 = R). The energy required to
reach the altitude rn from the altitude rn−1 is

E(rn−1 → rn) =
∫ rn

rn−1

k

r
dr = k ln

(
r0α

n

r0αn−1

)
= k ln α,

and is independent of n. As n increases, no matter how many times the force
decreases, the path length increases in the same ratio. It follows that the energy
required to move from the height r0 to the height rN must be E(r0 → rN) =
N × E(r0 → r1). It is apparent that any finite energy input will only be enough to
reach a finite altitude.

When the planet has a finite length H, the field strength is proportional to 1/r,
if the positions considered are very far from the ends of the cylinder and r � H.
But if r is comparable to H, then the nature of the gravitational field changes, and
in the case of r � H it has the usual r−2 dependence. From such a planet, a finite
initial speed may be sufficient for an escape to be made.

Note. With the help of the integral calculus, it can be shown that the second cosmic
velocity (the escape velocity) is approximately

√
2 ln(H/R) times larger than the

first cosmic velocity. (For the Earth this ratio is
√

2.) This logarithmic factor is
not too large even if H � R (e.g. for H = 10R the ratio vc,2/vc,1 ≈ 2.1 and for
H = 1000R it is still only 3.7).

S31 Denote the radius of the asteroid (which is equal to the tunnel’s length)
by R and its density by �, the end-points of the tunnel by A and B, and the position
of the mine captain by P (see Fig. 1). The tunnel and the radii corresponding to its
end-points form an equilateral triangle, and so the distance of the tunnel’s midpoint
Q from the centre of the asteroid is d = √

3R/2.
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Fig. 1

Consider the situation when the wagon of mass m, which started from point A
without any initial speed, has already covered a distance x in the tunnel, and its
radial distance from the centre O of the asteroid is r (see Fig. 2). The gravitational
force acting on it is

F = Gm
4π
3

r3� · 1

r2
,

where we have used the well-known fact that, inside a homogeneous spherical
shell, the gravitational field is zero, and so the effect of all titanium lying further
from O than r can be ignored.

Fig. 2

The normal force exerted by the rails (perpendicular to the direction of motion) is

N = F cos ϕ = F
d

r
= 4π

3
Gm�d = constant.

As the wagon experiences no acceleration perpendicular to the rails, the kinetic
frictional force (S) is also constant during the motion, with
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S = μN = 4π
3

Gm�μd.

The direction of the frictional force is opposite to that of the wagon’s velocity, and
so in the first part of the motion it points towards A, and in the second towards B.

The equation of the wagon’s motion, from the start to the turning point, is

ma = F sin ϕ − S = 4π
3

Gm�(r sin ϕ − μd) = 4π
3

Gm�

(
R

2
− x − μd

)
,

which can also be written in the form

a = −ω2(x − x0),

using the following notation:

x0 = R

2
− μd and ω2 = 4π

3
G�.

This is an equation for simple harmonic motion around the midpoint x0, and its
period is

T = 2π
ω

=
√

3π
G�

.

As the period T depends only on the known density of the material of the asteroid
(titanium), it can be found numerically without having values for the radius of the
asteroid or the coefficient of friction. The result is

T = 5597 s ≈ 1.55 h.

The distance of the centre of the oscillatory motion from the midpoint of the
tunnel is

R

2
− x0 = μd,

and so that of the reversing point P of the wagon, measured from its starting
point, is

AP = 2x0 = R − 2μd, (1)

whereas from the midpoint of the tunnel it is

PQ = 2x0 − R

2
= R

2
− 2μd.

To cover this phase of the motion takes a time T/2.
After the wagon turns back, the direction of the frictional force changes, so the

centre of the oscillatory motion (the equilibrium position) will now be on the B
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side of the midpoint Q of the tunnel, at a distance μd from it. As the wagon finally
stops at the midpoint of the tunnel, it follows that

2μd = PQ = R

2
− 2μd,

that is

μ = R

8d
= 2

8
√

3
≈ 0.14,

the value that appeared in the expert’s report. He was also able to calculate from
(1) that the mine captain was standing at a distance of

AP = 2x0 = R − 2μd = R − R

4
= 3

4
R

from the starting point A of the wagon, i.e. midway between Q and B.
The total time of the mine wagon’s motion is equal to the sum of two half-

periods, that is, T = 1.55 h.

S32 Solution 1. First of all, we have to find the gravitational fields in both the
trial bore and the cavity.23

First, consider the trial bore, which is of negligible volume compared to that of
the whole planet. Let the density of titanium (the density of the planet) be �. The
magnitude of the gravitational field at radius r is the same as it would be if only
the sphere of radius r below it were present (and its mass were concentrated at its
centre):

g(r) = G
m(r)

r2
= G

(4/3)π�r3

r2
= 4πG�

3
r = Br,

where B = (4πG�)/3 is a constant. Thus the gravitational field is directly
proportional to the distance from the centre of the planet, and always points
towards it.

Next, the gravitational field in the spherical cavity, which extends from the
surface of the planet to its centre, has to be determined. This can be done using
a ‘cunning’ application of the principle of superposition. Imagine the cavity to
be filled with a mixture of ‘normal’ titanium and ‘negative-density’ titanium. The
gravitational fields of the complete planet and the sphere of ‘negative titanium’
have to be added. In Fig. 1, r is the vector position, relative to O, of an arbitrary
point P in the cavity, c is the position of O relative to the cavity’s centre, and r + c
that of P relative to the latter.

23 A calculation of the gravitational fields can be found in the predecessor of this book: see ‘Problem 110’ in P.
Gnädig, G. Honyek & K. F. Riley, 200 Puzzling Physics Problems (Cambridge University Press, 2001).
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Fig. 1

From our earlier calculation, the gravitational field at a point inside a homo-
geneous spherical body is proportional to the radial distance of the point from
the sphere’s centre, the coefficient of proportionality being the constant previously
denoted by −B. This can be applied to both the complete homogeneous planet and
the cavity, to obtain the field acting when they are superposed. The ‘lack of matter’
in the cavity is represented by a negative density. The resultant gravitational field
(see Fig. 2) is

g = −Br + B(r + c) = Bc.

Fig. 2

This gravitational field is a constant (in both magnitude and direction), regard-
less of the position of point P inside the cavity. This means that there is a homo-
geneous gravitational field in the cavity, with a magnitude B|c| = BR/2, which
is the same as the gravitational acceleration in the middle of the trial bore (which
coincides with the centre of the cavity). Now we can start the calculation of the
pressure at point O.

a) The condition for equilibrium of an air layer of thickness �r in the trial shaft
at a radius of r is

�p = −�air(r)g(r)�r, (1)
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where

�air(r) = p(r)M

R0T0
.

In the above expression for the density, R0 is the universal gas constant and M is the
molar mass of air. Using the linear dependence of the gravitational field, it follows
that

�p = −p(r)M

R0T0
Br�r,

that is

−�p

p
= MB

R0T0
r�r.

If we now let the small changes become infinitesimal, we can integrate both sides
of the equation:

−
∫ pA

pO

dp

p
= MB

R0T0

∫ R

0
r dr.

After integrating we have

ln
pO

pA
= MB

R0T0

R2

2
,

and finally from this

pO = pA exp

(
MBR2

2R0T0

)
= pA exp

(
2πG�MR2

3R0T0

)
.

b) In the case of the spherical cavity, we can also use equation (1), with the same
expression for the air density, but we have to remember that the gravitational field
is homogeneous inside the cavity (g = BR/2):

�p = −�air(r)g�r = −p(r)M

R0T0

BR

2
�r.

We have to carry out the same manipulations, i.e. separate the variables,

−�p

p
= MBR

2R0T0
�r,

and then integrate both sides of the equation:

ln
p′

O

p′
A

= MBR2

2R0T0
.

It will be seen that the ratio of the pressures at points O and A is the same in both
cases. This is not just a coincidence, but a consequence of the fact that the value of
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the homogeneous gravitational field in the spherical cavity is equal to the average
of that in the trial shaft, where the gravitational acceleration is directly proportional
to the radius.

Solution 2. We can use the Boltzmann distribution in the comparison of the
pressures at points O and A:

pA

pO
= exp

(
−�Epot

R0T0

)
,

where �Epot is the gravitational potential energy difference of one mole of air
between points A and O.

The gravitational field in the trial shaft is g = −Br, and so the gravitational
potential is

Ugrav = Br2

2
+ constant.

The potential energy difference of one mole of gas between points A and O is
therefore

�Epot = M
BR2

2
,

which can be inserted into the expression for the pressure ratio:

pA

pO
= exp

(
−MBR2/2

R0T0

)
,

which is the same ratio as that obtained in Solution 1.
Note that, for the spherical cavity, the gravitational potential difference between

points A and O is the same as it was for the thin trial shaft. It is as a result of
this that

pA

pO
= p′

A

p′
O

.

To understand the equality of the potential differences in the two cases, from the
point of view of superposition, we note that it can be considered as the sum of the
contribution of the whole solid planet (as calculated above for the trial shaft) and
the contribution of the half-size sphere with ‘negative density’ (which converts it
to the case of the mined cavity). But the surface of a homogeneous sphere is an
equipotential (even for a sphere with negative density!), and so it makes the same
contribution to the potentials at both points, and therefore adds nothing to their
difference.

S33 Harmonic motion occurs whenever the restoring force acting on a body is
proportional to its displacement from equilibrium. This statement holds not only
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for one-dimensional motions but also for motions in a plane, provided the force
does not depend upon the displacement’s direction (isotropy). Such a situation is
relevant to a conical pendulum undergoing small oscillations.

In a plane, superpositions of oscillations with identical frequencies generally
produce elliptical trajectories, with the centre of attraction at the middle of the
ellipse, in exactly the same way as the ‘sun’ is at the centre of each planet’s orbit in
Wonderland. If, there, the ‘gravitational law’ is that the attractive force experienced
by a planet is proportional to its distance from the ‘sun’, then the trajectories of the
planets would fit the orbits in Mr Tompkins dream.

In Wonderland, gravitational attraction is due to a central force (just as it is in our
real world), and so the law of conservation of angular momentum is obeyed, even
there, and its inevitable consequence is the ‘sweeping of equal areas’ theorem. This
means that Kepler’s second law is the same in Wonderland as it is in our world.

The period of harmonic oscillatory motion does not depend on the associated
amplitude, and this is why the orbital periods of the planets in Wonderland are
independent of the sizes of their orbits; hence, they are all equal. (This statement
is only true if we assume that, in Wonderland, the equivalence of gravitational and
inertial mass holds, and that, further, the gravitational force is directly proportional
to the product of the two mutually attracting masses.)

Note. It can be shown that there are only two central forces for which the trajec-
tories of all finite motions (i.e. ones that are restricted to finite regions of space)
are closed. These central fields are governed either by Newton’s universal inverse
square law or by a law parallelling the restoring force involved in spatial harmonic
motion.

S34 Consider first the maximal impact speed with which a comet can slam
into the Earth. The larger the velocity of the comet relative to the Sun, the larger is
its total (gravitational potential plus kinetic) energy. For a body, bound to the Sun
(and moving along an ellipse), this total energy must be negative, and cannot reach
zero. So, for a comet approaching the orbit of the Earth, we must have

−G
mMS

r
+ 1

2
mv2

0 < 0,

where m and MS are the masses of the comet and the Sun, respectively, r is the
radius of the Earth’s orbit, and v0 is the speed of the comet relative to the Sun. If
the comet arrives from very far away (the major axis of its ellipse is very long),
then the total energy can reach almost zero, and so

vmax
0 ≈

√
2GMS

r
= 42.1 km s−1.



148 200 More Puzzling Physics Problems

The orbital speed of the Earth is just 1/
√

2 times the value given above, i.e.
29.8 km s−1. Relative to Earth the comet arrives in the vicinity of our planet with
the maximal speed if its velocity is opposite to the orbital velocity of the Earth
(and approaching it). In this situation, in the Earth’s frame of reference, the impact
speed of the comet can be as high as

vrel = 42.1 km s−1 + 29.8 km s−1 = 71.9 km s−1,

but no higher.
But, in addition, we have to take into consideration the fact that the gravitational

attraction of the Earth, of mass ME, further increases the impact velocity calculated
above. The work done by the gravitational field (in attracting the comet of mass m
from infinity to the surface of the Earth, which has radius R) increases the kinetic
energy (and speed) of the comet:

0 −
(

−G
mME

R

)
= 1

2
mv2

impact − 1

2
mv2

rel,

from which the maximal impact speed is

vmax
impact =

√
v2

rel + 2G
ME

R
≈

√
(71.9)2 + (11.2)2 km s−1 = 72.8 km s−1.

Note. An even larger value can be found by taking into consideration the fact
that the speed of the comet is greater if the impact occurs when the Earth is near
the Sun. Here the velocity of the comet relative to the Sun is 42.4 km s−1, and
the orbital velocity of the Earth is 30.3 km s−1, so we get an enhanced result of
73.6 km s−1 for the maximal impact speed.

We now come to consider the smallest possible impact speed. The relative veloc-
ity of the comet and the Earth (before the considerable effect of the gravitational
attraction of the Earth is taken into account) could be arbitrarily small. To bring
this about, it is necessary ‘simply’ to align the speeds and trajectories of the comet
and Earth as closely as possible.

If such a, hypothetical, comet approached the Earth slowly, then the gravitational
attraction of the Earth would accelerate it, and the comet would explode on the
Earth.24 The impact speed can be calculated as before, but we must now insert
zero for vrel:

vmin
impact =

√
2G

ME

R
≈ 11.2 km s−1,

which is the well-known escape velocity for the Earth. So, any comet orbiting
around the Sun that crashes into the Earth will do so with at least this speed.

24 There are no such dangerous comets following the orbit of the Earth. If there were, we would surely have
observed them a long time ago.
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Note. The impact speeds determined above are calculated relative to the centre of
the Earth, not to its surface. Taking account of the fact that, because of the rotation
of the Earth, points on the Equator are moving with a speed of approximately
0.5 km s−1, the maximal impact speed relative to the surface (of an atmosphere-
free Earth) is 0.5 km s−1 larger than the value calculated earlier, and the minimal
impact speed is the same amount less.

S35 As they are following parabolic trajectories, the comets must have initial
total energies of zero. Because of the energy lost during the collision (as heat, etc.),
the pieces of debris, all with the same initial speed, but many different directions,
are going to be captured into a variety of elliptical orbits.

The length of the major axis of an elliptical orbit depends only on the orbiting
body’s specific energy (that is to say, on its energy per unit mass). As all the pieces
of debris start with the same specific energy, the lengths of the major axes of their
orbits have a common value, 2a, say. Fig. 1 shows, as a heavy solid line, a possible
orbit for one piece of debris; it passes through P and has S as one of its foci.

Fig. 1

Since the situation must have cylindrical symmetry about the line SP, it is suffi-
cient to work in an arbitrary plane that contains it. As already noted, one focus is
common to all the ellipses; this is the Sun S. The distance (but not the direction) of
the other focus, as measured from P, is also fixed; it is

r1 = 2a − SP,

because, for any point on an ellipse, the sum of the distances from the two foci
must be equal to the length of the major axis. So, the other foci (not S) of the
ellipses all lie on a circle with centre P and radius r1. This circle is marked as k1
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in Fig. 1, and contains the particular point F that is appropriate to the (previously
mentioned) sample trajectory.

Consider now an arbitrary point Q on the plane. If an elliptical trajectory is to
go through Q, then its focus must be at a distance

r2 = 2a − SQ

from Q. Draw a circle (k2 in Fig. 1) with radius r2 and centred on point Q. Three
cases are now possible:

1. If circle k2 crosses circle k1, then point Q is on two different ‘eligible’
ellipses, and the two intersection points give the second foci of the two
corresponding trajectories.

2. If circle k1 and circle k2 have no common point, then none of the possi-
ble orbits of the debris pieces can go through Q; point Q lies outside the
required envelope.

3. In the limiting case that separates the first two possibilities, i.e. when circles
k1 and k2 just touch each other (at point F′ in Fig. 1), only a single elliptical
trajectory passes through Q; this means that Q lies on the required envelope.

In the third case it follows that

PQ = r1 + r2 = (2a − SP) + (2a − SQ),

that is

PQ + SQ = 4a − SP = constant,

and so the points of the envelope themselves lie on an ellipse (the dashed line
in Fig. 1), with foci at P and S. Because of the cylindrical symmetry, the three-
dimensional envelope of the orbits of the pieces of debris is a spheroid (ellipsoid
of revolution), with major axis of length 4a − SP, and foci at P and S (see Fig. 2).

Fig. 2
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S36 Denote by v0 the speed of the space probe in the fixed reference frame of
the Sun after it has ‘left’ the gravitational field of the Earth. (In practice, this means
that the distance between the probe and Earth is much larger than the Earth’s radius,
but even this distance is negligible compared to the Sun–Earth distance.) Our task
is to find the minimal value of v0 that is sufficient for the probe to leave the Solar
System.

Note. When account is taken of the orbital speed vE ≈ 30 km s−1 of the Earth
and of its rotational ‘willingness to help’, the space probe can be launched with a
speed of

vL =
√

(v0 − 30 km s−1)2 + (11.2 km s−1)2 − 0.5 km s−1,

which is smaller than v0 (see, for instance, the solution given on page 147). As v0
is a monotonic function of vL, instead of finding the minimal vL, it is enough to
find the minimally sufficient value of v0.

Denote the orbital radius of the Earth by R (R = 1 AU), and that of the planet
used for the gravitational slingshot by Rp = xR. With an appropriate launch date,
the space capsule is going to reach some particular point on the planet’s orbit at the
same time as the planet does (see Fig. 1). The tangential and radial components of
the probe’s velocity at that point (v1 and v2, respectively) can be calculated using
the conservation of angular momentum and energy (but without, for the moment,
taking into consideration the effect of the planet):

mRv0 = mxRv1, that is v1 = v0

x
, (1)

and

1

2
mv2

0 − G
Mm

R
= 1

2
m(v2

1 + v2
2) − G

Mm

xR
. (2)

Here, the mass of the probe is denoted by m, and that of the Sun by M.

Fig. 1
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It still remains to calculate the orbital speeds of the Earth and the planet. From
the centripetal–gravitational force balance for a circular orbit, the speed of the
Earth is given by

G
M

R2
= v2

E

R
, that is v2

E = GM

R
. (3)

Similarly, the speed of the planet is found to be

vp =
√

GM

xR
= 1√

x
vE. (4)

From (1), (2) and (3) it follows that

v2 =
√

v2
0

(
1 − 1

x2

)
− 2v2

E

(
1 − 1

x

)
, (5)

which is real if the expression in the square root is non-negative, i.e. the following
inequality is obeyed:

v0

vE
≥ g(x) ≡

√
2x

1 + x
. (6)

If it is not, the space probe cannot reach the orbit of a planet x astronomical units
from the Sun.

Let us imagine ourselves to be at rest in a coordinate frame moving with the
planet. From here, the space probe will appear to have a velocity component
directed away from the Sun of v2, and one perpendicular to this (in the tangential
direction) of v1 − vp. Thus, the relative velocity of the probe and the planet is

vrel =
√

(v1 − vp)2 + v2
2 . (7)

The velocity of the space probe after its ‘near miss’ with the planet can – if the
parameters of the collision25 are adjusted carefully – be made to be in any arbitrary
direction. In particular, it can be arranged that, after the ‘fly-by’, the velocities of
the probe and planet are parallel (see Fig. 2). In terms of leaving the Solar System,
this is the most favourable case, since then the final speed of the probe, relative to
the Sun, has its maximal value.

During the fly-by, the mechanical energy of the probe, as measured in the
planet’s reference frame, is conserved, and so its speed as it leaves the planet
behind will again be vrel. In the Sun’s frame, the speed of the probe is vrel + vp. If
this exceeds the escape velocity

√
2 vp appropriate to the particular orbital radius

of the planet, then the probe can leave the Solar System. The condition for this is
clearly

25 For example, the minimum height of the probe above the planet’s surface.
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Fig. 2

vrel = (√
2 − 1

)
vp. (8)

Using equations (1), (4), (5), (7) and (8), we can obtain a quadratic equation for v0,
and its positive root is, for x > 1:

v0

vE
= 1√

x3
+

√
1

x3
+ 2 −

√
8

x
≡ f (x). (9)

We now have two conditions on the ratio v0/vE: equation (6) to ensure the probe
reaches the planet; and equation (9) to ensure that, having got there, it has acquired
enough energy to complete the escape from the Solar System.

Now, although the two functions involved in these constraints both have asymp-
totic values of

√
2, they have different values at x = 1, viz. f (1) = √

2, while
g(1) = 1. Clearly, for x only a little above 1, f (x) > g(x) and equation (9) is the
limiting constraint. However, there is a minimum finite value X (> 1) for which
g(x) > f (x) for all x > X (though not by much!). It can be found by setting
f (x) = g(x); some careful algebra then yields X = 2 + √

8. For values of x greater
than 2 + √

8, equation (6) becomes the limiting constraint. Fig. 3 illustrates these
algebraic results.

Fig. 3
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Thus the space probe can leave the Solar System with the help of a gravitational
slingshot from a planet positioned x astronomical units from the Sun if its initial
launch speed is at least

(
v0

vE

)
min

=

⎧⎪⎨
⎪⎩

f (x) for 1 ≤ x ≤ 2 + √
8,

g(x) =
√

2x

x + 1
for x > 2 + √

8.
(10)

The orbital radius (expressed in astronomical units) of a planet producing the most
efficient gravitational assist is given by the value of x that minimises expression
(10).

If x ≈ 1 or x � 1, then, according to (10), v0 ≈ √
2 vE, i.e. the required

launch speed is equal to that for a programme that does not include a gravitational
slingshot. This is easily understood in qualitative terms, as follows. The Earth
(or any other celestial body orbiting near the Earth) could not give the probe a
significant helpful impulse, because their relative tangential velocity would be very
small. A very distant celestial body (e.g. Pluto) could not be an efficient ‘slingshot’
centre because, if the probe had got that far ‘under its own steam’, it would already
have nearly left the Solar System, and would hardly need any further assistance.

By solving f ′(x) = 0, that is x = (
9+

√
81 − 24

√
8
)
/8, or by plotting expression

(10), it can be shown that the minimal launch speed corresponds to a value of x
of 1.58 (see Fig. 3). It is interesting to note that this value is very close to the
orbital radius of Mars (1.52 AU), so the (almost) optimal ‘slingshot manoeuvre’ is
realisable in practice.

Notes. 1. Calculations using the orbital radius of Mars show that the minimal ini-
tial speed of the space probe, relative to the Sun, is v0 = 1.18vE ≈ 35.2 km s−1.
Without the slingshot effect, this speed would have to be

√
2 vE ≈ 42.1 km s−1.

This difference is even more striking if the launch speeds vl relative to the Earth’s
surface are compared. It can be shown that the minimal launch speed would
have to be 16.2 km s−1 without the slingshot manoeuvre, but with its help only
11.9 km s−1 would be enough for the probe to leave the Solar System.

2. In the Sun’s reference frame, the energy of the space probe is not conserved.
During the slingshot manoeuvre, the space probe gains energy from the planet.
As a result, the energy of the planet decreases by the same amount, thus causing
an imperceptibly small decrease in the radius of its orbit, and an equally minimal
increase in its speed.

S37 a) The trajectory of the satellite passing through the (thin) atmosphere can
be assumed to be circular throughout, and so the dynamical condition governing
the motion is

G
mM

r2
= m

v2

r
, (1)
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where m and M are the masses of the satellite and Earth, respectively, r is the
distance of the satellite from the centre of the Earth, and v is the speed of the
satellite. From this we get the expression for v as

v =
√

GM

r
,

which shows that, if the altitude (the orbital radius) of the satellite decreases, then
its speed increases, i.e. the satellite speeds up as the result of any air drag. This
surprising fact is usually known as the astronautical paradox.

The speed increase of the satellite may also be understood dynamically with
the help of the (not-to-scale) figure. The drag force Fd is directly opposed to the
velocity, and the gravitational force is directed towards the centre of the Earth.
However, because of the (slow) decrease in the satellite’s height, the latter is not
perpendicular to the satellite’s velocity. The non-zero tangential component of the
gravitational force is in the same direction as the velocity. If (as will be shown in
part b) to be the case) this component is larger than the drag force, then the satellite
will speed up, rather than slow down.

b) The (formal) power of the drag force is negative, Fd · v = −Fdv, and this is
to be equated with the rate of total energy loss of the satellite:

dEtotal

dt
= −Fdv. (2)

The total energy is the sum of the kinetic energy and the gravitational potential
energy:

Etotal = Ekin + Epot = 1

2
mv2 +

(
−G

mM

r

)
.

As a result of equation (1), the connection between the kinetic and potential energy
is always the following:
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Epot = −G
mM

r
= −mv2 = −2Ekin, (3)

and so we can write Etotal = −Ekin. It follows that any decrease in the total energy
of the satellite results in the same increase in its kinetic energy.

With the help of this equation, statement (2) can be transformed to

−dEkin

dt
= −Fdv,

and using the usual expression for the kinetic energy:

Fdv = d
(

1
2 mv2

)
dt

= mv
dv

dt
.

The expression dv/dt on the right-hand side is just the tangential acceleration at of
the satellite (along the trajectory), so

Fd = mat or using vector notation −Fd = mat. (4)

In accordance with Newton’s second law, the expression mat must be equal to
the tangential component of the net force Fnet exerted on the satellite. Here, this is
the sum of the drag force and the tangential component of the gravitational force
(see figure). It then follows from equation (4) that the tangential component of the
gravitational force (increasing the satellite’s speed) is exactly twice as large as the
drag force (causing energy loss). So, the speed of the satellite is increased by a
force that is equal to the drag force in strength, but oppositely directed.

The perpendicular component of the gravitational force causes the change in
direction of the satellite’s velocity and the curvature in its trajectory, but the mag-
nitude of the velocity (the speed) is not changed by this.

c) Consider again the change in the total energy of the satellite, but now express-
ing it in terms not of kinetic energy but of gravitational potential energy. Using
equation (3) and the deduction from it, the connection between the small changes
in the total and potential energies can be written as

�Etotal = 1
2�Epot. (5)

The change of the potential energy can be expressed in terms of the small change
of the orbital radius �r as follows:

�Epot = �

(
−G

mM

r

)
= G

mM

r2
�r. (6)

We know that, during a single revolution (lasting 2πr/v), the distance of the satel-
lite from the centre of the Earth is decreased by ε = 100 m, so the rate of change
of the orbital radius of the satellite is

�r

�t
= − ε

2πr/v
. (7)
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Using equations (2), (5), (6) and (7), the drag force acting on the satellite can be
expressed as

Fd = 1

4π
G

mM

r3
ε.

Now using equation (1), and the fact that the drag force has the form Fd = c�v2,
the atmospheric density at the altitude of the satellite is found to be

� = 1

4πc

m

r2
ε.

Inserting the given data for ε, c and m, and the value of the orbital radius r =
6370 km + 200 km = 6570 km gives

� = 4.0 × 10−10 kg m−3.

Notes. 1. This very low density of the atmosphere at these altitudes (in the so-
called thermosphere, stretching from 85 km to 500 km) is not at all unusual. The
density can be characterised by the so-called mean free path, which describes the
mean distance covered by the particles of the air between successive collisions.
The value of this at room temperature and at normal atmospheric pressure near
the surface of the Earth is 70 nm, whereas at an altitude of 200 km the mean free
path is greater than 200 m.

2. The International Space Station (ISS) also orbits in the thermosphere, at
altitudes of 330–420 km. Because of the air drag, the ISS is losing energy con-
tinuously; that is why from time to time it is necessary to ‘boost’ the ISS into a
higher orbit (with the help of space craft launched from Earth).

3. In the first decades of space flights, the density of air in the thermosphere was
measured by the orbital altitude decrease of satellites, in just the way described in
this problem. In this region, the local air density changes with time.

S38 Denote the mass of the Earth by M, its radius by R and its rotational
angular velocity by �; denote the corresponding quantities for the Moon by m, r
and ω, respectively. If the Moon–Earth distance is L, then the centre of mass of
the system is a distance mL/(m + M) from the centre of the Earth, and a distance
ML/(m + M) from the centre of the Moon. Both of the celestial bodies orbit the
common centre of mass, with an angular velocity ω equal to that of the Moon’s
rotation around its own axis.
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For the sake of simplicity, in the following estimations, we neglect the angles of
inclination of the plane of the Earth’s Equator, the orbital plane of the Moon, and
the plane of the Moon’s equator, and proceed as though all of these motions take
place in the same plane. The actual values of these angles of inclinations relative
to each other can be seen in the (not-to-scale) figure.

a) If we neglect angular-momentum effects due to the Sun, the Earth–Moon
system can be considered as a closed system in which the law of conservation of
angular momentum is obeyed. The total angular momentum of the system consists
of the spin angular momenta and the orbital angular momenta of the celestial
bodies:

Jtotal = JEarth
spin + JEarth

orbital + JMoon
spin + JMoon

orbital = constant.

Denoting the moments of inertia (or rotational inertia) of the Earth by IEarth and of
the Moon by IMoon (both of them relative to axes passing through their own centres
of mass), the total angular momentum of the system is

Jtotal = IEarth� + M

(
m

m + M
L

)2

ω + IMoonω + m

(
M

m + M
L

)2

ω.

At this stage it is worthwhile to compare the orders of magnitudes of these terms.
Inserting the given data, we find that the orders of magnitude of the first and last
terms are similar, but that the values of the second and the third terms are several
orders of magnitude smaller than either. So, henceforth, the orbital angular momen-
tum of the Earth and the spin angular momentum of the Moon will be justifiably
neglected, with the total angular momentum of the system being approximated as
the sum of the spin of the Earth and the orbital angular momentum of the Moon:

Jtotal ≈ IEarth� + mL2ω = constant. (1)

We are told that the trajectory of the Moon around the centre of mass of the
system can be considered as a circle (to a good approximation), and so, for the
Moon, Newton’s equation of motion has this form:

G
mM

L2
= m

M

m + M
Lω2.

From this we get the following conservation law:

L3ω2 = G(m + M) = constant, (2)

which is essentially Kepler’s third law.
From equations (1) and (2), it can be seen that the quantities L, � and ω are

not independent of each other, i.e. a (small) change in any of them also produces
changes in the other two. For example, if we make a small change �L in L, the
corresponding change in ω is given, from the differentiation of (2), by
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3L2ω2�L + 2L3ω�ω = 0 yielding �ω = −3ω

2L
�L. (3)

Similarly, equation (1) yields

�� = − mLω

2IEarth
�L. (4)

It can be seen that an increase of the Earth–Moon distance causes slowing down
of the orbital motion of the Moon and a decrease of the Earth’s rotation speed.
These two equations are enough to compare the changes in the kinetic energies of
the Earth and the Moon. Using astronomical data, it can be shown that not only
the angular momentum of the Earth but also its kinetic energy come mainly from
the Earth’s rotation around its axis, and that the Earth’s translational kinetic energy
relative to the common centre of mass of the Earth–Moon system is negligible. For
the Moon the situation is just the reverse: the Moon’s kinetic energy comes mostly
from its orbital motion, and its rotational kinetic energy is not large. Accordingly,

EEarth
kinetic ≈ 1

2 IEarth�2, EMoon
kinetic ≈ 1

2 mL2ω2.

If the rotational angular velocity of the Earth is changed by a small amount ��,
the Moon’s orbital angular velocity by �ω, and the Earth–Moon distance by �L,
then the changes of the kinetic energies are

�EEarth
kinetic = IEarth���,

�EMoon
kinetic = mLω2�L + mL2ω�ω.

These equations can be derived in the same way as (3) and (4) were. Now, using
(3) and (4), the energy changes can be rewritten in the form

�EEarth
kinetic = − 1

2 mLω��L, �EMoon
kinetic = − 1

2 mLω2�L.

To answer question a), we note that, since Ė = dE/dt, the ratio of the rates
of change of the kinetic energies is equal to the ratio of the changes of kinetic
energies. This gives a very simple and perhaps surprising result:

ĖEarth
kinetic

ĖMoon
kinetic

= �EEarth
kinetic

�EMoon
kinetic

= �

ω
= 27.3 day

1 day
= 27.3.

It can be seen that the tidal forces are decreasing the kinetic energy of the Earth
much more rapidly, in absolute terms, than that of the Moon. Another curiosity is
that our answer does not depend upon the Earth’s moment of inertia, and so any
preliminary assumption about the mass distribution within the Earth is not needed.

Note. The total mechanical energy of the Earth–Moon system, i.e. the sum of the
kinetic and gravitational potential energies, does not remain constant with time;
because of dissipative internal friction in the rocks and oceans of the two bodies,
it slowly decreases.
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b) The change in the rotational period of the Earth can be related to the change
in the angular velocity:

�TEarth = 2π
� + ��

− 2π
�

≈ − 2π
�2

��.

Using equation (4), the change in the length of an Earth day is related to �L by

�TEarth = πmLω

IEarth�2
�L.

Estimating the moment of inertia of the Earth using the formula 2
5 MR2 for a sphere

with homogeneous mass distribution, we get a time increase of �TEarth ≈ 18 μs
per year. In reality, the Earth’s crust has a smaller density than the Earth’s core, and
so its moment of inertia is smaller than the ‘homogeneous sphere’ estimate. Using,
instead, the experimental value of the Earth’s moment of inertia of 8 × 1037 kg m2

(see Appendix), the day length increase is a little bit larger, namely 21 μs per
year. According to measurements made using the most accurate atomic clocks, the
yearly length increase in the Earth’s day is 15 μs, which is reassuringly close to the
value estimated (considering the approximations applied).

c) At the end of the synchronisation, � and ω have a common value, say ω0,
and so the conservation of angular momentum in relations (1) can be written in the
form

IEarth� + mL2ω = IEarthω0 + mL2
0ω0, (5)

where L0 is the stabilised value of the Earth–Moon separation. From Kepler’s third
law, equation (2), we also have

L3ω2 = L3
0ω

2
0. (6)

Using (5) and (6) to eliminate L0, we get the following equation for ω0:

IEarth� + mL2ω = IEarthω0 + mL2 ω4/3

ω
1/3
0

. (7)

This is a quartic (fourth-degree) equation for the unknown angular velocity ω0 in
terms of the current parameters of the Earth–Moon system. An accurate value for
ω0 can be determined numerically, but a good approximation to the accurate result
can be found by noting that the first term on the right-hand side can be neglected
compared to the second term. Whether or not this neglect is justified will have to
be the subject of a final check.

This approximation gives the following expression for the angular momentum
of the synchronised Earth–Moon system:

ω0 ≈ ω4

(
IEarth�

mL2
+ ω

)−3

.
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Inserting known data (including the measured value for the Earth’s moment of iner-
tia), we conclude that the synchronised angular velocity is ω0 ≈ 1.53 × 10−6 s−1.
Using this approximate value makes the second term on the right-hand side of
equation (7) about 280 times larger than the first term; so neglect of the latter
seems well-founded.

At the end of the synchronisation, the length of the new Earth day will be

TEarth
0 = 2π

ω0
≈ 47 (old) days,

which is more than a month and a half. The ratio of the future Earth–Moon distance
to the present one can be found using (6):

L0

L
=

(
ω

ω0

)2/3

≈ 1.45.

Notes. 1. The dynamical explanation of the Earth’s slowing rotation and of the
Earth–Moon synchronisation is as follows. The Moon exerts a larger gravitational
force on the points of the Earth that are closer to it than on the ones which are
more remote. As a result, the Earth ‘expands’ (just to a very minor extent), and
it is transformed into an ellipsoid of revolution (see figure). But because of the
relatively fast rotation of the Earth around its own axis and because of the internal
friction in the oceans and rocks on Earth, the major axis of the ellipsoid does
not point directly at the Moon. At any instant, it has already passed through that
direction – the major axis is ‘in a hurry’ compared to the line that joins the Earth
to the Moon. The Moon’s gravitational field exerts a torque on these ‘bulges’, and
that torque acts in a sense that slows, rather than speeds up, the Earth’s rotation.

2. There are a few examples of celestial body pairs in the Solar System in which
perfect synchrony has already been established. One of the most widely known
examples is the dwarf planet Pluto and its largest moon called Charon.

S39 Solution 1. The ISS orbits the Earth along a circular trajectory of radius
R, with angular velocity ω0, and an orbital period T of about 92 min. The radius
R ≈ 6700 km is only a little greater than the radius of the Earth, for which the first
cosmic velocity26 is Rω0 ≈ 7.7 km s−1.

We describe the astronaut’s motion using the distance r(t) measured from the
centre of the Earth, which has mass M, and the rotational angle ϕ(t). In this polar
coordinate system (with all the motions confined to the plane θ = π/2), the radial
equation of motion is

26 See part a) of the problem on page 9.
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r̈ = −GM

r2
+ rω2, (1)

while the law of conservation of angular momentum can be written in the form

r2ω = R2ω0, (2)

where ω(t) = ϕ̇(t). Here, use has been made of the fact that, because of the
direction of his jump, the astronaut’s angular momentum was not changed by it.

Equation (1) is also valid for the ISS, but, for it, r(t) ≡ R and ω(t) ≡ ω0, from
which it follows that

ω0 =
√

GM

R3
.

The initial conditions for the astronaut’s motion are

r(0) = R, ṙ(0) = v0, ϕ(0) = 0, ϕ̇(0) = ω(0) = ω0. (3)

We also note that v0 � Rω0, and this is why27 the motions of the astronaut
and the ISS, which he is shoving off from (and showing off to), deviate only a
little from each other. The ‘smallness’ of the deviation can be characterised by the
dimensionless number

ε = v0

Rω0
≈ 1.3 × 10−5.

Henceforth, the order of magnitude of dimensionless quantities will be expressed
in terms of ε and its powers.

The coordinates characterising the astronaut’s motion can be written in the form

r = R(1 + α) and ω = ω0(1 + β), (4)

where α(t) and β(t) are small, time-dependent, dimensionless quantities. Express-
ing the initial conditions in terms of them:

α(0) = 0, α̇(0) = v0

R
= εω0, β(0) = 0. (5)

Inserting the expressions from (4) into equations (1) and (2), and retaining only
zeroth- and first-order terms in α or β, yields

α̈ = ω2
0(3α + 2β), (6)

2α + β = 0. (7)

Eliminating β from (6) and (7) shows that α satisfies the familiar equation for
simple harmonic motion:

α̈ = −ω2
0α.

27 Leastways, the adventurous astronaut desperately hopes it is.
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Its solution satisfying the initial conditions (5) is

α(t) = ε sin ω0t, that is r(t) = R + Rε sin ω0t. (8)

It follows that, after time T/4 = π/(2ω0) ≈ 23 min, the astronaut has moved
radially away from the trajectory of the ISS by Rε ≈ 87 m.

However, this is not his maximal distance from the ISS, because, from (4) and
(7), we also have

ϕ̇(t) = ω(t) = ω0(1 − 2α) = ω0(1 − 2ε sin ω0t),

which can be integrated, with the initial condition ϕ(0) = 0, to yield

ϕ(t) = ω0t + 2ε(cos ω0t − 1). (9)

Now at a time T/2 = π/ω0 ≈ 46 min after his jump, equation (8) shows that the
astronaut has returned to his initial orbital radius. But, in contrast, (9) shows that
at that same time he lags behind the ISS in orbital angle by 4ε corresponding to a
separation from it of 4Rε ≈ 350 m.

Considering equations (8) and (9) together shows that, geometrically relative to
the ISS, the astronaut moves in an ellipse with minor axis 2Rε and major axis 4Rε.

As the motions of the astronaut and the ISS are both periodic with the same
frequency, after one period, of T = 2π/ω0 = 92 min, they will again be at the
same position. This means that the astronaut can survive his stunt, and rejoin the
ISS still alive, if he has got enough oxygen to last 92 min.

Solution 2. The problem can also be solved using Kepler’s laws of planetary
motion. After his jump, the astronaut of mass m has a total energy of

E = −GMm

R
+ m

2
(R2ω2

0 + v2
0) = −GMm

2R
(1 − ε2),

where ε = v0/(Rω0) is the small, dimensionless constant used in Solution 1 (see
above), and his angular momentum is equal to

J = mR2ω0,

the same value as before his jump. His trajectory is – according to Kepler’s first
law – an ellipse that has one of its foci at the centre of the Earth F (see Fig. 1,
which is grossly not to scale).

We now apply the conservation of energy and angular momentum to the astro-
naut when he is at each of the ends of the major axis of the ellipse. At these points
(which, in the usual notation, are at distances of a + c and a − c from the focus),
denote his velocities by v1 and v2, respectively:

−GMm

a + c
+ m

2
v2

1 = −GMm

2R
(1 − ε2),

m(a + c)v1 = mR2ω0,
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Fig. 1

which, on eliminating v1 and using ω0 = √
GM/R3, becomes

− R

a + c
+ 1

2

R2

(a + c)2
+ 1 − ε2

2
= 0.

Similarly, from the other end of the major axis, we have

− R

a − c
+ 1

2

R2

(a − c)2
+ 1 − ε2

2
= 0.

These are quadratic equations for x = R/(a ± c), i.e.

−x + x2

2
+ 1 − ε2

2
= 0,

and they have two roots, 1 ± ε, so

x1 = 1 − ε = R

a + c
and x2 = 1 + ε = R

a − c
.

It follows directly from these that the semi-major axis of the ellipse is

a = R

1 − ε2
≈ R,

the distance between the focus and the centre of the ellipse is

c = Rε

1 − ε2
≈ Rε,
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and the semi-minor axis of the ellipse is

b =
√

a2 − c2 = R√
1 − ε2

≈ R.

It also follows that, since c/a = ε, the graphical interpretation of the dimensionless
parameter used in our analysis is that it is just the eccentricity of the ellipse, which
describes how ‘different from a circle’ it is.

Since ε � 1, the major axis of the astronaut’s orbit is approximately equal to
that of the ISS (the diameter of its circular trajectory). This is why – in accordance
with Kepler’s third law – their orbital periods are very nearly the same, namely
about 92 min. After this interval they will again be at the same position, i.e. they
will meet. If the astronaut’s oxygen supply lasts for at least this length of time, then
he can rejoin the ISS safely.

It can be seen from the parameters of the ellipse that the astronaut’s maximal
radial deviation from the circular orbit of the ISS is a + c − R ≈ Rε ≈ 87 m.
However, the distance between the astronaut and the ISS can be larger than this,
because the two orbiting bodies are separating tangentially as well. In Fig. 2 the
circular orbit of the ISS (k1) and the elliptical orbit (k2) of the astronaut moving
away from the ISS are marked. The ellipse can be considered a circle to a very
good approximation, and its centre C is εR away from the centre F of the circular
orbit of the ISS, i.e. from the focus of the ellipse. (In Fig. 2, the scale of the ellipse
is accurate, but the distance CF = εR is shown greatly magnified.)

Fig. 2

The astronaut jumps away from the ISS at the point P1. Their orbits will cross
each other at point P2 after a half ‘revolution’, but the two bodies do not meet,
because the astronaut, moving along the ellipse arc k2, arrives at P2 later than the
ISS, moving along the circle k1. The time lag (and from this the distance between
the two bodies) can be calculated with the help of Kepler’s third law. The position
vectors of both bodies sweep out equal areas during equal intervals of time, because



166 200 More Puzzling Physics Problems

their orbital periods and the surface areas of their orbits are the same (to a high
degree of accuracy). This areal velocity is

Ȧ = R2π
T

= R2

2
ω0.

To first order in ε the area swept out by the position vector of the astronaut moving
along the arc k2 (the shaded area in Fig. 2) consists of a semicircle, a ‘rectangle’
and a triangle:

A1 = R2π
2

+ εR

2
2R + 1

2

εR

2
2R,

and the time for this motion is

t1 = A1

Ȧ
= 1

2
T + 3ε

2π
T .

Similarly, the orbiting ISS sweeps out the area

A2 = R2π
2

− εR2

2
,

and, to do so, it needs a time of

t2 = A2

Ȧ
= 1

2
T − ε

2π
T .

It can be seen that the astronaut arrives at the point P2 a time interval of

�t = t1 − t2 = 2ε

π
T

later than the ISS.
During this interval the ISS has moved on to the point P′

2. Their distance apart
when the astronaut arrives at P2 is therefore

P2P′
2 = Rω0�t = R

2π
T

2ε

π
T = 4εR ≈ 350 m.

It can be shown by a further application of Kepler’s laws that this distance is the
furthest that the astronaut ever gets away from the ISS before rejoining it.

S40 a) On the ‘floor’ of a space ship, rotating with angular velocity ω, a force
of mRω2 needs to be exerted on a body of mass m for it to remain at rest relative to
the space ship. So, in the rotating reference frame, each body ‘feels’ an apparent
gravitational field with ‘gravitational acceleration’ g = Rω2. This is equal to the
given value of g if the angular velocity is

ω =
√

g

R
= 1 rad s−1.
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The astronaut, slowly climbing up through a distance of R/2, must exert a force
on the pole that decreases linearly with height, and so the work he does can be
calculated using the average force:

W = 1

2

(
mg + mg

2

) R

2
= 3

8
mgR = 3 kJ.

His kinetic energy changes at the same time, since his (tangential) initial speed of
Rω decreases to one-half of that value. The corresponding kinetic energy change is

�Ekin = 1

2
m

[(
Rω

2

)2

− (Rω)2

]
= −3

8
mR2ω2 = −3

8
mgR = −3 kJ.

This does not tally with the work done during the astronaut’s climb because,
although their absolute values are the same, their signs are not. He did some work,
but gained no energy – in fact he lost some! Whatever became of the ‘missing’
6 kJ?

The answer is that we need to recognise that it is the astronaut and the space ship
that together form a closed system. The mass of the space ship is much larger than
that of the astronaut, and so during his climb any change in the angular velocity of
the space ship is barely noticeable. Indeed, in the above calculation, the astronaut’s
final tangential speed and the effective gravity were both calculated using the
initial angular velocity ω, and any variation was tacitly ignored.

However, if we do take into account the slight change �ω in the space ship’s
angular velocity, the change in its rotational kinetic energy can be written as

�Erot = 1

2
I[(ω + �ω)2 − ω2] ≈ Iω �ω,

where I is its moment of inertia.
The magnitude of �ω can be calculated using the conservation of angular

momentum:

Iω + mR(Rω) = I(ω + �ω) + m
R

2

Rω

2
.

On the right-hand side of the above equation, a (second-order) small term, involv-
ing the product of m and �ω, has been neglected, since I � mR2. It follows that

�ω = 3mR2ω

4I
,

and that the change in the space ship’s rotational kinetic energy is

�Erot = Iω �ω = 3

4
mR2ω2 = 3

4
mgR = +6 kJ.
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We are going to be all right! This is just the answer we needed for the work–
kinetic energy principle to be obeyed, even in space:

W = �Ekin + �Erot.

b) Measured in an inertial frame of reference moving with the centre of mass of
the space ship, the velocity of the astronaut has magnitude vA = Rω/2 when he is
at the top of the climbing pole (at point A in the figure).

When he falls from the pole, his velocity remains constant, and so his (point-
like) body undergoes uniform rectilinear motion, and he finally reaches point P
on the gym floor. The time required for this motion (his ‘free fall’, relative to the
gym) is

tAP = AP

vA
=

√
3

ω
≈ 1.7 s.

During his ‘free fall’, the base B of the climbing pole travels to the point B′, a
‘distance’, measured along the floor, of

sBB′ = RωtAP = √
3R ≈ 17.3 m.

However, the astronaut has only reached P, which is

sBP = R cos−1 R/2

R
= R

π
6

≈ 10.5 m

from B.
The other astronauts in the gym (observers rotating with the space ship) see that,

when the astronaut falls from the top of the pole, he does not hit the floor at the
bottom of it, but at a spot

�s = sPB′ = sBB′ − sBP ≈ 6.8 m

away, in the ‘backward’ direction relative to the direction of rotation. The observ-
ing astronauts, all having studied at least some college-level physics, and sitting at
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rest in the gym, ascribe this ‘short-fall’ to the effect of Coriolis force. The astro-
naut’s ‘free fall’ relative to the space ship (i.e. using a rotating frame of reference)
can be calculated only in a rather sophisticated way, while the trajectory and the
time dependence of the motion are very simply found in an inertial reference frame.

S41 At first sight, we might think that, in energy terms, only a simple single
change occurs during the boy’s escapade. The boy is raised h = 20 m in the Earth’s
gravitational field; the escalator is in exactly the same state as it was before the run.
The change in the boy’s gravitational potential energy is �Egrav = mgh = 9.8 kJ;
the work he has done must be equal to this.

But this argument is false! As the boy runs up the steps, he pushes down on
them with an average force of mg. If the steps were at rest, the normal force acting
on them would do no work, but, as the steps (as part of the escalator) are moving,
there is a displacement in the direction of the force. Consequently, the boy is doing
positive work on the steps – and ‘helping’ the escalator to operate.

The downward velocity component of the steps is exactly twice as large as the
vertical component of the boy’s (net) upward speed. As the force involved has
magnitude mg in both cases, the work done on the escalator requires twice the
power needed for that done against gravity. So, the work he does on the escalator
is Wesc = 2mgh, and the total work done is

Wboy = Wesc + �Egrav = 3mgh = 29.4 kJ.

In summary, one-third of the total work done increases the gravitational potential
energy of the boy’s body, and two-thirds of it helps to reduce the electricity bill for
the escalator.

Note. The correct answer can also be found by using a reference frame fixed to
the escalator. In it, the steps are at rest, but the top of the escalator rises with some
constant speed, while the mischievous boy races after it with a one-and-a-half
times greater speed. In this frame of reference, the boy must climb to triple the
actual height h of the escalator, and so the work he has to do is 3mgh.

S42 a) If the mass ratio M/m is sufficiently large, then it can always be
arranged, using fine tuning of the impact parameters (and some good luck!), that
D will bounce from each of the discs of mass μ = M/N in turn. To a good
approximation, its direction is monotonically changed by an angle of π/N at each
bounce. However, if the common mass μ of the discs initially at rest is smaller than
a certain critical value, then it is not possible, even with ideal impact parameters,
to make D turn through an angle of π/N at each collision.

We first investigate the maximal angle through which a disc of mass m can be
scattered by another with mass μ and initially at rest. Denote by v0 the initial
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velocity of the incoming disc in a reference frame K fixed to the air-hockey table
(see Fig. 1).

Fig. 1

It is convenient also to describe the collision in the centre-of-mass reference
frame K′ of the two discs; it moves with a velocity of mv0/(m + μ) relative to the
table. In this frame, the initial velocities of the discs are

vm = μ

m + μ
v0 and vμ = m

m + μ
v0. (1)

In the coordinate system K′ the total linear momentum of the two discs is zero, so
they are always moving in directions directly opposed to each other, but with the
same magnitudes of linear momentum. Because the collisions are elastic, the law of
conservation of mechanical energies requires that the magnitude of the momentum
of each disc (and so also its speed) remains unaltered during the collision, and only
its direction can change (see Fig. 1).

We can transform back to the reference frame K fixed to the table if we add
the relative velocity of the centre-of-mass system to the velocity vectors in frame
K′. After the collision, the velocity vector of D is directed to some point on the
circle shown in Fig. 2. This vector makes the largest possible angle with the initial
velocity direction if it is a tangent to the circle; for future reference we denote its
magnitude by v.

Fig. 2



Solutions 171

It can be seen in Fig. 2 that

vm = m

m + μ
v0 sin ϑmax,

and from this and (1) we can deduce that the largest possible angle, ϑmax, through
which disc D can be scattered is given by

sin ϑmax = μ

m
= M/N

m
. (2)

A successful realisation of the miraculous motion of the disc is possible if ϑmax ≥
π/N. As we are investigating the limiting case of N → ∞, and sin ϑmax is therefore
very small, the approximation sin ϑmax ≈ ϑmax can be used, and the required
condition on the masses involved becomes

π
N

≤ M/N

m
from which

M

m
≥ π.

Note. It can be shown (after lengthy calculations) that, even if the motions
involved are relativistic, the largest possible angular deviation ϑmax of a particle
of mass m scattered elastically from a particle of mass μ initially at rest is still
given by formula (2).

b) Henceforth, only the case of critical mass ratio, i.e. when M/m = π, will be
investigated. It can be seen from Fig. 2 that, for the maximal angular deviation,
the connection between the speeds of disc D before and after the collision can be
expressed as follows:

v2 =
(

m

m + μ

)2

v2
0 − v2

m = m2 − μ2

(m + μ)2
v2

0.

Because μ � m, speed v can be approximated as follows

v = m

(
1 − μ2

m2

)1/2

m−1
(

1 + μ

m

)−1
v0

=
(

1 − μ

m
+ μ2

m2
− 1

2

μ2

m2
+ · · ·

)
v0

≈
(

1 − μ

m

)
v0.

So the speed of the disc decreases by a factor of (1 − μ/m) at each bounce, and
the ratio of the final to initial speed (after N bounces) is

vfinal

vinitial
=

(
1 − M

Nm

)N

≈ e−M/m = e−π ≈ 0.043.

Use of the exponential approximation (as given in the hint) when evaluating the
multiple product is justified by the fact that N is very large.

In summary, after the N collisions, disc D finishes up with approximately 4 % of
its initial speed.
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S43 In their centre-of-mass frame, the (common) speed of the balls is reduced
by a factor k at each collision, and so approaches zero through a geometric
sequence of values. The relative speed of the balls also decreases with each
collision. Since the relative speed of the balls is the same in any reference frame,
it follows that the relative speed also decreases to zero in the laboratory frame. So,
after a sufficient number of collisions, their relative speed will be close to zero and
the two balls will be swinging in phase.

As the net linear momentum of the system cannot change in a collision, and
the repeated interchange between kinetic and gravitational energy serves only to
reverse the sign of the momentum at each subsequent collision, the magnitude of
the total momentum of the balls moving in unison must be equal to what it was just
before the very first collision.

As we now show, the maximal speed of a ball is directly proportional to the
amplitude of its swing. Equating the initial gravitational energy of the raised ball
to its kinetic energy just before the first collision, we have

mg�(1 − cos θ0) = 1

2
mv2

0.

For the small initial angular displacement θ0 ≈ d/�, this gives

1

2
mg�θ2

0 ≈ 1

2
mv2

0 −→ v0 ≈ √
�g θ0 = ωd,

where ω = √
g/� is the angular frequency of the pendulum; the other ball is,

of course, at rest. The law of conservation of linear momentum then shows that,
when the two balls are moving in phase, their maximal speed will be v0/2, and
so the (common) amplitude of their swings will be d/2. When this stage has been
reached, no more collisions will occur, and it will be air resistance that eventually
brings the balls to rest.

Notes. 1. It can be proved that, in the centre-of-mass frame, the speeds of the balls
following the nth collision are

v(CM)
n = kn v0

2
and u(CM)

n = −kn v0

2
.

This translates into the laboratory frame as

vn = v0

2

(
1 + kn) and un = v0

2

(
1 − kn) .

After an odd-numbered collision, the left-hand ball moves with the greater speed
vn; and after an even-numbered one, the right-hand ball does so; the other ball
moves with speed un.



Solutions 173

2. If one of the end balls of the ‘executive toy’ known as Newton’s cradle (see
figure) is initially displaced through a distance d and released, then, after a long
time, all of the n balls forming the cradle will swing with a common amplitude. By
this stage, the initial linear momentum will have been evenly distributed among
the n balls of the toy, and so the common amplitude of their swings will be d/n.

S44 Solution 1. Denote the velocity of the ball with mass M after the nth
collision by Vn, the velocity of the ball with mass m by vn, and the distance between
the position of the nth collision and the wall by Ln. The position and velocity data
for the first two collisions are shown in the figure.

During the collisions, linear momentum and mechanical energy are conserved.
Let us write these conservation laws for the (n + 1)th collision:

1

2
M(V2

n − V2
n+1) = 1

2
m(v2

n+1 − v2
n), (1)

M(Vn − Vn+1) = m(vn+1 − (−vn)). (2)



174 200 More Puzzling Physics Problems

Dividing the corresponding sides of these two equations by each other, and making
a minor rearrangement of the result, we get

Vn + vn = vn+1 − Vn+1. (3)

The heavier ball, moving with speed V1, travels a distance L1 − L2 between the
two collisions shown in the figure; the lighter one covers a path of length L1 + L2

with speed v1 during the same time. Hence

L1 − L2

V1
= L1 + L2

v1
,

from which

L2 = v1 − V1

v1 + V1
L1.

In the same way, a connection can be found between the distances Ln−1 and Ln

associated with the nth collision:

Ln = vn−1 − Vn−1

vn−1 + Vn−1
Ln−1. (4)

From equation (3) with n replaced by n − 1, the expression vn−1 + Vn−1 in the
denominator of (4) can be replaced by vn − Vn to yield the result

Ln(vn − Vn) = Ln−1(vn−1 − Vn−1). (5)

In other words, the product Lk(vk −Vk) has the same value, whatever the value of k.
As a particular application of this result, we can equate the products appropriate

to the first and Nth collisions, where the Nth collision is the one that occurs closest
to the wall:

LN = L1
v1 − V1

vN − VN
. (6)

For the first collision, L1 = L, and furthermore, from equation (3), we have v1 −
V1 = v0 + V0 = V0 (since v0 = 0). Thus (6) reduces to

LN = L
V0

vN − VN
. (7)

After the (defining) Nth collision, the speed of the heavier ball will be zero or
very close to zero.28 Even if it never stops completely, we can be sure that the ball
will move ‘away from the wall’ after the next collision. So, for practical purposes,
we can take VN to be zero.

28 The condition M � m means that the speed of the large ball decreases only in very small steps.
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As the speed of the large ball is zero (or approximately zero) when it is closest
to the wall, its total initial kinetic energy will have been given to the smaller ball:

1

2
MV2

0 = 1

2
mv2

N ,

from which it follows that

vN =
√

M

m
V0.

Substituting this into (7), and taking into account the condition VN ≈ 0, we finally
obtain the required minimum distance as

Lmin = LN =
√

m

M
L.

Solution 2. In the following, the notation used in Solution 1 will be retained,
and we use V , V1 and V2 to signify volumes (not velocities or speeds), though V0

is still a velocity. From the laws of conservation of mechanical energy and linear
momentum, it follows that, after the first collision, the velocity of the lighter ball is

v1 = 2MV0

M + m
≈ 2V0,

and so its kinetic energy is

E1 = 1

2
mv2

1 ≈ 2mV2
0 .

From here on, the series of collisions of the balls is conceptualised as the larger
ball acting as a movable piston adiabatically compressing gas in a small tube,
which has an initial volume of AL. The gas contains only a single ‘molecule’
(namely, the small ball), and the internal energy of this gas is equal to the kinetic
energy of that ball (initially E1). The number of degrees of freedom of this gas is
one, because the ‘molecule’ can move only in one dimension (along the horizontal
rod). The cross-sectional area A of the tube can be chosen arbitrarily; its size is
unimportant in the following.

Note. The description of this phenomenon as adiabatic compression of an ideal
gas that consists of only a single particle cannot be taken too seriously, because
(unlike the normal situation) the gas contains only one ‘molecule’, and the ‘pis-
ton’ (i.e. the large ball) cannot exert a continuous force on the gas, its input
impulses being spasmodic. Although it is true that these impulses are rare at
the beginning, later, as the speed of the small ball increases, they become more
frequent, and finally almost continuous. The problem caused by the notion of a
single-particle gas can be avoided if a very large number of rods is imagined, with
an initially stationary ball of mass m on each; a single (perforated!) ‘piston’ with
a very large mass is then made to collide with the small balls. This prescription
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comes closer to the normal description used in the kinetic theory of gases, but it
does not solve the problem of the initially spasmodic nature of the input provided
by the ‘piston’.

Because of the defects described above, results calculated using this ‘gas
model’ cannot be considered as accurate predictions, and should only be used as
order-of-magnitude estimates.

For adiabatic processes

p1Vγ

1 = p2Vγ

2 , (8)

where γ = (f +2)/f , and, because here f = 1, we have γ = 3. The internal energy
of the gas is

E = 1

2
fpV ,

and so the ratio of the internal energies in the initial and final (most compressed)
states is

E1

E2
= p1V1

p2V2
.

Using (8), this ratio can also be written in the form

E1

E2
= V1−γ

1

V1−γ

2

= V2
2

V2
1

=
(

L2

L1

)2

. (9)

Initially, L1 = L and E1 = 2mV2
0 ; finally, L2 = Lmin (the minimal distance we

seek) and

E2 = 1

2
MV2

0 .

This last equation follows because the speed of the ‘piston’ when it is nearest to
the wall is zero (to a good approximation), and so all of its initial kinetic energy
has been transferred to the single ‘gas particle’.

Substituting in (9) for the three known quantities gives the minimal distance as

Lmin

L
=

√
E1

E2
=

√
2mV2

0
1
2 MV2

0

= 2

√
m

M
.

This result differs from the ‘exact’ outcome of Solution 1 by a factor of 2; for the
reasons given earlier, this is not surprising.

S45 After it has covered a path of length x, denote the instantaneous velocity
of the drop by v, its radius by r and its mass by m; each of v, r and m varies with x.
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Along a small element of path length �x, the drop collects the fog particles from
a volume of size πr2�x, the water content of which increases the radius of the drop
by �r. If the (water) density of the fog is �fog, then we have that

πr2�x · �fog = 4πr2�r · �water,

from which we can deduce that

�r = 1

4

�fog

�water
�x.

So, the size increase of the drop is proportional to the path length covered. If x
is measured from an appropriately chosen notional origin, the radius can be taken
as proportional to the path length:

r(x) = 1

4

�fog

�water
x.

The mass of the drop expressed in terms of its radius is

m(r) = 4π
3

r3�water.

From these last two equations, the rate of change of the mass can be expressed as
follows:

�m

m
= 3

�r

r
= 3

�x

x
or, in differential form,

dm

dx
= 3m

x
.

Newton’s equation of motion for the water drop is

d(mv)

dt
= mg − λπr2v2, (1)

where λ is a constant.29

We next transform the left-hand side of the equation of motion, as follows:

d(mv)

dt
= m

dv

dt
+ v

dm

dt

= m
dv

dx

dx

dt
+ v

dm

dx

dx

dt

= mv
dv

dx
+ v2 dm

dx

= m
d(v2/2)

dx
+ 3m

x
v2.

29 More explicitly, λ is given by cd�air/2, where the factor 2 is conventional and cd is the so-called drag
coefficient relating to the aerodynamic resistance of the moving body. Experimentally, for a sphere in a fluid
flow that is neither very fast nor very slow, cd varies between about 0.1 for laminar flow and 0.5 when the flow
is turbulent.



178 200 More Puzzling Physics Problems

Now, using the earlier expressions for m(r) and r(x) (and some careful algebra),
equation (1) can be written in the form:

m
d(v2/2)

dx
= g −

(
3 + 3λ

�fog

)
v2

x
,

or, in terms of the drag coefficient (see footnote 29),

d(v2/2)

dx
= g −

(
3 + 3cd

2

�air

�fog

)
v2

x
. (2)

As the water drop has uniform acceleration a, after path length x has been
covered, its speed must be

v(x) = √
2ax. (3)

Inserting this into both sides of equation (2), we obtain

d(ax)

dx
= g −

(
3 + 3cd

2

�air

�fog

)
2a,

which can be rearranged to give an upper limit for the acceleration:

a = g

7 + 3cd�air/�fog
<

1

7
g. (4)

Notes. 1. The speed of the drop is given by (3) only if its acceleration is uniform
throughout. In fact, a solution that uses a different initial condition (the drop starts
from rest) shows that, though the acceleration is not uniform initially, it quickly
attains the constant value given by (4).

2. The maximal acceleration a = g/7 can be reached only in the limiting case
of �fog � �air. Such a fog density cannot be produced, even with carburation
(the mixing of hydrocarbons with air to make a suitable explosive mixture). In
real fogs formed under natural circumstances, just the opposite is the case, with
�fog � �air.

S46 We start by assuming that the required manoeuvre is possible, and then
test whether it violates any of the known laws of physics. So we assume that the
tension in the thread is such that the statuette moves with constant acceleration a,
but does not tip over, neither forwards nor backwards. In other words, the statuette’s
motion is purely translational, with uniform acceleration and no rotation.

Newton’s equations of motion for the statuette’s centre of mass are (using the
notation shown in the figure)

T − F = ma,

mg − N = 0,



Solutions 179

and the equation for the (absence of) rotational motion is

Nx + T

(
H

2
− h

)
− F

H

2
= 0.

Here we have assumed that all the surface forces distributed across the base of
the statuette can be replaced by a single vertical force N whose line of action is a
distance x (as yet unspecified) from the symmetry axis of the statuette. Because the
statuette is sliding, the equation F = μN also holds.

For all these equations to hold, the value of the (signed) distance x must be

x = μh − a

g

(
H

2
− h

)
.

However, the line of action of N must not lie outside the base of the statuette, i.e.
the condition

|x| ≤ d

2

must be met. From this and the expression for x above, and using the numerical
values given, we get the following inequalities for the statuette’s acceleration:

a ≥
(

2μh − d

H − 2h

)
g ≈ 1.6 m s−2

and

a ≤
(

2μh + d

H − 2h

)
g ≈ 11.4 m s−2.

So the statuette can be pulled across the table without turning over; to do this, a
considerable, but not arbitrarily large, acceleration (and hence force) is required.
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S47 Since the vertical size of the boat’s hull is small compared to its length,
to a good approximation the boat’s centre of mass lies on the line AB. Denote its
distances from A and B by x and y, respectively, as shown in Fig. 1.

Before the left-hand band is cut, the net force and torque acting on the boat, of
mass m, are both zero, and so the initial tension in the right-hand band is

T = x

x + y
mg.

Because the length of the rubber band cannot change instantaneously, this is also
the tension immediately after the cut.

Fig. 1

Using the notation of Fig. 1, the equations of the boat’s initial vertical and
rotational motions are

mg − T = ma,

yT = Iα.

Here a is the downward acceleration of the boat’s centre of mass, I is its moment
of inertia about that centre of mass, and α is its angular acceleration.

The downward acceleration of point B is the signed sum of the acceleration of
the centre of mass and the tangential acceleration (yα) due to the hull’s rotation:

aB = a − yα = g − x

x + y
g − y

I

x

x + y
mg = y

x + y

(
1 − mxy

I

)
g.

From this, it can be seen that point B starts to move upwards if

I < mxy.

We will now prove that this inequality always holds.
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Fig. 2

Consider the boat’s hull, of length � = x + y, as divided into many point-like
parts with masses mi and positions yi, with the yi (i = 1, 2, . . . ) measured from
point B as shown in Fig. 2. Using this notation, the total mass of the boat and the
position of its centre of mass can be written as follows:

m =
∑

mi, y =
∑

miyi

m
.

Its moment of inertia I about the centre of mass can be expressed, with the help of
the parallel axis theorem, as

I =
∑

miy
2
i − my2.

Using the last two of these equations and the fact that � = x + y, the inequality to
be proved can be written successively as follows:

∑
miy

2
i − my2 < m(� − y)y,∑

miy
2
i < �

∑
miyi,

which must be valid, since each of the yi is less than �.
So, it has been proved that, irrespective of the mass distribution of the boat

(specifically, of the position of its centre of mass and the magnitude of its moment
of inertia), when one of the rubber bands is cut, then the end of the other band is
bound to start moving upwards.

Note. The conclusion – i.e. that when one of the rubber bands is cut, then the end
of the other band starts moving upwards – holds even if the boat does not start off
‘on an even keel’.

S48 Denote the common mass of the rods by m, and their lengths by �, with
the centres of the two upper rods shown in the figure labelled as A and C, and their
common end-point as B. The centre of mass of the whole system is denoted by O.
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Let the external force acting at point P be F, and, as we are concerned only with
the initial acceleration of Q, consider the implications of the work–energy theorem
applied over an arbitrarily short time interval t following the start of the motion. In
this context, the linear and rotational accelerations of the rods can be considered
constant during the part of the motion being investigated. At the end of the short
time t, we have

F · 1

2
aPt2 = Erotational + Etranslational.

The total kinetic energy of the system can be expressed in terms of the velocity
v = aPt of point P and the common angular velocity ω = αt of the rods. At any
given moment, the angles through which the rods have rotated are all the same
in magnitude (but not in sense). Consequently, their angular velocities, and their
accelerations, must also have common values, ω and α, respectively.

As point A is moving, with angular velocity ω, around a circle of radius �/2
centred on P, its velocity vA relative to the table-top is the vector sum of the velocity
of point P and the tangential velocity from the rotation around P. So, the square of
its velocity is given by

v2
A =

(
v − �ω

2
√

2

)2

+
(

�ω

2
√

2

)2

= a2
Pt2 + �2α2t2

4
− aP�αt2

√
2

,

where the factors of 1/
√

2 arise from cos 45◦ or sin 45◦. It is important to note that,
in the figure, the velocity of point P relative to the table-top is indicated, but that
the velocities of points A and B are relative to P, and the velocity shown for C is
relative to B.

Similarly, the square of the velocity of point C can be calculated from the
velocity of B relative to P (its magnitude is �ω) and the tangential velocity, of
magnitude 1

2�ω, of C around B:
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v2
C =

(
v − �ω√

2
− �ω

2
√

2

)2

+
(

�ω√
2

− �ω

2
√

2

)2

= a2
Pt2 + 5�2α2t2

4
− 3aP�αt2

√
2

.

Now, the moment of inertia of a uniform rod about its centre of mass is
I = m�2/12, and so the work–energy theorem reads:

F
aP

2
t2 = 4 × 1

2

m�2

12
ω2 + 2 × 1

2
mv2

A + 2 × 1

2
mv2

C,

and, using the formulae above, we get the following relationship (after dividing
through by mt2):

F
aP

2m
= 5

3
�2α2 + 2a2

P − 4√
2

aP�α. (1)

The acceleration of the centre of mass O of the four rods is equal to the compo-
nent in the direction PQ of B’s acceleration. At the initial moment, when both the
angular velocity and the centripetal acceleration are zero, this can be written as

aO = aP − �α√
2

. (2)

However, in accordance with Newton’s second law, this acceleration can also be
expressed in terms of the external net force acting on the system as

aO = F

4m
. (3)

From equations (1)–(3), it follows that aO = 2
5 aP.

But it is also the case that aO can be expressed as aO = 1
2(aP + aQ), which,

together with aO = 2
5 aP, implies that aQ = − 1

5 aP. It is perhaps a somewhat
surprising result that joint Q starts moving towards joint P, and therefore in a
direction directly opposed to that of the external force.

S49 First of all, we investigate the motion the system would have if the heavy
weight were not attached to it. The forces affecting the cylinder are the gravita-
tional force acting at its centre of mass and the tensions in the cords; denote the
sum of the latter by T (see figure).
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The acceleration of the centre of mass of the cylinder of mass m, radius r and
moment of inertia I can be calculated from the translational equation of motion,

mg − T = ma,

and that describing the rotational motion,

rT = Iα,

where α = a/r is the angular acceleration of the cylinder.
From these equations, the acceleration of the centre of mass of the cylinder is

found to be

a = mr2

mr2 + I
g.

As the maximum value for I is mr2, corresponding to the cylinder being a hollow
shell, we have that 0 < I ≤ mr2, and so

1

2
g ≤ a < g.

The point of the cylinder that is denoted by P in the figure starts moving with an
acceleration a + αr = 2a, i.e. with at least g. When the weight is attached to the
cylinder and released, it can move with an acceleration of at most g. However, the
part of the cord that touches P starts to move with an acceleration of at least g. So
the cord becomes slack and the weight goes into free fall!

S50 Suppose firstly that the translational motion is the first to stop, i.e. the disc
still has a significant angular velocity ω∗ when the velocity of its centre of mass has
decreased to zero. We investigate the motion a very short time before this happens,
when the disc is rotating with angular velocity ω > ω∗, and the speed of its centre
of mass is v � Rω∗, where R is the radius of the disc.

Fig. 1
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Consider two identical, small pieces of the disc positioned symmetrically about
its centre, as shown in Fig. 1, in which the disc is moving to the right with speed
v. The two radius vectors to the pieces each make an angle ϕ with the direction
of motion of the disc. Since the disc presses uniformly on the ice, the magnitudes
of the frictional forces (denoted by �F) acting on these pieces are identical. The
direction of a frictional force is directly opposed to that of the relevant piece’s
velocity relative to the ice. For this reason, it is not perpendicular to the corre-
sponding radius vector, but deviates from it by a small angle ε. From geometrical
considerations in Fig. 1, the approximate magnitude of angle ε is

ε ≈ v cos ϕ

kRω
, (1)

where kR is the length of the appropriate radius vector (0 < k ≤ 1).
The translational motion of the disc is decelerated by the net component of the

frictional forces that is in the direction of, but opposed to, the disc’s velocity. In the
figure, the left-hand piece contributes a retarding force of

�F cos( 1
2 π − ε − ϕ) = �F sin(ϕ + ε),

whereas the right-hand piece produces an accelerating force of

�F cos( 1
2 π + ε − ϕ) = �F sin(ϕ − ε).

So the net retarding force is

�Ftrans = �F sin(ϕ + ε) − �F sin(ϕ − ε) = 2�F cos ϕ sin ε.

Since ε � 1, we have sin ε ≈ ε, and so using (1), we can write

�Ftrans ≈ 2ε�F cos ϕ = 2�F cos2 ϕ

k

v

Rω
. (2)

From (2) it can be seen that, for each value of ϕ and k, the retarding force �Ftrans

is directly proportional to the fraction v/(Rω). Consequently, so are the net force
and the deceleration of the disc.

So the equation governing the motion of the centre of mass of the disc can be
written in this form:

dv

dt
= −C

v(t)

ω(t)
, (3)

where the positive constant C depends on the coefficient of friction, the radius
of the disc and the gravitational acceleration. In this equation, v and ω are both
time-dependent variables .

If the constant ω∗ (the angular velocity when the centre of the disc stops) were
inserted in place of ω(t), equation (3) would have the same form as one governing



186 200 More Puzzling Physics Problems

nuclear decay, but with a larger value for the decay constant than the actual one
(since ω∗ < ω(t)). But even this would mean that v(t) is a velocity that decreases
exponentially with time, i.e. the centre of mass of the disc would never stop after
a finite time interval. In reality – because the decreasing ω(t) is still greater than
ω∗ – the velocity of the centre of mass decreases even more slowly than this. This
(false) conclusion is a direct contradiction of our initial assumption that the motion
is going to stop almost immediately. The conclusion from this contradiction is that
the translational motion of the disc cannot stop sooner than its rotation does.

Using similar arguments, it can be proved that the angular velocity of rotation
cannot decrease to zero while the linear velocity of the centre of mass is still signif-
icant. In fact, shortly before any such state could be reached, the net decelerating
torque would have decreased to almost zero. This is because, although the net
linear force would remain finite, the frictional forces acting on the ‘paired’ surface
pieces are equal, and the torques they produce almost totally cancel each other out.
In this state the rate of rotational deceleration would become very low, whereas, in
stark contrast, the translational speed would be decreasing rapidly.

If neither the rotation nor the translation of the disc can end earlier than the
other does, the only remaining possibility is that the two kinds of motion stop
simultaneously.

Note. Using numerical simulations and rather sophisticated calculations, it can be
shown that, towards the end of the motion, the dimensionless ratio Rω/v, char-
acterising the relationship between the rotational and translational speeds, tends
to the same value whatever the initial conditions: it always approaches the value
1.531! If we plot the trajectories of the disc in an (Rω, v) coordinate system for a
variety of different initial conditions, as shown in Fig. 2, all the curves approach
the origin from the direction of the dashed line, which has a slope of 1.531.

Fig. 2

S51 The key to the solution is realising that the small masses of the bearings
and the absence of slipping together imply that the static frictional forces that
act on the bearings have negligible components F⊥ perpendicular to the rod. The
argument producing this conclusion is as follows.
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These forces are the only ones producing a torque about a bearing’s axis, and so
its wheel of mass mb, radius rb and moment of inertia I has an angular acceleration
α, where

α ∝ F⊥rb

I
∝ F⊥rb

mbr2
b

= F⊥
mbrb

.

The condition that the bearings roll without slipping requires that the tangential
accelerations of the ends of the rod (and hence of the bearings) are also proportional
to F⊥/mb. This ratio can only be finite if F⊥ is negligible, in the same sense as mb

is.
a) As it follows from the above argument that F⊥ is negligible, the net torque

acting on the rod is zero, i.e. its angular velocity is constant in time:

ω(t) = ω = |v2 − v1|
L

.

For the same reason, the forces that do act on the rod are always parallel to its axis.
However, they cannot affect the speed v of its centre of mass, as the rod cannot
slip in a direction parallel to its length. The velocity v is therefore constant in
magnitude, and given by

v = v1 + v2

2
,

though its direction constantly changes, being perpendicular to the rod’s length at
all times. In summary, the velocity of the rod’s centre of mass rotates uniformly
with angular velocity ω, i.e. the centre of the rod moves along a circular trajectory
(see Fig. 1).

Fig. 1

The period of the circular motion is 2π/ω, and, if the radius of the circle is R,
we have

2π
ω

v = 2πR,
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from which it follows that

R = v

ω
= v1 + v2

|v2 − v1|
L

2
.

The two ends of the rod also move along circular paths, of radii R + L/2 and
R − L/2. Fig. 1 illustrates a ‘half-circuit’ of each of these three circular trajectories.

b) The forces in the plane of the slope acting on the rod when it makes an angle
ϕ relative to its initial orientation are shown in Fig. 2. As in part a), the net torque
on the rod is zero, and its rotational angular velocity is ω0 throughout.

Fig. 2

The Newtonian equation of motion for the centre of mass, in the direction per-
pendicular to the rod’s length, is

mv̇(t) = mg sin θ cos ϕ.

As ϕ(t) = ω0t, the speed of the centre of mass changes in time in the same
way as the speed of a body whose position is executing (one-dimensional) simple
harmonic motion. Using this analogy, or the straightforward integration of

mv̇(t) = mg sin θ cos(ω0t),

and taking into account the initial condition v(0) = 0, the time dependence of the
speed is found to be

v(t) = g sin θ

ω0
sin ω0t.

The direction of the velocity is always perpendicular to the rod, and so, using
the coordinate system shown in Fig. 3, the x and y components of that velocity can
be expressed in the form

v(t) ≡
[

vx(t)
vy(t)

]
= g sin θ

ω0
sin ω0t

[
sin ω0t
cos ω0t

]
.
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Using trigonometrical identities, this can be rewritten as

v(t) = g sin θ

2ω0

[
1 − cos 2ω0t

sin 2ω0t

]
.

It can be seen that the tip of the velocity vector moves around a circle that is centred

on
g sin θ

2ω0

[
1
0

]
and has a radius of v∗ = g sin θ

2ω0
.

Fig. 3

So the centre of the rod moves in the same way as a circumferential point of
a round cylinder rolling along the axis x with speed v∗, i.e. the trajectory is a
common cycloid. The radius r∗ of the ‘rolling cylinder’ can be found by equating
its circumference to the x distance covered by the rod’s centre during one period of
the motion (π/ω0):

r∗ = 1

2π
π
ω0

v∗ = g sin θ

4ω2
0

.

It follows that the maximum distance to which the centre of the rod ‘drops down
the incline’ before returning to its initial elevation is y = 2r∗ = g sin θ/(2ω2). The
trajectory of the centre of the rod and the ‘rolling cylinder’ can be seen in Fig. 3.

S52 a) Denote the width of the trough by 2�, the initial speed of the balls by
v0 = 3 m s−1 and the radius of a ball by R = 2.5 cm. The centre of mass of each
ball is at a height r = √

R2 − �2 above the horizontal line joining the points on
the trough on which it is resting at any particular moment. As it is instantaneously
rotating about this line with angular velocity ω0, the condition for it to roll without
slipping is

v0 = rω0 =
√

(R2 − �2) ω0.
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Following the first collision, because the balls slip on the edges of the trough,
friction decelerates both their translational motions and their angular velocities.
A second collision of the balls will occur if the absolute value of the consequent
change in their speeds is larger than v0. We first investigate the threshold case, in
which this change of speed is exactly v0.

A ball moving ‘backwards’ after the first collision (and rotating in the ‘wrong
sense’ for the direction in which it is travelling) is decelerated by the kinetic
frictional force, which is directed ‘forwards’. The same frictional force decreases
the ball’s angular velocity at the same time. If the frictional force, denoted by F,
acts for a period �t (determined by how long it takes for the rotational motion to be
annulled), then the two equations governing the linear and rotational motions are

F�t = mv0 and Fr�t = Iω0 = 2

5
mR2ω0 = 2

5
mR2 v0

r
.

Here we have used the fact that the moment of inertia I of a ball about one of its
diameters is 2

5 mR2.
Inserting the impulse of the frictional force (from the first equation) into the

second equation, we get

mv0 = 2R2

5r2
mv0,

and after dividing through by mv0, this yields

2R2 = 5r2 = 5(R2 − �2),

from which

� =
√

3

5
R ≈ 0.775R ≈ 1.94 cm.

So, the trough needs to be wider than 3.9 cm (2� > 2
√

3
5 R ≈ 3.9 cm) for the

second collision to occur.
b) The given width of the trough is 2� = 4 cm, and, as before, v0 = 3 m s−1;

denote the speed of the balls just before the second collision30 by v. Because of the
symmetry of the situation, it is sufficient to investigate the behaviour of just one of
the balls.

Although the ball was still slipping following the first collision, its speed must
have changed by v − (−v0), and so the impulse it received due to friction was

F�t = m(v0 + v).

30 Which will occur, because 2� is greater than the threshold value of 2
√

3/5R.
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During the same interval, the angular velocity changed from ω0 to ω = v/r, but
without changing sign! The torque arising from the frictional force caused the
corresponding change in the angular momentum of the ball:

Fr�t = I(ω0 − ω) = 2

5
mR2

(v0

r
− v

r

)
,

where

r =
√

R2 − �2 = 1.5 cm.

Again, inserting the impulse of the frictional force from the first equation into the
second, we get

r2(v0 + v) = 2

5
R2(v0 − v),

from which it follows that the speed of the balls before (and after) the second
collision is

v = 2R2 − 5r2

2R2 + 5r2
v0 = 1

19
v0 ≈ 0.16 m s−1.

Notes. 1. The above solution shows that the value of the coefficient of kinetic
friction has no influence on the result. This fact is even more obvious if the
problem is solved using the law of conservation of angular momentum. Following
the first collision, the angular momentum of the ball about any point on the
centreline of the horizontal plane containing the top edges of the trough does
not change. This is because the sum of the torques of the frictional forces at the
two edges, as well as the sum of the torques of the normal forces, are each zero
for such points.

The total angular momentum consists of the ball’s rotational angular momen-
tum and that due to the linear motion of its centre of mass, which have opposite
signs just after the first collision. If the total angular momentum is exactly zero
after the first collision, then the ball will halt just as the slipping stops. This is
the threshold case for the ball reversing its direction (and heading for a second
collision):

2

5
mR2 v0

r
− mrv0 = 0,

from which we get r = √
2/5 R, in accord with the solution obtained in part a).

Part b) can be solved in the same way. In this case the right-hand side of the
previous equation is not zero, but positive:

2

5
mR2 v0

r
− mrv0 = 2

5
mR2 v

r
+ mrv,

from which the previous result for v follows:

v = 2R2 − 5r2

2R2 + 5r2 v0.
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2. It can be shown more generally that the second collision occurs for the same
range of trough sizes, even if the balls collide with a different combination of
initial speeds. They can collide with opposing, or similarly directed, velocities,
or with one of the balls at rest before the collision. In all cases, if the condition
� >

√
3/5 R is obeyed, then the second collision takes place.

3. In principle, after the first collision, the number of subsequent collisions is
infinite, but in reality the second collision happens at such a reduced speed, that,
because of the previously neglected mechanical energy losses (air drag, rolling
friction, etc.), collisions beyond the second cannot normally be observed directly.
Videos made with slow-motion cameras show that more collisions do occur.

S53 a) In general, after receiving an impulse from the cue, the billiard ball
both rolls and slips, and the instantaneous speed of its point of contact with the
table is not zero. This ‘slipping’ continues until, as a result of kinetic frictional
forces, the velocity of that point relative to the table decreases to zero; after that,
the ball continues to roll but without slipping.

Consider the point P at which the ball touches the table before the shot is taken.
Note that P denotes a fixed point on the table, and not the current contact point
of the ball and table (which accelerates, or decelerates, during the stroke and the
subsequent ‘slipping’). The total angular momentum of the ball about this point is
zero before the shot, as well as at the simultaneous end of the rolling and slipping
motions (when the ball again becomes stationary).

During the motion that follows the cue stroke, the net torque about P of the
forces acting on the ball is zero, because the gravitational force and the normal
reaction of the table cancel each other, and the line of action of the frictional force
always passes through P. The angular momentum of the ball about P can only
remain at zero throughout (from before the stroke until after the final halt) if it does
not receive any during the stroke itself. This requires that the line of action of the
impulse, and hence that of the cue, must be directed through point P (see Fig. 1).

Fig. 1

b) If, immediately after the cue stroke, the ball starts a pure rolling motion
without any slipping at all, there can be no static frictional force on the ball at the
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contact point with the table during the short time interval (�t) of the impulse. As
before, we must find a fixed point (in space) about which the angular momentum
of the ball remains constant (zero) throughout the motion! We now do that.

During the short period of the impulse, the connection between the velocity v

of the ball’s centre of mass and its angular velocity ω around the centre of mass
must be

v = Rω (1)

at all times, where R is the radius of the ball. For motion to the right (as shown in
Fig. 2) the rotation is clockwise.

From symmetry, the fixed point we seek must lie on the line PC, or on its
extension; let us suppose that it is a height h above the table. The total angular
momentum of the ball, of mass m, about that point is

J = 2

5
mR2ω − (h − R)mv. (2)

Bearing in mind condition (1), J will be zero if h = 7
5 R. The appropriate fixed

point Q is shown in Fig. 2.

Fig. 2

So, for a pure rolling motion, the total angular momentum of the ball about Q
must remain at zero throughout the stroke (and also thereafter). This will happen if
the impulse is directed along the line TQ – the cue axis must follow the same line!

Notes. 1. From the solution to part a) of the problem, it can be seen that, if the line
of action of the impulse at point T is more vertical than segment TP, then after
the ‘slipping’ finishes the ball moves ‘backwards’, otherwise it continues moving
‘forwards’.

2. The coefficient of static friction between the ball and the billiard table
depends on the coating of the ball and the quality of the cloth covering the table.
If in part b) the table exerts a static frictional force on the ball during the cue
stroke, then the line of action of the impulse can deviate from the line TQ to some
extent.

If – in contrast to what is shown in the figure accompanying the problem –
the ball is struck at a point T that is below the level of Q, then the ball might
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lose contact with the table for a short while31 as a consequence of the impulse it
receives.

S54 a) Denote the vector pointing from the centre C of the billiard ball to
its lowest point (where it touches the table) by R, the mass of the ball by m, the
velocity of its centre of mass by v, and its angular velocity by ω.

As noted in the problem, for a general Coriolis-massé, ω will not be perpendic-
ular to v, and so the velocity of the lowest point of the ball,

vP = v + ω × R,

will not be parallel to the velocity of the centre of the ball, even at the start of the
motion. A similar connection holds between the corresponding accelerations and
the angular acceleration:

v̇P = v̇ + ω̇ × R. (1)

During the ‘slipping’ motion, the horizontal acceleration of the ball and its
angular acceleration are both caused by the frictional force F, and so the dynamical
equations for the translational and rotational motion can be written as follows:

F = mv̇,

R × F = 2

5
mR2ω̇.

Inserting expressions for v̇ and ω̇, obtained from these two equations, into equation
(1) gives

v̇P = 1

m
F + 5

2mR2
(R × F) × R.

Now F and R are necessarily mutually perpendicular, and so using either the
right-hand rule or the vector triple product identity, it follows that

(R × F) × R = R2F.

So finally we have that

v̇P = 7

2m
F. (2)

The magnitude of the kinetic frictional force is μmg (where μ is the coefficient
of friction), and its direction is opposed to that of the velocity of the lowest point
of the ball:

31 Such a hit is known as a ‘jump shot’ in billiards; many other factors, from chalk dust on the cloth or ball to
static electricity, have been blamed for this phenomenon.
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F = −μmg
vP

|vP| . (3)

Combining this with equation (2), we have

v̇P = −7

2
μg

vP

|vP| . (4)

Equation (4) shows that the velocity of the ball’s lowest point has a constant
direction throughout the simultaneous rolling and slipping motion, and that its
magnitude decreases uniformly to zero at a rate of − 7

2μg. It then follows from
(3) that not only the magnitude of the frictional force but also its direction are
constant. As this direction does not coincide with that of the initial velocity of its
centre of mass, the billiard ball moves along a parabolic (rather than a straight)
trajectory (see figure).

When the velocity of the lowest point of the ball becomes zero (this happens at
B in the figure), the ball continues to roll, but without any slipping, until air drag
and rolling friction bring it to a halt. Its straight-line path is along the tangent to
the parabola at point B.

b) The final direction of the ball’s motion can be found with the help of the law
of conservation of angular momentum. We investigate the angular momentum of
the ball about the line PA.

Note. Angular momentum is a vector quantity, which is defined relative to a fixed
(but arbitrarily chosen) point in space. But, it is also the case that a component of
angular momentum in a given direction can be defined by an axis which lies in
that direction. In this problem, for example (as will be shown later), the angular
momentum of the ball relative to the point P is not conserved, but the component
of angular momentum parallel to the line PA does remain constant.
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Initially, the ball is at rest, so its angular momentum is zero. During the short
time interval of the shot, the lines of action of the forces acting on the ball (the force
of the shot exerted by the cue, the normal reaction force of the table, the frictional
force and the gravitational force) all pass through various points on the line PA. So,
just after the shot, the angular-momentum component defined by this line is also
zero. This situation does not change as the ball moves along the parabolic arc PB,
because the gravitational force and the normal reaction of the table cancel each
other out, and the torque about this axis due to the frictional force is always zero
(since the force and the axis lie in the same plane).

So, on the one hand, after finishing the ‘slipping’ section of the motion, the
angular-momentum vector of the ball remains constant – it is horizontal, and per-
pendicular to the velocity of the centre of mass. But, on the other hand, as we have
just shown, its component parallel to the line PA is zero. There is only one way to
reconcile these two conclusions, and that is that the ball’s path is parallel to the
line PA.

S55 We use the notation shown in Fig. 1. Vector R points from the centre of
the ball to its momentary contact point with the disc, r is directed from the centre
of the disc to the same point, and F is the static frictional force acting on the ball.
Since, relative to the centre of the disc, the centre of the ball is at r − R and R is a
constant vector, we have that its velocity is v = ṙ. The angular velocities are � for
the disc and ω for the ball (the latter is not shown in the figure).

Fig. 1

The acceleration v̇ of the centre of mass of the ball, which has mass m, is caused
by the static frictional force, and so the equation for horizontal motion can be
written as

F = mv̇. (1)

The angular acceleration of the ball is also caused by the frictional force, and so
the equation for the rotational motion takes the form

R × F = 2

5
mR2ω̇, (2)

since 2
5 mR2 is the moment of inertia of the solid homogeneous sphere about one of

its diameters.
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As there is no slipping, the lowest point of the ball and the contact point on the
disc move together and therefore

v + ω × R = � × r. (3)

Taking the time derivatives of both sides of condition (3) gives a similar connection
between the rates of change:

v̇ + ω̇ × R = � × v.

Using this and equations (1) and (2) yields

v̇ + 5

2mR2
[R × (mv̇)] × R = � × v.

The direction of the vector triple product is the same as the direction of v̇ and its
magnitude32 is mR2v̇. After substituting this, and carrying out some simplification
and rearrangement, we get

v̇ = 2

7
� × v,

which, using the notation �0 = 2
7�, can be written as

v̇ = �0 × v. (4)

That is, the acceleration is perpendicular to both the current velocity and the axis
of rotation. Further, by taking the scalar product of equation (4) with v, we can
deduce that the magnitude of v does not change with time:

d(v2)

dt
= d(v · v)

dt
= 2 v · v̇ = 2 v · (�0 × v) = 0.

Uniform circular motion has exactly these properties!
Either by noting the implications of these observations, or after a straightforward

time integration of (4), we can write the equation describing the rate of change of
the position vector r in the form

ṙ = (�0 × r) + v∗, (5)

where v∗ is a constant dependent on the initial conditions.
Now, for any (arbitrary) velocity vector v∗, we can always find a position vector

r∗ such that v∗ can be written in the form −�0 × r∗. For this reason, equation (5)
can be transformed into

ṙ = �0 × (r − r∗). (5′)

32 This can be proved by twice applying the right-hand rule for vector cross-products, or by using the identity
for vector triple products to be found in the mathematics section of the Appendix.
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It is straightforward to see that equation (5′) describes uniform motion, with angu-
lar velocity �0 = 2

7�, around a circle centred on r∗. With the help of this general
result, answers can be given to the two specific questions asked.

a) For the ball to be moving along a circular path of radius r0 and concentric with
the centre of the disc, we need to set r∗ in equation (5′) equal to the null vector.
Then the initial velocity of the centre of mass is given by

v0 = �0 × r0, (6)

where r0 gives the initial position of the ball, a distance r0 from the axis of rotation.
From this, the magnitude of the initial velocity has to be

v0 = |�0 × r0| = r0�0 = 2

7
r0�.

The initial angular velocity of the ball can be determined using the ‘no-slipping’
condition (3). Taking into account condition (6) and the relationship between �0

and �, it yields

ω0 × R = 5

2
v0. (7)

The magnitude and direction of the vector product on the left-hand side are not
affected by the vertical component (parallel to R) of the ball’s angular velocity
vector ω0, and so, in principle, this component can have any arbitrary value.

This conclusion assumes that the rubber ball is in contact with the disc only at a
single point. In reality, the ball, as well as the disc, are deformed slightly, and so,
in order to avoid effects arising from friction at the touching surfaces, the vertical
component of the angular velocity should be chosen to be zero! In this case, the
angular velocity vector is horizontal, and its magnitude can be found by taking the
vector product of (7) with R:

R × v0 = 2

5
[R × (ω0 × R)] = 2

5
[R2ω0 − (ω0 · R)R] = 2

5
R2ω0.

It follows that the required initial angular velocity (about a horizontal axis) is

ω0 = 5

2

|R × v0|
R2

= 5

2

v0

R
= 5

7

r0�

R
.

b) This time, the initial position of the ball is still r0, but its initial velocity is
−v0. Under these circumstances, equation (5′) reads

−v0 = �0 × (r0 − r∗).

Comparing this with (6), it is clear that we must have r∗ = 2r0. So, in this case,
the rubber ball still moves along a circular trajectory of radius r0, but its centre is
now at a distance 2r0 from the centre of the disc (see Fig. 2). The magnitude of
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the angular momentum of the ball can be found using the same line of argument as
described in part a), and the result is ω0 = 9r0�/(7R).

Fig. 2

S56 We use a Cartesian coordinate system fixed to the inclined plane (see
figure) in which ex and ey are unit vectors in the directions of the corresponding
axes. Denote the vector from the centre of the ball to its momentary contact point
with the disc by R, the vector from the centre of the disc to that same point by r, the
static frictional force acting on the ball by F, and the component of the gravitational
force parallel to the inclined plane by G.

The last of these can be immediately expressed in terms of the given data:

G = mg sin θ ey. (1)

The equation for the translational motion of the centre of mass of the ball is

G + F = mr̈, (2)

and that for the rotational motion around the centre of mass is

R × F = 2

5
mR2ω̇, (3)
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where ω is the angular velocity vector of the ball (which changes with time), and
2
5 mR2 is the ball’s moment of inertia about one of its diameters.

As the disc is rough, there is no relative movement between the ball and the disc
at the contact point. Hence, we can write

ṙ + ω × R = � × r. (4)

Taking the time derivatives of both sides of condition (4) produces a similar relation
between the acceleration of the ball’s centre and its angular acceleration:

r̈ + ω̇ × R = � × ṙ.

From this and equations (2) and (3), we obtain

r̈ + 5

2mR2
[R × (mr̈ − F)] × R = � × ṙ.

Using the standard identity for a triple vector product,33 introducing the notation
v = d(r − R)/dt = ṙ for the velocity of the centre of mass, and, finally, taking into
account equation (1) yields

v̇ = 2

7
(� × v) + 5

7
g sin θ ey.

Noting that ey can be written as −(� × ex)/� and using the notation

v∗ = 5g sin θ

2�
ex, (5)

this equation can be transformed into

v̇ = 2

7
� × (v − v∗). (6)

From equation (6), which describes the rate of change of velocity of the centre of
mass, it can be seen that, if v = v∗, i.e. the magician rolls the rubber ball in the
ex direction with a speed of 5g sin θ/(2�), then the centre of the ball travels in a
straight line and at a constant speed.

Notes. 1. Notice that the result does not depend upon the initial position of the
ball, i.e. if the ball is rolled away from any point of the disc with velocity v∗, then
the trajectory of its centre is a straight line parallel to the x-axis. But the required
initial angular velocity of the ball does depend upon the position of release; its
value can be found using equation (4).

2. The question may arise of how the ball moves if its initial velocity is not
equal to v∗. It follows from equation (6) that if vector u is defined as u = v −
v∗, then the rate of change of this new vector can be described by the following
equation:

33 See the mathematical Appendix at the end of the book. Note that R is orthogonal to both F and r̈.
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u̇ = 2

7
� × u.

This means that vector u rotates uniformly with an angular velocity of 2
7� (as

we saw in the solution to the previous problem). So the terminal point of vector
v = v∗ + u sweeps over a circle with centre v∗ and radius u. This means that,
when v = v∗, the centre of the ball moves along a cycloid, which can be a curtate
or prolate cycloid, or a trochoid (common cycloid), depending upon the initial
speed.

S57 It can be shown, as we do below, that the ball – even though it is pulled
down by the gravitational force – executes simple harmonic motion in the vertical
direction. This surprising behaviour – an interesting ‘interplay’ between the ball’s
rotation and the motion of its centre of mass – is caused by the frictional force
acting at the wall of the tube.

Denote the centre of the ball by C, and its temporary contact point with the wall
of the tube by P. It is convenient to resolve the ball’s internal angular velocity vec-
tor ω into three mutually perpendicular components: the component ω3 is vertical,
ω2 is directed along PC and component ω1 is both horizontal and perpendicular to
PC. During the motion, not only do the magnitudes of these components change,
but, for ω1 and ω2, their directions also rotate – in the same way as segment PC
does. We denote by � the magnitude of the ball’s ‘orbital’ angular velocity around
the axis of the tube.

Fig. 1

Consider the top view of the ball and cylinder shown in Fig. 1, where both of the
rotations around vertical axes are indicated, as are the horizontal forces acting on
the ball. The latter are the normal reaction force N, which is perpendicular to the
wall of the tube, and the horizontal component Fh of the static frictional force. The
other forces acting on the ball (i.e. the vertical component of the static frictional
force, and the gravitational force) are not shown in this figure.

By considering how C moves, we can write one of the conditions for a rolling
motion without slipping as
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(R − r)� = rω3, that is ω3 = R − r

r
�. (1)

It should be noted that the spin of the ball and the ‘orbital’ angular momentum of
its centre of mass have opposite directions.

The only force acting on the ball that can change the angular velocity compo-
nents � and ω3 is the tangential static frictional force Fh. The torque of this force
in the direction shown in Fig. 1 would increase �; but it would also decrease ω3 at
the same time. This is impossible, because according to condition (1) the ratio of
the two angular velocity components is fixed!

The resolution of this apparent contradiction is that Fh = 0, and that neither �

nor ω3 can change during the motion. It follows that the horizontal line segment
joining the centre of the ball to the tube axis, together with the segment PC, rotates
uniformly. The magnitude of its (constant) angular velocity is determined by the
initial velocity v0 of the ball:

� = v0

R − r
= constant.

For the description of the vertical motion of the ball, we choose a Cartesian
coordinate system, whose z-axis coincides with the axis of symmetry of the tube.
The vertical component of the ball’s centre-of-mass velocity is denoted by vz, and
that of the static frictional force by Fv (see Fig. 2).

Fig. 2

The linear velocity component vz and the angular velocity component ω1 are not
independent of each other; because there is no slipping, we must have, in addition
to (1), that

vz = rω1. (2)

We now write Newton’s equation for the vertical motion of a ball of mass m and
moment of inertia 2

5 mr2, together with the equations for rotational motion around
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the x- and y-axes. Because of the cylindrical symmetry present, we can, without
loss of generality, take the x coordinate of the ball to be zero (in accord with Fig. 2)
at the relevant moment, and then the following equations apply:

Fv − mg = mv̇z, (3)

Fvr = −2

5
mr2ω̇x, (4)

0 = ω̇y. (5)

The quantities ωx and ωy in equations (4) and (5) are the components of the angular
velocity of the ball along the x and y directions. At the specified moment, they have
the following connections with the previously defined angular velocity components
ω1 and ω2:

ωx = ω1, ωy = ω2. (6)

Note. Looking at the first of equations (6), we could easily conclude that ω̇x = ω̇1.
Then, using equations (2)–(4), we could deduce that the ball moves downwards
(along the negative z-axis) with an acceleration of magnitude 5

7 g, i.e. the trajectory
of the ball is a downwardly directed helix with an ever-increasing pitch. But this
idea is false!

Fig. 3

The component of the ball’s angular velocity in the x direction changes for two
reasons (see Fig. 3): because of any change in magnitude of ω1, and because the
direction of the component ω2 rotates with angular speed �,

ω̇x = ω̇1 − �ω2. (7)

A similar relation can be written for the rate of change of ωy:

ω̇y = ω̇2 + �ω1. (8)

Two different expressions for the rate of change of force Fv can be obtained
from equations (3) and (4); equating them, we get

mv̈z = −2

5
mrω̈x.
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Now, using the relationships (2), (5), (7) and (8), this can be transformed into a
relationship containing vz as the only variable:

v̈z = −2

7
�2vz(t).

Perhaps surprisingly, this shows that the ball’s vertical speed oscillates with an
angular frequency of

√
2/7�, and so explains the periodic motion.

Taking into account the initial conditions of vz = 0 and z = z0, we have that

vz(t) = −vmax
z sin

(√
2

7
�t

)

and that the vertical position of the ball is given by

z(t) = z0 − zmax

[
1 − cos

(√
2

7
�t

)]
,

where zmax is the amplitude of the oscillation. The latter can be found by using the
initial condition ω2 = 0; at that moment ω̇x = ω̇1. Inserting this into equation (4),
and using (2) and (3), we get the following result:

(v̇z)t=0 = −5

7
g.

But this is nothing more than the maximal acceleration of the ball’s centre of mass,
which can also be written as − 2

7�
2zmax. It follows that the amplitude of the vertical

motion is

zmax = 5g

2�2
.

Notes. 1. The motion of the ball in three dimensions is not (sensu stricto) periodic,
but quasi-periodic, because the ratio of the periods of the uniform circular motion
(as seen from the top view) and the vertical harmonic oscillation (as seen from
the side view) is not, in general, a rational number.

2. This phenomenon, which is perhaps astonishing at first sight, can be
observed quite often in television broadcasts of golf competitions. The outside
edge of a golf ball travelling too quickly towards a hole just catches the inside
edge of the cylindrical cup; it appears that it should fall into the cup, but – after
one period of the oscillation – it dances out again.

S58 If the tension in a spring varies throughout its length, then the total elon-
gation �� of the spring cannot be calculated using the routine formula T = k��,
where k is the relevant spring constant; we need a more sophisticated calculation.

The appropriate general method is to consider the spring as if it were divided
into very small pieces, so that inside each piece the tension can be taken as con-
stant. The separate extensions of these small pieces may then be calculated, and
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finally summed to give the overall elongation. To find the result in this way usually
requires the integral calculus, but fortunately the current problem can also be
solved using elementary methods.

When a spring, of mass m, is hung vertically, its fixed end carries its whole
weight mg, whereas its free end carries no load, and so the average tension in the
Slinky is mg/2; consequently, its overall extension is mg/(2k), where k is its spring
constant when it is uniformly stressed.

In the case of the ‘sagging’ spring (as shown in the figure included in the
problem), each end of the spring must experience a vertically upward force of
mg/2. In addition – because the Slinky’s axis makes an initial angle of 45◦ with
the vertical – each end must also experience a horizontal force of this same
magnitude. Further, as there are no external horizontal forces acting on any of
the individual segments of the spring, the horizontal component of its tension is
constant throughout its length, and equal to mg/2. The vertical component of the
tension changes from point to point because of the weight of the spring. It is zero
at the midpoint, because the Slinky is horizontal there, and mg/2 at the end-points.

Clearly, the net tension (the square root of the sum of the squares of the horizon-
tal and vertical components) is everywhere greater (except at the midpoint) than
the horizontal component alone, i.e. than mg/2. So it can be stated – without the
need for any more precise calculations – that the average tension is greater than
mg/2, meaning that the elongation (namely the length of the spring) is definitely
larger than mg/(2k).

So, the elongated spring is shorter when hung vertically than it is when it is
allowed to ‘sag’ and follow the arc described in the problem.

Note. In the solution to the next problem, it is proved that the shape of a Slinky
hung from both of its ends is a parabola.34 If we denote by L1 the overall length
of the ‘sagging’ spring suspended so that its axis makes an initial angle of 45◦
with the vertical, then, using integral calculus, it can be shown that the ratio of L1
to the overall length L2 of a vertically hung spring is

L1

L2
=

√
2 + ln(1 + √

2)

2
≈ 1.15.

If this ratio L1/L2 is measured experimentally, smaller values, which may even
be less than 1, are sometimes found. Some possible reasons for this anomaly are:
that the spring ‘constant’ of the Slinky is not really constant when strong forces
(corresponding to large extensions) are involved; that when the Slinky is hung
from one of its ends, it is able to ‘uncoil’ (because of its weight, its lower end
rotates through anything up to a few revolutions) – a spring attached at two ends
cannot do this.

34 This is to be contrasted with the case of a uniform rope, similarly suspended, for which the shape is a catenary.
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S59 Take our coordinate system to be as shown in the figure, and denote the
distance between the Slinky’s fixed ends by d.

The x component of the tension in the Slinky must be constant along the spring,
because any arbitrarily chosen piece of it does not accelerate in the horizontal
direction, and no horizontal external force acts upon it. Now, the tension in the
Slinky is parallel to its axis at any point, and so an implication of the constant
horizontal component of the tension is that small equal-mass segments of the
spring (with necessarily equal spring constants) also have equal horizontal pro-
jections (their various unstretched lengths all being negligible compared to their
elongated lengths). Since both the segment lengths and the horizontal projections
accumulate additively, it follows that the mass of any particular, but not necessarily
short, piece of the Slinky is directly proportional to the length of its horizontal
projection.

Next, consider the (symmetrical) piece of the Slinky indicated in the figure by
the black line, and the forces of magnitude F that act upon its ends. Its horizontal
length is 2x, and so, by the previous argument, the mass of this piece is 2xm/d,
where m is the Slinky’s total mass. The condition for the vertical equilibrium of
this piece is

2Fy = 2x

d
mg.

Divide both sides by the (constant) horizontal component Fx of the tension:

Fy

Fx
= x

d

mg

Fx
.

Now, as noted previously, the tension in the spring is always tangential, so the
fraction on the left-hand side of this equation has the same value as the slope dy/dx
of the Slinky at the position x:

dy

dx
= x

d

mg

Fx
. (1)
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Since Fx is a constant, a straightforward integration now gives y(x) as

y(x) = mg

2Fxd
x2 + C.

For the coordinate system chosen, the constant of integration C is equal to 0. We
therefore have that y ∝ x2, and so the shape taken up by the Slinky is a parabola.
The horizontal component of the tension can be expressed in terms of the spring
constant of the Slinky (Fx = kd, as shown in the note appearing part way through
the solution that starts on page 213), and the shape of the spring can be expressed
solely in terms of the given values as

y(x) = mg

2kd2
x2.

S60 a) Notionally divide the Slinky into N � 1 pieces of equal mass. The
uniform mass of these small pieces is m/N, and their common spring constant k∗

is N times larger than the spring constant k of the whole Slinky, i.e. k∗ = Nk.
The tension in the nth piece from the bottom is

Fn = (n − 1)
mg

N
.

As the initial lengths of all the pieces are negligible compared to their final lengths
(except, formally, for n = 1), their overall lengths can be approximated by their
extensions. So the length �n of the nth piece is

�n = Fn

k∗ = (n − 1)
mg

N2k
.

Fig. 1

The distance xn from the top of the nth piece to the bottom of the Slinky (see
Fig. 1) can be found by adding together the lengths of the pieces below it:

xn =
n∑

j=1

�j =
n∑

j=1

(j − 1)
mg

N2k
= n(n − 1)

2

mg

N2k
= n

N

(
n

N
− 1

N

)
mg

2k
. (1)
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Replacing the general value n by the specific value N, and using the fact that
N � 1, the overall length L of the Slinky can be expressed in terms of k and m:

L = mg

2k
. (2)

This is in line with the solution on page 204.
The work done during the lifting stage increases both the Slinky’s stored elastic

energy and its the gravitational potential energy, the latter because its centre of
mass rises. Initially the elastic energy is zero, but in the final state it is the sum of
the elastic energies of the individual pieces:

Eelastic =
N∑

j=1

1

2
k∗�2

j =
N∑

j=1

1

2
Nk

[
( j − 1)

mg

N2k

]2 = (mg)2

2N3k

N∑
j=1

( j − 1)2. (3)

Note. In the expression for the elastic energy, the sum of the squares of the first
(N − 1) natural numbers appears. Similar summations occur in the solutions to
several of the other problems, and so it is useful to show how such sums can
be evaluated, either approximately or exactly. In the current situation we need
the sum

sn =
n∑

j=1

j2

for large n.

Fig. 2

This sum is more or less the volume of a square ‘n-floor pyramid’ built entirely
out of uniform unit cubes, as shown in Fig. 2. For large n, a good approximation
to the volume of the ‘pyramid’ is the volume of a straight-ridged geometrical
pyramid with a square base of side n, and a height of n units. So we have that

sn ≈ n · n · n

3
= n3

3
(4)

as an approximation to the sum.35

35 The precise expression for the sum, valid for all n, is sn = n(n + 1)(2n + 1)/6. For a proof of this see,
for example, K. F. Riley and M. P. Hobson, Foundation Mathematics for the Physical Sciences (Cambridge
University Press, 2011), pp. 85 and 220. For large n, sn ≈ n3/3.
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Returning to the specific problem, expression (3) can be transformed with the
help of the approximate formula (4) for the sum of the squares of the natural
numbers:

Eelastic = 1

2

(mg)2

N3k
s(N−1) ≈ 1

2

(mg)2

N3k

(N − 1)3

3
≈ 1

6

(mg)2

k
= 1

3
mgL.

In the final step, equation (2) was used.
To find the gravitational potential energy of the Slinky, we need h, the height of

its centre of mass above the table-top at the end of the lifting process. Since the
centre of gravity of the jth small piece is at its own centre, its distance from the
table-top is xj − 1

2�j. Consequently, h is given by

h = 1

m

N∑
j=1

m

N
(xj − 1

2�j) = mg

2N3k

N∑
j=1

[ j( j − 1) − ( j − 1)] = mg

2N3k

N∑
j=1

( j − 1)2.

We note, in passing, that this expression has the same form (apart from a factor of
mg) as that for the elastic energy. Making the corresponding approximation to this
second sum, we have

h ≈ mg

2N3k

(N − 1)3

3
≈ mg

6k
= L

3
,

i.e. the centre of mass of the Slinky is one-third of the way up its stretched length.
The gravitational potential energy relative to the plane of the table-top is thus

Egrav = mgh = 1

3
mgL.

So the total work done during the lift was

W = Eelastic + Egrav = 2

3
mgL.

Note. The same result can be obtained by integrating the work done by the con-
tinuously changing lifting force. When the first n � 1 pieces of the Slinky have
been raised, the required force is equal to their weight,

Fn = n

N
mg. (5)

Equation (1) gives the length of the raised part of the spring as

xn ≈
( n

N

)2 mg

2k
. (6)

From equations (2), (5) and (6), it follows that the distance dependence of the
force is F(x) = mg

√
x/L and consequently that the total work done is

W =
∫ L

0
F(x) dx = mg√

L

∫ L

0

√
x dx = 2

3
mgL.



210 200 More Puzzling Physics Problems

b) After the Slinky is released, its centre of mass falls freely, so its speed just
after its complete collapse is

v0 = √
2gh =

√
2gL

3
.

c) The time taken to collapse is equal to the time of the free fall:

t =
√

2h

g
=

√
2L

3g
.

Note. Using the result of part b), the kinetic energy of the Slinky can be found at
the moment the collapse is complete:

Ekin = 1

2
mv2

0 = 1

3
mgL.

But this is only one-half of the total (elastic and gravitational) energy of the Slinky
before it was released! Where has the other half gone? The answer is that it has
been dissipated as heat, generated by the (many) small inelastic collisions between
adjacent turns of the coiled spring during its collapse.

S61 We start with a dimensional analysis of the situation, so as to ‘get a feel’
for what is happening. The length � of the rotating spring should be a function of
k, m, ω and r0. In terms of the (relevant) base dimensions, length L, mass M and
time T, the dimensions of these quantities are

[�] = L, [k] = M T−2, [m] = M, [ω] = T−1, [r0] = L.

It can be seen that the dimension of length appears only in r0 (and not in k, m or
ω), and so the length � of the stretched spring must be proportional to r0. The
proportionality factor can only be a function of dimensionless combinations
of the other three factors; here there is only one such combination, namely
ξ = ω

√
m/k, so

� = r0 f (ξ). (1)

The actual form of the function f (ξ) can only be determined by detailed dynamical
calculations, but, despite this, it can be stated that, in the limiting case of r0 → 0,
the equilibrium length of the spring – if there is one – will be zero, meaning that
the spring, even though it is rotating, does not stretch at all.

Consider next a simplified situation, in which a point-like body of mass m is
attached to the end of a massless Slinky, as shown in Fig. 1.

If the length of the rotating spring is stable, it can be found from the equation
for circular motion of the point-like body:

m(r0 + �)ω2 = k�,
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Fig. 1

from which

� = r0
(mω2/k)

1 − (mω2/k)
= r0

ξ 2

1 − ξ 2
.

Clearly, this solution is valid only if ξ < 1, i.e.

ω <

√
k

m
≡ ω0.

For this range of angular velocities, if r0 → 0, then length � becomes zero.
However, if ω > ω0, then the tension in the spring cannot provide the centripetal

force required to maintain the circular motion, whatever the value of �. So, the
‘ideal’ Slinky can never be in equilibrium and, accordingly, it will be ‘stretched to
infinity’, even for arbitrarily small values of r0.

It is obvious that the conclusion drawn from equation (1) using dimensional
analysis needs to be refined. If the function f (ξ) becomes singular (infinitely large)
somewhere, then for any arbitrary r0 (including the limiting case r0 → 0), the
length � is calculated to be infinitely large. In reality, there is a natural limit to
the elongation: the uncoiled length of the material forming the turns of the spring.
Further, Hooke’s law is unlikely to be obeyed long before this point is reached.

Let us now return to the original case of a spring with a continuous mass dis-
tribution. We specify any particular point on the spring by the mass m∗ of that
portion of the spring that lies between that point and the anchor point, and denote
the distance between it and the rotational axis by r(m∗); the tension in the spring at
the same point is F(m∗) (see Fig. 2). These two functions must satisfy the following
boundary conditions (one at each end of the Slinky),

r(0) = r0 and F(m) = 0. (2)

Consider a small piece of the spring with mass �m∗ (and indicated by the heavy
line in Fig. 2); its spring constant is k(m/�m∗). Consequently, the extension of this
piece, caused by the spring tension at this point, is

r(m∗ + �m∗) − r(m∗) ≡ �r = �m∗

mk
F(m∗).
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Fig. 2

The equation governing the circular motion of the small piece of spring is

F(m∗ + �m∗) − F(m∗) ≡ �F = −�m∗r(m∗)ω2.

These two equations can be transformed into differential equations as follows:

�r

�m∗ → dr

dm∗ = 1

mk
F(m∗), (3)

�F

�m∗ → dF

dm∗ = −ω2r(m∗). (4)

We now note that the forms of (3) and (4) parallel the equations governing the
simple harmonic motion of a point-like body. Indeed, using the correspondences

m∗ ←→ t and
F

mk
←→ v,

the equations describing the distribution of the spring’s mass, and the tension in it,
can be rewritten as follows:

dr(t)

dt
= v(t), (3′)

dv(t)

dt
= −

(
ξ

m

)2

r(t), (4′)

where ξ = ω
√

m/k is the dimensionless constant encountered earlier. These equa-
tions describe the harmonic oscillatory motion of a point-like body with ‘angular
frequency’ ξ/m. Taking account of the boundary conditions set out in (2), r(t =
0) = r(m∗ = 0) = r0 and v(t = m) = (1/mk)F(m∗ = m) = 0, the solution is

r(m∗) = r0

cos ξ
cos

[
ξ

(
1 − m∗

m

)]
, F(m∗) = ξkr0

cos ξ
sin

[
ξ

(
1 − m∗

m

)]
.
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Note. The same result can be found by taking the derivative of equation (3) and
substituting (4) into it, i.e.

r′′(m∗) = 1

mk
F′(m∗), where F′(m∗) = −ω2r(m∗),

leading to

r′′(m∗) = − ξ2

m2
r(m∗),

which is a homogeneous second-order linear ordinary differential equation. Its
solution is a linear combination of sine and cosine functions with the appropriate
periodicity.

The total elongation of the spring so calculated is

� = r(m) − r(0) = r0

(
1

cos ξ
− 1

)
= r0

[
1

cos(ω
√

m/k)
− 1

]
,

but this expression describes the actual state of affairs correctly only if ξ < π/2,
i.e. if

ω <
π
2

√
k

m
≡ ωcritical.

If the angular velocity is slowly increased, the extension of the spring becomes
larger, and as the critical angular velocity is approached it becomes (theoretically)
infinite. Beyond the critical value of the angular velocity, the spring does not have
any stable rotational state, and its elongation is limited only by the extent to which
its coils can be straightened; clearly, Hooke’s law no longer applies.

It can be seen that the behaviour of a real Slinky, with a continuous mass dis-
tribution, is essentially the same as that of the spring in the simplified model (a
massless spring with a point-like body attached); only the magnitude of the critical
angular velocity differs – by a factor of π/2.

S62 We use the coordinate system shown in the figure, and find the shape of
the spring (assumed to have already attained its stable configuration) in this frame.
Denote the distance between the ends of the Slinky by d, its mass by m and its
spring constant by k. The end-points of the Slinky are rotating in phase around two
circles with identical radii r0.

Consider the forces acting on an arbitrarily chosen small piece of the Slinky
(indicated in the figure by the heavy line). The x component of the tension in the
Slinky must be constant along the spring (equal to F0, say), because the small piece
does not accelerate in this direction:

F1,x = F2,x = F0.
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It follows that the x-directed projections of Slinky pieces with identical masses
(and therefore with identical spring constants) are the same (the unstressed lengths
of the pieces having been neglected). The x-directed projection of the chosen piece
has a length of �x, and so its mass can be expressed in terms of the total mass of
the Slinky by m�x/d.

In the y direction, the net force acting on the chosen small piece produces the
centripetal acceleration yω2 of that piece, where ω is the angular velocity of the
twirling:

F2,y − F1,y = �x
m

d
yω2. (1)

The direction of the tension force in the Slinky is always tangential, and so the
ratio of the y and x components of the tension can be expressed in terms of the
Slinky’s slope at the given point:

F1,y

F0
= −

(
�y

�x

)
1

,
F2,y

F0
= −

(
�y

�x

)
2

.

Dividing both sides of equation (1) by F0, and using the above expressions for the
slope, yields (

�y

�x

)
2

−
(

�y

�x

)
1

= −�x
mω2

F0d
y.

Now, dividing through by �x, and taking the limit of �x → 0, produces the
second derivative of y(x) on the left-hand side and transforms the equation into
a differential one:

d2y

dx2
= −mω2

F0d
y(x).

This equation is a spatial analogue of the equation governing one-dimensional
simple harmonic motion and corresponds to a (spatial) angular frequency of
� = ω

√
m/(F0d). The analogous time-dependent equation is
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d2r

dt2
= −�2

Tr(t),

where r(t) is the position of a point-like body, measured from its equilibrium
position, as a function of time. Its solution is

r(t) = A cos (�Tt + ϕ0) ,

where A is the amplitude of the simple harmonic motion, and ϕ0 is the initial phase.
On this basis, the function describing the shape of the Slinky is

y(x) = A cos

(√
m

F0d
ωx

)
. (2)

It was arranged, through the choice of coordinate system, that y(x) would be an
even function, and so the value of the ‘initial phase’ is zero.

Note. The force F0 can be related to the spring constant k of the Slinky and the dis-
tance d between its end-points by finding the elongation �s of a small piece of the
spring of mass �m when it is subjected to a force F. As the spring constant of such
a small piece is m/�m times the spring constant k of the whole spring, we have

F = k
m

�m
�s.

But, because the tension in the Slinky is tangential, it is also true that

F

F0
= �s

�x
.

From these two equations, it follows that F0�m = mk�x, and then, from the
summation of this result over the total length of the spring, we have F0 = kd.

The ‘angular frequency’ of the function describing the shape of the spring can
also be expressed in the form

� = ω

√
m

F0d
= ω

√
m

k

1

d
= ξ

d
,

where ξ = ω
√

m/k is a dimensionless constant – exactly the same one as appeared
in the solution that starts on page 210.

The amplitude of the function y(x) = A cos(ξx/d) describing the shape of the
spring is determined by the boundary condition y(d/2) = r0:

A = r0

cos(ξ/2)
.

It follows that, if the ends of the ‘skipping rope’ are moving around circles of very
small radius, i.e. r0 ≈ 0, then the spring does not move away significantly from the
rotational axis (y(x) ≈ 0), provided that ξ < π, i.e.

ω < π

√
k

m
< ωcritical.
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Approaching this critical angular velocity, the deflection of the spring increases,
and at the critical value the amplitude would (theoretically) be infinite. But, in
reality, the maximal amplitude of the spring remains finite, and close to the critical
angular velocity Hooke’s law is no longer obeyed.

Notes. 1. The motion of the ‘skipping rope’ in weightless conditions is very
similar to the behaviour of the spring in an earlier problem (one-dimensional
elongation of the spring in a horizontal rotating tube). This is no coincidence! In
fact, the equations describing the motion of the ‘skipping rope’ can be divided into
two independent components: the equation in the direction of the rotational axis
describes a uniformly stressed spring of length d; the equation for the extension
perpendicular to the axis is essentially the same as that for the motion of the
rotating spring in the tube. The difference between the critical angular velocities
of a factor of 2 is due to the fact that it is only one-half of the ‘skipping rope’ that
corresponds to the spring rotating in the tube, so its mass is m/2, and its spring
constant is 2k.

2. The ‘half-wave’ solution found above for a twirling ‘skipping rope’, with
each end moving around a circle of small radius (r0 ≈ 0), is not the only one.
All other cosine functions whose values are approximately zero at x = ±d/2,
but are non-zero for some other values of x, are possible solutions. This happens
when cos(ξ/2) ≈ 0, that is, when ξ ≈ (2n + 1)π, with n a positive integer. In
this case the Slinky has 2n nodes – points at which there is never any movement
perpendicular to the x-axis. If the ends of the spring are moved in antiphase (with
a ‘skipping rope’, this is difficult to realise, but not impossible), then the shape
of the spring is described by antisymmetric (sine) functions, and the number of
nodes is odd.

To see these phenomena, it is not necessary to travel to the International Space
Station! If two people stand relatively far apart, so that a Slinky they are holding
is significantly stretched, then – after some practice – with proper actuation of the
end-points, the fundamental mode as well as some harmonics can be ‘excited’.

S63 In everyday terms, the larger the bending moment applied to an elastic
rod, the more the elastic rod curves. Strictly speaking, however, this observation
should be stated as: At any given point on a bent beam the curvature is directly
proportional to the local bending moment. For the tree branch, this means that the
(small) vertical displacement y at position x along the branch (measured from the
tree trunk) under a discrete load W at x = a obeys an equation of the general form

d2y

dx2
∝ W × (a linear function involving x and a).

It follows from this that the displacement has a cubic dependence on the lengths
involved. In particular, for a branch of length �, if a = �, the displacement at the
free end is y(�) ∝ W�3.

Direct application of this result shows that, if the displacement (sag) of the free
end of a horizontal cantilevered rod of length �, loaded vertically at its free end by
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a force F, is h, then a rod (of the same cross-section) that has length �/2, and is
loaded at its free end with a force 4F, sags by only h/2. This observation can be
applied directly to the analysis of the two birds perching (separately) on the tree
branch.

As the mass of the pigeon sitting at the midpoint of the branch is four times
larger than that of the blackbird, if the free end of the branch moves down by h1

for the blackbird, the midpoint of the branch is lowered by one-half of this, namely
h1/2, by the weight of the pigeon (see figure).

However, we are determining the sag of the end of the branch in both cases, and
in that of the pigeon the branch is unloaded and straight from its midpoint to its free
end. Because the curvature of this natural cantilever increases monotonically with
distance from the tree trunk, the angle that the straight part of the branch makes
with the horizontal (equal to that of the tangent at the phalf-way point) is greater
than that made by the tangents at all other points between the fixed end and the
midpoint; the latter produce an accumulated drop of h1/2 over half the length of
the branch. The straight-line part of the branch, which has the same length, will
produce a further drop that is more than this. Thus the total drop will be greater
than h1, showing that the tree branch’s free end will be depressed more by the
pigeon at its midpoint than by the blackbird on its extremity.

Note. The precise ratio of the displacements of the tree branch’s free end can be
found from a calculation of the shape of the loaded branch; the result is 5 : 4 in
favour of the pigeon.

S64 Consider the elastic metal wire as divided into small identical-length seg-
ments. These small segments are curved even in an unloaded state, and, under
loading, their curvatures either increase or decrease, depending on the direction
of the flexural torque induced. The deformation of a small segment can be charac-
terised by the angle ε, defined as the small difference in angle between the tangents



218 200 More Puzzling Physics Problems

to the wire at the two ends of the segment. As in the bending of an initially straight
rod, the angle ε is directly proportional to the flexural torque in the small segment.

Fig. 1

The torques acting upon small segments of the two wires at corresponding posi-
tions characterised by the angle ϕ (see Fig. 1) are

τa = wR sin ϕ and τb = wR(1 − cos ϕ),

where w is the (vertical) load on the end of the wire. The small segments are
deformed to the extent necessary to produce compensating (local) flexural torques.
Now

sin ϕ = 2 sin
ϕ

2
cos

ϕ

2
= 2 sin2 ϕ

2
cot

ϕ

2
= (1 − cos ϕ) cot

ϕ

2
,

and, in the range 0 ≤ ϕ ≤ π/2, the factor cot(ϕ/2) ≥ 1. Thus sin ϕ ≥ 1 − cos ϕ,
with equality only at ϕ = 0 and ϕ = π/2, i.e. at the ends of the wire. It follows
that the flexural torques at corresponding points cannot be smaller in case a) than
in case b), i.e. except at two isolated points, where equality holds, τa(ϕ) is always
larger than τb(ϕ).

We next determine the vertical displacements of the wires’ end-points that are
associated with the bending that occurs in equal small segments of the two wires,
both segments corresponding to a particular angle ϕ. Denote the angular deflec-
tions (which are also the deflections of the arcs ˆPA and ˆPB) of the segments at
points P by εa in case a) and εb in case b), as shown in Fig. 2.

Fig. 2
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First, we note that both deformations are proportional to the flexural torque
at P, so

εb

εa
= τb

τa
< 1 for 0 < ϕ <

π
2

.

Next, these angular deflections have to be translated into the vertical components
of the consequent movements of the tips of the wires. Because of the way that ϕ has
been defined, the distances PA and PB are the same, each equal to � = 2R sin ϕ/2,
and so the movement produced by a deflection ε is ε� in length, and perpendicular
to PA or PB, as appropriate. Now, from the geometry of the equilateral triangles
AOP and BOP, the angle between AP and the (downward) vertical is 1

2(π−ϕ), while
that between BP and the vertical is 1

2ϕ. The (downward) vertical components of the
tips’ movements are therefore:

�ha = εa� sin 1
2(π − ϕ) = εa� cos 1

2ϕ,

�hb = εb� sin 1
2ϕ.

Thus, the ratio of the droops �h of the tips of the wires is

�hb

�ha
= εb sin (ϕ/2)

εa cos (ϕ/2)
= εb

εa
tan

ϕ

2
< tan

ϕ

2
< 1 for 0 ≤ ϕ ≤ π

2
.

So we have shown that (apart from at the end-points) the contributions that the
corresponding stressed wire segments make to the lowering of their respective peg
tips is always larger in case a) than in case b). As the total drop can be built up from
the contributions of the individual small segments of the wire, it can be concluded
that the lowering of the hat peg’s tip is larger for design a) than for design b).

Note. The numerical ratio of the two droops can be found using energy consider-
ations and the integral calculus.

If the end of the curved hat peg is slowly loaded up to a maximal weight of
w, and as a consequence it sinks by �h, then the work done is W = 1

2 w�h – the
factor of 1

2 arising because the average force is one-half of its maximal value. This
work must be equal to the total elastic energy stored in the slightly deformed wire,
which is the sum of the stored energies in the individual segments of the wire. The
elastic stored energy of a segment – using the analogy of the energy formula of a
stressed ordinary coil spring ( 1

2 kx2 = T2/2k) – is proportional to the length R�ϕ

of the segment and the square of the torque τ acting in it. Accordingly, the ratio
of the droops of the two different hat pegs is

�ha

�hb
= Wa

Wb
=

∫
τ 2

a (ϕ)R dϕ∫
τ 2

b (ϕ)R dϕ
=

∫ π/2
0 sin2(ϕ) dϕ∫ π/2

0 (1 − cos ϕ)2 dϕ

=
1
2 π/2

π/2 − 2 + 1
2 π/2

= π
3π − 8

≈ 2.2.

The same result can also be obtained by integrating the ‘elementary’ contribu-
tions to the depression of the two peg tips, as shown in Fig. 2.
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S65 Consider first a rod of length L, initially horizontal, whose end deflects by
h when it is loaded with a weight w (see Fig. 1). We approximate the shape of the
deflected rod by an arc of a circle of radius R.

Fig. 1

Note. As is well known, the curvature (the reciprocal of the local radius of curva-
ture) of any particular segment of a rod is proportional to the torque acting upon
it. This is why, for the current configuration, the curvature is largest at the end
where the rod is fixed, and decreases continuously to zero as the loaded end is
approached.

Although the curvature cannot be constant, and the curved rod cannot be part of
a true circle, for the sake of simplicity – and as we are only aiming for an estimate,
and not an accurate result, for the critical load F – this rough approximation will
be used.

Within this approximation, the radius of curvature can be found using Pythago-
ras’s theorem on the right-angled triangle shown in the figure:

R2 ≈ (R − h)2 + L2.

Here, because the vertical deflection is very small, the length of the horizontal
projection of the deflected rod has been taken as L.

Now since h � L, this approximate equation can be reduced to

R ≈ L2

2h
≈ 50 m. (1)

We now investigate the energy implications of the situation. Imagine that the
bent state of the rod was brought about by pushing the end of the rod down slowly
(for this, a gradually increasing force was required, at any stage proportional to
the then current deflection), until the given value of h was reached, and then the
weight w was hooked onto the rod. As the exerted force was proportional to the
displacement, the average force was one-half of its maximal value, and so the work
done was
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W = Fmax

2
h = w

2
h. (2)

This work was all stored as increased elastic energy in the rod (the gravitational
change of the rod’s own weight being negligible). It is well known (and also stated
in the hint) that the stored elastic energy of a deformed rod is directly proportional
to its length and inversely proportional to the square of its radius of curvature, i.e.

W = C
L

R2
. (3)

Here C is a proportionality factor characterising the rigidity of the rod, and can be
easily found from (1), (2) and (3):

C = w

2
h

R2

L
= wL3

8h
= 125 J m.

Note. The same result can be found if the energy of the system, consisting of the
rod and the hung weight w, is investigated as a function of the deflection, which
varies along the rod. In equilibrium, the total energy (in which the elastic energy
term can be approximated by a quadratic function of the deflection) is minimal.
In this scenario, if the elastic energy of the rod is equated to the decrease in the
gravitational potential energy of the load, we get a false result – wrong by a factor
of 2. This is because such a calculation corresponds to letting the weight fall, and
so the kinetic energy acquired by the load also needs to be taken into account if
conservation of energy is to be applied correctly.

Consider now the loaded vertical rod – usually known as an Euler strut. Imagine
that a weight is placed on the top of the rod. If this weight is smaller than the
critical value of F, then the rod will be compressed to a small extent (as for a
loaded supporting pillar), but it will not buckle. When the critical value of F is
reached, the rod does buckle, and the weight moves down through a small distance
x, as shown in Fig. 2. In this case, the elastic energy increase of the rod is the result
of the potential energy decrease of the load.36

The shape of the buckled rod is again approximated by an arc of a circle; its
radius is denoted by r, which bears no particular relation to the R used previously.
The angle θ shown in Fig. 2 (and measured in radians) is

θ = L

2r
.

Since, when buckling starts, r is large, θ is small and the following approximation
can be used, when needed:37

36 If x is small, the loading force is practically constant during the buckling, and so equating the two kinds of
energy change is correct; no error of a factor of 2 is generated. See the previous note.

37 These are the first two terms of the standard Maclaurin series for sin θ , and can be checked numerically, even
with a simple scientific calculator. See also the approximate formulae given in the Appendix.
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Fig. 2

sin θ ≈ θ − 1

6
θ3.

The increase of elastic energy in the rod is

�E1 = C
L

r2
,

and the decrease in potential energy of the weight is

−�E2 = Fx = F(2rθ − 2r sin θ) ≈ 2Fr
θ3

6
= 1

24

FL3

r2
.

The condition for ‘spontaneous’ buckling of the rod is |�E2| > �E1, i.e.

1

24

FL3

r2
> C

L

r2
.

This condition – which is independent of the value of r – will always be met if

F > Fcritical = 24
C

L2
= 3w

L

h
≈ 3000 N.

Notes. 1. The value of the critical force (in the approximation used above) is
independent of r, i.e. the critical force does not depend on the extent of the
buckling (provided r is not too small), and so in practice the vertical displacement
x of the rod’s uppermost point can be arbitrary. Realistically, this means that,
when the vertical load acting on the supporting column reaches the critical value,
the structure collapses or the rod becomes permanently bent.

2. The equations of linear elasticity (ones in which Hooke’s law holds) show
that a more accurate value of the critical loading force is

Fcritical = π2

3
w

L

h
≈ 3300 N.

Our calculation, which (wrongly) assumes a constant curvature, can, at best, be
expected to give only an approximate result. Despite this, our estimation differs
from the more accurate value only by a factor of 9/π2, i.e. the critical loading
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force has been found to within a 10 % error. It is perhaps surprising that the rough
approximation used – which makes no use of any calculus – gives such a good
estimate of the critical load.

S66 For the sake of simplicity, we will treat each cable strand as if it were long
enough to be at the limit of its tensile strength, though of course, in reality, only
slightly shorter cable segments could be connected to each other. In addition, the
weight of elements used to connect the cables together will be neglected.

Let us start from the bottom of the composite cable, and move successively
upwards. The very lowest segment, with a single cable, can be almost 1 km long.
If we use two cables in the next segment, then their length can be 0.5 km, because
then the tension reaches the critical value at the top of each of them. In the next
segment, also 0.5 km long, four cables are required, and so on. The number of
parallel cables in any given segment is always double that in the segment just below
it. Accordingly, to reach a depth of 3 km, at least 1 + 1 + 2 + 4 + 8 = 16 km of
cable is necessary.

With increasing target depth, the required length of cable increases very rapidly.
If the composite cable is lowered to a depth of h (measured in km), then the length
of original cable needed (also in km units) is

L(h) = 1 + (1 + 2 + 4 + · · · + 22h−3) = 22(h−1),

which is more than one million kilometres of cable for h = 11 km!

Note. A somewhat more economical procedure can be used, if the number of
cables changes more frequently than at each 0.5 km, but it can be proved that the
total length of cable used (measured in km) cannot be less than eh. For a depth of
11 km, this length is approximately 60 000 km, which is still a pretty large drum
of cable – and would go round the Equator one-and-a-half times!

S67 Whether the sausage is straight or torus-shaped, the split will occur along
a line of maximal elastic stress (for a given internal pressure).

Fig. 1

As the thickness of the sausage skin is assumed uniform, instead of working
with the elastic stress (with the dimensions of force/area), we can investigate the
tensile forces acting on unit length of the sausage wall. Henceforth, this quantity
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will be called the line stress, and denoted by σ . Unlike the surface tension of
liquids – which is a similar quantity – the line stress can depend upon the location
of the line segment under investigation, and in general can be both anisotropic and
inhomogeneous, as is illustrated in Fig. 1.

Fig. 2

Consider first the straight sausage. Let the length of the sausage be �, its radius
r and the overpressure (gauge pressure) within it �p. If the sausage is imagined
as being cut lengthwise into two equal pieces (see Fig. 2a), then, neglecting the
effects of its semi-spherical ends, the two halves could be held together by a force
of 2�σ1. However, the internal pressure tries to push apart the two halves of the
sausage with a force of 2r��p. As the sausage is in equilibrium:

2�σ1 = 2r��p,

and so the sidewise line stress, perpendicular to the lengthwise cut, is

σ1 = r�p. (1)

The same ‘cut’ method can be applied to find the lengthwise line stress acting
on the sidewise segments (see Fig. 2a):

2πrσ2 = r2π �p,

giving the line stress as

σ2 = 1
2 r�p. (2)

It is clear that σ2 is always less than σ1, and so during boiling, as the overpressure
�p increases, the sidewise stress is the first to reach the limiting value of its tensile
strength; this is why a straight sausage always splits lengthwise.

We now investigate whether the simple considerations used above can also be
applied to a toroidal sausage. Let the major radius of the torus (the distance from
the centre of the tube to the centre of the torus) be R, the minor radius (the radius
of the tube) be r, and the internal overpressure again be denoted by �p. Denote –
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as for the straight sausage – the ‘sideways’ stress in the wall of the torus by σ1, and
the ‘lengthwise’ stress (perpendicular to the latter) by σ2, as shown in Fig. 1.

Fig. 3

As a thought experiment, let us imagine the torus cut by a plane that is parallel to
(and above) the one that contains the central axis of the torus (assumed horizontal)
– and consider the inner ‘half’ of the (upper) cut piece (i.e. all of its parts that are
closer to the symmetry axis than R, and shown by dark grey shading in Fig. 3).
If the vertical position of the cut is characterised by the tangential angle, ϕ, at the
level where it meets the torus, then the equilibrium of the vertical components of
the forces acting on the (dark grey) solid of revolution can be written as follows:

[πR2 − π(R − r sin ϕ)2]�p = 2π(R − r sin ϕ)σ1 sin ϕ. (3)

To obtain this equation for the balance of vertical forces, we have equated (i) the
vertical force that the internal overpressure exerts on the annulus of revolution
produced by rotating (only) the segment CB about the axis and (ii) the vertical
component of the line stress acting on a circular line passing through C. Because
of the rotational symmetry, σ1 is the same for all parts of the circle. At A the line
stress has no vertical component. The weight of the solid of revolution has been
ignored because, compared to the effect of the increasing overpressure �p, it is
negligible.

Using equation (3), the sidewise line stress can be found at an arbitrary angle ϕ:

σ1 = r�p
1 − (r/2R) sin ϕ

1 − (r/R) sin ϕ
. (4)

The sidewise stress on the ‘outer’ side of the torus can be calculated in a similar
way; it is again given by expression (4), but for values of ϕ that lie in the range
π < ϕ < 2π. It can be seen that the sidewise line stress depends on the ratio of r/R,
and, in the case of R � r, expression (4) reproduces formula (1) for the straight
frankfurter. Furthermore, σ1 depends on position, through the variable ϕ, meaning



226 200 More Puzzling Physics Problems

that the stress is inhomogeneous. Its largest value occurs along the inner circle of
the torus (at ϕ = π/2).

What is the situation with the ‘lengthwise-directed’ line stress σ2 (which acts
along a circle of radius r)? This can be calculated with the help of the Young–
Laplace equation that relates the curvature of an elastic film to the pressure differ-
ence across it:

�p = σ1

r1
± σ2

r2
,

where r1 and r2 are the so-called principal radii of curvature of the film, and σ1

and σ2 are the corresponding stresses. The plus sign applies if the two centres of
curvature lie on the same side of the film; the minus sign when they are on opposite
sides.

Note. Two particular applications of the Young–Laplace formula are to the pres-
sure difference across an elastic cylindrical surface (see expression (1)) for which
r1 = r and r2 = ∞, and to films that form part or all of a sphere, for which
r1 = r2 and σ1 = σ2 (examples include soap bubbles and capillary action in a
tube).

The principal radii of curvature of surfaces of revolution can be calculated quite
simply. If the curve c is rotated about the axis a (in Fig. 4 it results in a pear-
like surface), one of the principal radii at a point P on the surface is simply the
radius of the osculating circle, g, at P on the curve c. The other is the distance,
in a ‘slantwise’ (perpendicular to the tangent to the curve) direction, from P to
the rotational axis. As noted earlier, in the Young–Laplace formula the ± sign
is positive if both curvatures ‘pull’ the surface in the same direction, and it is
negative if the ‘directions’ of the two curvatures are opposing (as happens at the
point marked P in Fig. 4).

Fig. 4
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At point C of the torus, the principal radii are:

r1 = r and r2 = R − r sin ϕ

sin ϕ
,

and the two curvatures are oppositely directed. According to the Young–Laplace
formula

σ2 = R − r sin ϕ

sin ϕ

(σ1

r
− �p

)
,

which can be transformed by substituting expression (4) for the stress σ1:

σ2 = R − r sin ϕ

sin ϕ

(
1 − (r/2R) sin ϕ

1 − (r/R) sin ϕ
− 1

)
�p = 1

2
r�p. (5)

It is strange that σ2 does not depend upon ϕ (and so is the same everywhere on
the torus). Further, it is independent of the ratio of r/R (which characterises the
‘slenderness’ of the torus), and, in particular, for R → ∞, it equals the ‘lengthwise’
line stress of the straight sausage as given by (2).

From equations (4) and (5), it can be seen that for any location, and with any ratio
of r/R, σ1 > σ2, and so the imaginary idealised toroidal sausage (with uniform skin
thickness) would also split lengthwise. As σ1 is largest along the inner circular line
of the torus (at ϕ = π/2), the rupture would be expected to occur there.

S68 We will show that the depression of the rope is unaltered when the load
and measurement points are interchanged – a result independent of their actual
positions.

Let the tension in the rope, which has length �, be F, and let us measure hor-
izontal distances from the left-hand end of the rope. We assume that F is always
the same throughout the tight-rope, though, in reality, the tensions to the left and
right of the acrobat are slightly different; this small discrepancy can be neglected
because of the small deflections.38

Suppose that, with the load at position x, the depression there is d, while the rope
at y sinks by h. Contrariwise, under the same load at position y, the dip there is d′,
while the rope at x is lowered by h′ (see figure).

38 With an obvious notation, the actual condition is FL cos θL = FR cos θR, but because both θL and θR are very
small, their cosines are both ≈ 1, and so FL ≈ FR. This approximation neglects terms of order θ2; the terms
in equation (2) are of order θ .
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From the ratios of the sides of pairs of similar triangles in the two configurations,
we have

d

� − x
= h

� − y
and

d′

y
= h′

x
. (1)

Since the sums of the vertical components of the tensions in the two parts of
the tight-rope must each (separately) balance the acrobat’s weight, we also have
that

F

(
d

x
+ d

� − x

)
= F

(
d′

y
+ d′

� − y

)
. (2)

Here, the sines of the small angles involved have been approximated by their
tangents.

From equation pair (1), the ratio d/d′ is given by

d

d′ = � − x

� − y
· x

y
· h

h′ ,

while from (2) it follows that

d

d′ =
1

y
+ 1

� − y
1

x
+ 1

� − x

= � − x

� − y
· x

y
.

These results can only be consistent if h′ = h.
This result is clearly general, but now to answer the specific question posed.

When the acrobat is at T , then the depression of the rope at Q is just the same
(5 cm) as that of point T when he was at Q.

Note. The depression of the point on the rope specified by y, under a unit load
acting at point x, is the so-called impulse response function G(x, y) of the ‘system’.
The symmetry property, G(x, y) = G(y, x), of this function of two variables plays
an important role in mechanics, electrostatics and the description of waves, as
well as in quantum theory. In honour of the British mathematical physicist George
Green (1793–1841), the impulse response of a linear system is called its Green’s
function.

S69 Cut out a solid plane sheet of the same size and shape as the given triangle,
and fix an eye-screw (a screw with a small ring as its head) at each of the three
vertices of the triangular sheet. Fix the triangle in a horizontal plane, and pass thin
threads of lengths L1, L2 and L3 through the eye-screws. Knot together one end of
each of the three threads, and attach a bob of mass m to each of the other ends (see
figure).
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The mechanical energy of this system is equal to the sum of the gravitational
potential energies of the three bobs, and, taking the zero level to be the plane of the
triangle, this is

Epotential = −mg(L1 − d1) − mg(L2 − d2) − mg(L3 − d3).

This can be rearranged as

Epotential = mg︸︷︷︸
constant

·(d1 + d2 + d3) − mg(L1 + L2 + L3)︸ ︷︷ ︸
constant

.

It can be seen that the total energy is minimal if the sum of the distances, d1 +d2 +
d3, is as small as possible. So, when the system is in equilibrium, the position of
the knot gives the required point P on the triangle. Further, since each has the value
mg, the tensions in the threads are all equal; consequently, the threads must meet
at angles of 120◦.

This latter observation shows how P could be constructed geometrically. If,
for each side of the triangle, a circular arc on which that side subtends an angle
of 120◦ is drawn within the triangle (by, for example, tracing the vertex of a
series of arbitrary 120◦ triangles based on that side), then P is defined by the
common intersection of all three arcs. However, there are several other, better-
defined, purely geometrical procedures for determining the location of P, which is
usually known as the Fermat–Torricelli point of the triangle.39

Notes. 1. The mechanical device can be simply adapted to the more general
question of seeking the point inside the triangle for which a weighted sum
of the distances, S = m1d1 + m2d2 + m3d3, is minimal. This is done by
replacing the equal-mass bobs by ones whose masses are proportional to the

39 For example, for a triangle � with all of its angles ≤ 120◦: construct equilateral triangles on any two sides
of �; draw the lines joining each of the two new vertices to the corresponding opposite vertex of �; the
intersection of these two lines gives P.
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weight factors m1, m2 and m3. The corresponding expression for the total energy
is then

Epotential = g(m1d1 + m2d2 + m3d3) − g(m1L1 + m2L2 + m3L3)︸ ︷︷ ︸
constant

.

The equilibrium lengths d1, d2 and d3 taken up by the device thus minimise S,
and the location of the knot again gives the required position on the triangle.

2. The original task (with unweighted distances) can also be tackled using a
system based on soap films. Cut two identical copies of the original triangle
from a sheet of plexiglas40 (poly(methyl methacrylate)), and fix them together
so that they are parallel and have thin spacers (of thickness t) between them at
their vertices. When the resulting device is dipped into a soap solution, a structure
is formed between the plates that consists of three rectangular films meeting in
the form of a letter Y. Along the (short) segment of boundary common to all
three films, the balance of three surface tension forces with identical magnitudes
results in angles of 120◦ between pairs of soap films. The minimisation of the
sum S0 = d1 + d2 + d3 by the equilibrium configuration taken up follows from
the minimisation of the total surface energy of the films, which is proportional to
S0 × t.

3. The previous analysis can only be applied to triangles that do not contain an
angle greater than 120◦. If the obtuse angle of a triangle is precisely 120◦, then
one of the terms in the sum of distances d1 + d2 + d3 (the one corresponding to
the 120◦ vertex) becomes zero; in this case P is simply the obtuse-angled vertex
of the triangle. Even when the obtuse angle is larger than 120◦, the obtuse-angled
vertex provides the position yielding a minimal sum. This can be demonstrated
directly using the mechanical model; the knot at the meeting point of the three
threads comes to a halt in the eye-screw located at the obtuse-angled vertex. In
the soap film model, this corresponds to the situation in which, instead of three,
only two soap films are formed – along the sides adjacent to the obtuse angle.

S70 We show below that – however the sand is distributed (subject to the
constraints stated in the problem) – the required work is always

W = Mg(s2μ1 + s1μ2).

In particular, if the centre of mass of the sack is at its centre, i.e. s1 = s2 = �/2,
the work required is

W = μ1 + μ2

2
Mg�.

Proof. Notionally divide the area of contact between the sack and the carpet into
very narrow strips perpendicular to the direction of motion, so that the load on each
can be taken as uniform. Denote the compressive force acting on the ith strip by
mig, and its signed horizontal displacement from the centre of mass by xi (this is

40 Again, a word that has passed into common usage, though technically it is a registered trademark for Plexiglas.
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positive for parts of the sack to the right of the centre of mass (CM) in the figure
appearing in the problem).

During the transfer, the ith segment of the contact area moves through a distance
s2 − xi on the smoother surface, and through a distance s1 + xi on the rougher one.
It follows that its contribution to the work needed is

Wi = mig(s2 − xi)μ1 + mig(s1 + xi)μ2.

The total work required is therefore

W =
∑

i

Wi = (s2μ1 + s1μ2)

(∑
i

mi

)
g + (μ2 − μ1)

(∑
i

mixi

)
g.

The first sum on the right-hand side of this equation is simply the mass M of the
sack of sand, whereas, from the definition of centre of mass, the second sum is
zero. QED41

Note. It is important that the sack is towed at the bottom, because then the trac-
tional and frictional forces cannot form a couple, and no deforming torque is
generated. If a crate is similarly pulled onto the rough surface, and the horizontal
traction is not applied at the level of the surface, then the result for the work
required is not independent of the load distribution.

S71 Solution 1. Imagine the apex of the cone being depressed by �h, and the
radius of its base consequently increasing by �r, i.e. the perimeter of the base
circle42 increases by 2π�r. Then the total work done by external forces would be

�W = w�h − F(2π�r).

In accordance with D’Alembert’s principle of virtual work, if the system is in
equilibrium, this quantity must be zero; if it were not, the cone would move
spontaneously to some new configuration. It follows that

F = w

2π
�h

�r
.

However, the changes in height and base circle radius are not independent, the
connection between them being determined by the fixed length � of one of the
straight edges of the sheet. Using Pythagoras’s theorem:

(r + �r)2 + (h − �h)2 = �2 = r2 + h2,

from which we have

�h

�r
= 2r + �r

2h − �h
≈ r

h
.

41 QED: quod erat demonstrandum, which is Latin for ‘that which was to be demonstrated’.
42 Technically, the base circle is the directrix of the cone, and either straight edge of the paper is a generatrix.
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So the force in question has magnitude

F = r

2πh
w.

Solution 2. Let us model the paper sheet, which has a continuous matter distri-
bution, by a system consisting of many light thin rods. The lower ends of the rods
are distributed evenly around the perimeter of a circle of radius r, while their upper
ends are connected together (perhaps by a thin rope passing through eye-screws
attached to the rods). If the lower ends of the rods are also connected by a thread,
then the arrangement, resembling the frame of a Red Indian tent, can be loaded by
a weight w at its apex, since the tension F in the thread will prevent the rods from
slipping apart.

If the system consists of n rods in total (n � 1), then the angles between
successive threads that join neighbouring rods are 2π/n, and so the lower end of
any particular rod is pulled towards the centre of the regular n-sided polygon by a
horizontal force of magnitude

F∗ = 2F sin

[
π
2

− 1

2

(
π − 2π

n

)]
= 2F sin

π
n

≈ 2π
n

F.

In addition to this, the table-top pushes the bottom of the rod upwards with a
vertical force of w/n.

Since the notional rods are light and we are ignoring friction, for equilibrium
we must have that the moments of these two forces, taken about the top of the rod,
cancel each other out. So,

w

n
r = 2π

n
Fh, that is F = r

2πh
w,

in accord with Solution 1.

S72 Let the sides of the triangle be of lengths a, b and c, and the linear density
(mass per unit length) of the rods be λ. For the purpose of computing the centre
of mass of the triangle, the rods can be replaced by point-like bodies with masses
λa, λb and λc located at their corresponding midpoints, A′, B′ and C′ (see figure).
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The length of the line segment connecting any two of these points is half that of
the iron triangle side that lies parallel to it.

We next determine the centre of mass of the two point-like bodies on the line
B′C′; they have masses λb and λc and are a distance a/2 apart. With x and y as
shown in the figure, this is located at the point S1 defined by

λc · x = λb · y.

Thus we have that

x

y
= b

c
= b/2

c/2
,

i.e. B′C′ is divided by the centre of mass of these two bodies in the ratio of the
other two sides of the triangle A′B′C′.

It now follows from the converse of the angle bisector theorem that the point
S1 lies on the bisector of the angle C′A′B′. Further, the common centre of mass of
point mass λ(b + c) at S1 and point mass λa at A′ (i.e. the centre of mass of the
whole iron triangular frame) lies on the bisector of the angle C′A′B′. As similar
statements could be made starting from any other pair of points, the centre of mass
of the iron triangle lies on all three angular bisectors of the triangle A′B′C′, which
means that it coincides with the incentre of that triangle.

So Lisa was right; Frank’s method is correct only for equilateral triangles.

S73 Any triangle must have at least one setting that is stable: the one in which
the height of its centre of mass is (under the given conditions) the lowest of the
three possibilities. It is also easy to find a – sufficiently asymmetric – obtuse-
angled triangle that will tumble over from one of its edges. The much more difficult
question is whether it is possible to make a triangle that has two edges on which it
is unstable and only one on which it is stable. We now prove that such a triangle
does not exist!
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For any acute-angled triangle, however it is oriented, the foot of the vertical pro-
jection of its centre of mass (i.e. of its centroid) will always lie within the base edge
of the triangle. All such triangles must have three edges on which they are stable.

For an obtuse-angled triangle, the vertical projection of the centre of mass can
fall outside a base edge. In the figure, this will happen if the centroid is inside one
of the two areas, ABP and BCQ, that are shaded grey. Note that these areas are
defined by QB being perpendicular to AB, and PB being perpendicular to BC. But
if a triangle were able to tumble over from two of its edges, the centroid would
need to be inside both grey areas, which is clearly not possible!

S74 When a tetrahedron, initially placed on one of its faces, falls over sponta-
neously, the altitude of its centre of mass must be reduced. A tetrahedron’s centre
of mass (coinciding with its centroid for a homogeneous body) is one-quarter of its
height above its base. So, the volume of the body is the product of the area of one of
its faces and 4/3 times the corresponding height of its centre of mass. As the volume
is fixed, it follows that the larger the area of the face on which the tetrahedron is
placed, the lower the altitude of its centre of mass. In particular, the face with the
largest area has the lowest centre of gravity (among the four possibilities) and so
must be stable.

We will prove in what follows that a tetrahedron that has three unstable faces
does not exist. The essence of the proof is as follows. It will be shown that, if one
of the faces is unstable, then there are at least two other faces that have larger areas
than it has. From this, it follows that the largest and the second largest faces must
both be stable.

Consider the face of tetrahedron ABCD that has the second largest area; let it be
face ABC and suppose that the body falls over when placed on this face (see figure).
This will happen if the projection T ′, onto the plane ABC, of the tetrahedron’s
centre of mass T lies outside the triangle ABC. Note that the figure includes only
points that lie in the plane of triangle ABC – in particular, D and T lie out of the
plane of the figure and are not shown.

The centre of mass T of the homogeneous tetrahedron lies on the line segment
joining the centroid G of the triangle ABC and the tetrahedron’s fourth vertex D,
and is located at the quarter point of the segment that is nearest to G. The same is
also true for the projections T ′ and D′ onto the plane ABC of the same two points:
GT ′ = 1

4 GD′.
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Next consider a four-fold magnification of the triangle ABC about its centroid
G to form a larger, but similar, triangle A′B′C′. Combining the magnification with
the properties of a centroid, and using the notation in the figure, it follows that
AM = 3GM = 4GM − GM = GP − GM = MP, and from this it follows that the
distance between the lines BC and B′C′ is equal to the distance between vertex A
and the line BC. Similar connections are valid for the other two sides.

Since GD′ = 4GT ′ and, for the tetrahedron to topple as assumed, T ′ lies outside
triangle ABC, it follows that the projection D′ of vertex D lies outside the triangle
A′B′C′. So, D′ and G lie on opposite sides of edge B′C′ of the magnified triangle.
Thus D′ is further from line BC than A is. Consequently, the area A(BCD′) of the
triangle BCD′ is greater than that of triangle BCA. Clearly, the area A(BCD) is
greater than that of its projection A(BCD′), and so for the face BCD we have that

A(BCD) > A(BCD′) > A(BCA).

This largely geometrical relationship also follows (more directly) from an alterna-
tive physics consideration, namely that the tetrahedron can only tumble from one
of its unstable faces onto a face that corresponds to a smaller centre-of-mass height,
and so inevitably has a larger face area (as discussed in the first paragraph above).

Now we show that at least one of the other two sides (ABD and ACD) of the
tetrahedron has a larger face area than the area A(ABC) of the base face. As noted
earlier, it is obvious that the areas of surface projections are smaller than the areas
of the surfaces themselves, and so it is the case that

A(ABD) + A(ACD) > A(ABD′) + A(ACD′)
= A(ABD′C)

= A(ABC) + A(BCD′)
> 2A(ABC).



236 200 More Puzzling Physics Problems

As the sum of the two areas is greater than twice A(ABC), one of them must be
larger than A(ABC).

So two faces (CBD, and one of ABD or ACD) have been found with larger areas
than the area of the second largest face of the tetrahedron. This is an obvious
contradiction, so the second largest face cannot be unstable (and, of course, the
largest face is the most stable). This means that a tetrahedron with three unstable
faces cannot exist. The number of unstable faces can only be zero, one or two.

S75 For the equilibrium of any arbitrary piece of the cable, both the net force
and the net torque acting on that piece need to be zero. Consider, therefore, the
equilibrium of the segment that has a suspension point P and the point of ‘maxi-
mum sag’ as its two ends (see figure).

Because of the relatively small sag, the length of the selected piece can be taken
as L/2 and its mass as m = λL/2. Among the various forces acting on this line
segment, only the horizontal tension F (exerted by the neglected half of the cable)
and the gravitational force mg produce torques about the point P; the (almost)
horizontal reaction force at P produces no torque about that point. The moment
arm of force F is d, while that of the weight can be taken as L/4 (also because
d � L), and consequently, as the net torque must be zero,

Fd − mg
L

4
= 0.

Inserting the expression for the mass into this equation gives the approximate
magnitude of the tension in the cable as

F = λL2g

8d
.

At the same level as the other approximations already made, this can be taken as
the tension throughout the cable.

Note. In a Cartesian coordinate system with its origin midway between the two
suspension points, the actual equation of the cable is the catenary

y(x) = μ−1[cosh(μx) − cosh(μL/2)],
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where μ = λg/k, and k is such that μ satisfies the equation sinh(μL/2) = μL0/2,
in which L0 is the true length of the full cable. The cable tension at x is T(x) =
k cosh(μx).

The implications of these coupled equations are difficult to visualise, but a
self-consistent set of approximations can be obtained when λgL � k. Then μx is
everywhere � 1 and the tension is nearly constant, with a value of k = T(0) = F.
In retrospect we see that the condition λgL � k was equivalent to requiring that
the total weight of the cable be much less than the tension in it. Further, we have

d = y(0) = μ−1[1 − cosh(μL/2)]

= μ−1

{
1 −

[
1 + 1

2!
(

μL

2

)2

+ · · ·
]}

≈ −μL2

8
= −λgL2

8F
,

in accord with our previous, much simpler, estimation of F in terms of d.

S76 Imagine that – in contrast to the situation described in the problem –
the lower ends of the pole and the rope are each raised to the same height. This
will require different horizontal forces in the two cases, of magnitudes F1 and F2

respectively, say (see figure).

In this configuration, both bottom ends are a (common) vertical distance h below
their suspension points. Further, it is clear that, because of its curvature, the rope
will have a horizontal projection x2 that is smaller than that, x1, of the pole:

x2 < x1.

We now consider the moments about the two pivots of the various forces
involved and note that:

(i) Both F1 and F2 have moment arms equal to h.
(ii) For the pole, the moment arm of its weight is clearly a1 = x1/2.

(iii) For the rope, the arm cannot be found quite so easily, but, as the pivot is
approached, the gradient of the rope increases monotonically. It follows
that, for rope segments with the same horizontal projection, the nearer they
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are to the pivot, the larger their mass. From this observation, we conclude
that the moment arm of the rope’s weight a2 is less than x2/2.

Combining (ii) and (iii) with our previous observation, we have:

a2 <
x2

2
<

x1

2
= a1.

The two torque balances about the relevant pivots are

F1h = mga1 and F2h = mga2,

where mg is the common weight of the pole and the rope. Since a2 < a1, we
conclude that

F2 < F1,

and that to lift the two ends to the same height, the climbing pole requires a larger
force than the rope does. If the force acting on the pole were slowly decreased to
the value F2 that is being applied to the rope, then its end would be lowered.

So, in equilibrium, and with identical horizontal pulling forces, the lower end of
the climbing rope will be higher than the lowest point of the pole.

S77 a) The weight of the chain is balanced by the vertical components of
the reaction forces at the two suspension points. The magnitude of each of these
components must be F0 = �Lg/2, where � is the mass of the chain per unit length,
and L = 40 cm. If the chain made an angle of θ with the vertical at a suspension
point, the horizontal component of the chain’s tension would be F0 tan θ . Because,
in practice, θ = 45◦, the horizontal component is the same as the vertical one; it is
also constant along the chain, since there are horizontal forces acting on the chain
only at its ends.

At the chain’s lowest point, the tension is purely horizontal, and, as just shown,
its magnitude is F0. So, around the lowest point, consider a small piece of the
chain that subtends an angle 2ϕ at the centre of the osculating circle, whose radius
is the value r1 we seek. The length of the piece is 2ϕr1 and it is pulled down
by a gravitational force 2ϕr1�g. This force is balanced by the upward net force
of 2F0 sin ϕ due to the tension in the chain. In the limit of small angles, when
sin ϕ ≈ ϕ, the equilibrium equation

2ϕr1�g = 2F0 sin ϕ leads to F0 = �gr1.

Since F0 = �Lg/2, we have the simple result that r1 = L/2 = 20 cm.
b) We use an approach similar to that used in part a), by again investigating the

forces acting on a small piece of the osculating circle. At a suspension point, the
chain tension is

√
2F0, while the component of the gravitational force perpendicu-

lar to a small piece of the chain is 2ϕr2�g/
√

2. Proceeding as before, we get
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2
√

2F0ϕ ≈ 2
√

2F0 sin ϕ = 2
√

2
�Lg

2
ϕ = 2ϕr2�g√

2
,

from which r2, the radius of curvature at each end of the chain, is r2 = L = 40 cm.

S78 Solution 1. Any arbitrary piece of the rope is in equilibrium, and so the
horizontal component of the tension in the rope between the pulleys is constant
(equal to F1, say). The vertical component changes from point to point; it is zero in
the middle, and at the pulleys is equal to half the weight of the ‘sagging’ section,
namely λ(�/2)g, where λ is the linear mass density of the rope.

Following the hint, as illustrated in Fig. 1, we imagine a small piece of the rope,
of length ��, cut out from the middle of the system, and re-inserted into the rope
near one of the pulleys! What energy changes are involved?

Fig. 1

Closing the gap in the middle of the rope requires work F1�� to be done, while
the work required to lift the small piece against gravity is λ�� gh. Inserting it at the
pulley actually allows some energy to be recovered, but formally the work required
to do this is −F2��.

As a result of these changes, we have done no more than return the rope to its
initial state! It follows that the total work done must be zero, and so

F1�� + λ�� gh − F2�� = 0,

showing that

F2 − F1 = λgh. (1)

The same thought experiment could have been carried out for any arbitrary pair of
points on the rope, and so it is generally true that ‘the difference in tension forces
at two arbitrary points of the rope is directly proportional to the height difference
between those points’.

As can be seen in Fig. 1, the connection between the rope tension F2 (at the
pulley) and its components is
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F2
2 = F2

1 +
(

λ
�

2
g

)2

. (2)

A third equation, one that involves s, can be established by recognising that the
hanging rope segments are each held in place by a force of strength F2:

F2 = λgs. (3)

From equations (1) and (3), we have that F1 = λg(s − h). Substituting this into (2)
gives the final result for the length of the hanging segments as

s = �2 + 4h2

8h
.

Solution 2. Equation (1), which is generally valid for ropes and chains in equilib-
rium, can also be established via a different approach. In this, we divide the part of
the rope between the pulleys into small pieces with lengths �si (i = 1, 2, . . . , N),
and denote the height differences between the ends of these small pieces by �yi

(see Fig. 2).

Fig. 2

If Fi,y is the vertical component of the tension at the end (say, the right-hand end)
of the ith piece, and Fx is the horizontal component, which does not depend on i,
then we have, for the net tension Fi acting there, that

F2
i = F2

i,y + F2
x . (4)

Now, the net tensional force acting on a small piece of the rope is the difference
between the vertical components of the tension at its two ends, and this must equal
the weight of the piece:

Fi,y − Fi−1,y ≡ �Fi,y = λ�sig.

We can also use the fact that the tension force is always tangential, to express the
slope of the rope in terms of the total tension and its components. This enables us
to relate �yi to �si:
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�yi = �si
Fi,y

Fi
= 1

λg

Fi,y�Fi,y

Fi
. (5)

We next consider small changes in both sides of equation (4), i.e. we subtract
the equation for the (i − 1)th piece of the rope from the equation for the ith piece.
As Fx is constant along the rope,

F2
i − F2

i−1 = F2
i,y − F2

i−1,y,

from which we get

Fi�Fi = Fi,y�Fi,y. (6)

To make the last step, we used the fact that, if an arbitrary quantity f has a small
change �f made to it, then the change in the square of f is

�(f 2) ≡ (f + �f )2 − f 2 = 2f �f + (�f )2 ≈ 2f �f .

Using equality (6), we can write (5) in the form

�yi = 1

λg

Fi�Fi

Fi
= 1

λg
�Fi. (7)

Summing both sides of equation (7) over i, between points 1 and 2 in the figure,
we obtain

h1,2 = 1

λg
(F2 − F1),

where h1,2 is the (signed) height difference between the two points. Applying this
expression to the rope’s midpoint and its point of contact with one of the pulleys
(h1,2 = h), we recover equation (1). From here on, the calculation proceeds as in
Solution 1.

Note. The ‘sag’ h of the rope, the rope length � between the pulleys and the
distance d between the pulleys are not independent quantities; specification of
any two uniquely determines the third. Our result shows that, in the case of given
h and � (meaning also a given d ), a value of s that keeps the system in equilibrium
can always be found. However, a more interesting general result is also available.

If, instead of the original problem, we try to answer the question of what is the
equilibrium ‘sag’ when a rope of length L = � + 2s is placed on the two pulleys
a given distance d apart. Using calculus, it can be shown that, if L/d < e (where
e ≈ 2.718 . . . is Euler’s number), the rope has no equilibrium position; but if
L/d > e, then it has two (see Fig. 3). One of them (with the smaller sag) is stable
against small vertical displacements of the rope’s midpoint, but the other, with the
larger value of h, is unstable.
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Fig. 3

S79 Imagine that the pearl necklace is pulled – tangentially to the cylinder,
and at a height h above the lower end of the necklace – through a small distance
�x, as shown in the figure.43

As a result, the free end of the necklace is raised by �x. If the tension force in
the necklace at the point where the loop is formed is F(h), then the work required is
�W = F(h)�x. As the surface is slippery, no work is done against friction and all
of �W appears as an increase in the gravitational potential energy of the necklace;
the latter is simply that of the missing (three-pearl) piece from the bottom of the
necklace, after it has been raised through a vertical distance h:

F(h)�x = λ�x · gh,

where λ is the mass per unit length of the necklace.
From this thought experiment, in which the point at which the loop was formed

was chosen arbitrarily, we can conclude that the tension at any point depends only

43 In the figure, the distance �x is represented by three pearls, and so, in this thought experiment, what was
originally a part of the cylinder’s circumference occupied by two pearls has become the location of a loop of
five pearls.
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on the height h of that point above the free end of the necklace, where the tension
is obviously zero:

F(h) = λgh. (1)

This result is the same as that found in the solution on page 239. The statement
that ‘the difference in the magnitudes of the tensions at two arbitrary points is
proportional to the height difference between the points’ is valid for all uniform
ropes and chains touching frictionless surfaces.

If the segment of the necklace that hangs down is sufficiently long, then the
equilibrium is stable. However, if the length of the dangling portion is decreased to
below a certain critical value, then the pearl necklace drops away from the surface
at the lowest point of the cylinder. When this happens, the normal reaction force
exerted there, by the cylinder surface on the necklace, has decreased to zero.

Consider now a small piece of the necklace of length R�ϕ situated at the lowest
point of the cylinder, where �ϕ is the angle subtended by this piece at the axis of
the cylinder (see figure). The condition for its equilibrium, when there is no normal
reaction from the cylinder surface, is

2F sin(�ϕ/2) = λR�ϕ · g,

where F is the local tension in the necklace. Because the angle is arbitrarily small,
the approximation sin(�ϕ/2) ≈ �ϕ/2 can be used, and so

F = λgR.

This is the minimum tension needed at the bottom of the cylinder to keep the
necklace in contact with it around its entire circumference. Comparing this with
expression (1), we see that no part of the pearl necklace will leave the cylinder if
the height difference h between the necklace’s lower end and the lowest point of
the cylinder is at least R, i.e. the length � of the hanging segment is at least 2R.

S80 a) The centre of mass of the rolled rug is not exactly above the point of
support – in the figure in the problem, it is slightly to the left of it – and so the rug’s
weight produces a torque about that point, which then causes the rug to unroll.

b) When a length x of the rug has been rolled up, the mass m(x) of the cylindrical
rug roll is directly proportional to x:

m(x) = x

L
M. (1)

The cross-sectional area of the roll is also proportional to x, i.e. for the radius r(x)
of the roll we have:

r2(x) = x

L
R2. (2)
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The horizontal force F(x) needed to prevent the rug from unrolling can be found
using D’Alembert’s principle of virtual work. Imagine that a further length �x
(� L) is added to the roll (see figure), then

F(x)�x = �Epotential, (3)

where Epotential = m(x)gr(x) is the gravitational potential energy of the rug.

The change in the potential energy is

�Epotential = mg · �r + �m · gr.

This can be transformed using formulae derived from (1) and (2), namely

�m

m
= �x

x
and 2

�r

r
= �x

x
,

to give

�Epotential = 3

2

mgr

x
�x.

Substituting this into (3), and using (1) and (2), gives the force required to prevent
further unrolling of the rug as a function of the length x of the coiled segment:

F(x) = 3

2
g

m(x) r(x)

x
= 3MgR

2L

√
x

L
.

When x = L, this expression provides the answer to the specific question asked:

F = F(L) = 3R

2L
Mg.

Note. We can check our result by calculating the total work required to roll up the
whole rug. This is given by the integral with respect to x of the force F(x):∫ L

0
F(x) dx =

∫ L

0

3

2

MgR

L

√
x

L
dx = MgR,

which is reassuringly equal to the gravitational potential energy of the fully
rolled rug.
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S81 (i) Denote the length of the closed loop on the novices’ lasso by L, the
position of the eyelet on the cone by P, the climber’s position by A and the apex of
the iceberg by O (see left-hand side of Fig. 1). The climber is lowest (i.e. the total
energy of the system is minimal) if point P is as far from point O as possible; the
lasso will take up the configuration that brings this about.

Fig. 1

Notionally, cut the lateral surface of the cone along the line (generatrix) OA, and
spread it out into a plane.44 Doing so, we obtain a circular sector with central angle
ϕ, and with point P appearing on it at two positions (see right-hand side of Fig. 1).

The points P are as far from point O as possible if, in the figure, the rope segment
of length L joining them is straight. Such a straight line can be drawn within the
grey area of the spread-out lateral surface provided ϕ < 180◦. This requires the
slope length � and the base radius r to satisfy the inequality

2πr = �ϕ < �π, that is r <
�

2
.

This condition means the acceptable range of original (spatial) ice-cone angles
satisfies

sin θ = r

�
<

1

2
, that is 2θ < 60◦.

The novices, using their two-piece lassos, can only tackle ice cones that are
sharper than one with 2θ = 60◦. If the cone angle is larger than this value, then
the loop of the loaded lasso slips over the apex of the iceberg, and the climber falls.

Note. Imagine the iceberg to be transparent, and consider the ‘side view’ of it
when the novices’ lasso is in place. In this view, the loop of the lasso appears as a
single line, because one half of it is directly behind the other, and P is at one end
of the line. At the other end, Q, the line is perpendicular to the generatrix of the
cone passing through it. Naively, we might conclude from this that the angle of

44 That this can be done follows from Minding’s theorem and the fact that the so-called Gaussian curvature,
the product of the two principal curvatures at any point, is zero everywhere on the cone’s lateral surface. In
cylindrical polar terminology: although one principal curvature is non-zero and varies as z is varied, the other,
in any azimuthal plane, is always zero, and hence so is the product.
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the cone could be increased up to 2θ = 90◦ and still provide ‘something for the
loop to pull against’ on the right-hand surface of the cone, when the loop is loaded
at a point P on its left-hand surface. But – as shown above – this is not the case!

Fig. 2

The source of this error is that the projection of the lasso between P and Q is
not a straight line; this is because the loop of the lasso cannot be a plane curve
(see Fig. 2). If it were, then it would have to be a conic section, namely an ellipse.
But an ellipse has a continuously varying tangent and cannot have a cusp at P;
the rope of the loop, contrariwise, must – because of the loaded segment of the
rope – have a cusp there.

Referring back to the plane sector shown in Fig. 1, as the angle of the cone θ is
increased so is ϕ, and the centre of the straight line of fixed length L rises towards
O. This central point corresponds to the point Q on the lateral surface of the cone,
and it follows that, as 2θ increases, so Q moves higher and higher up the cone,
reaching the apex O of the iceberg when ϕ = π and θ = 60◦. Beyond that point
lies only disaster!

(ii) But what about the experts’ lasso? It consists of a single continuous fric-
tionless rope, and so the tension in it must be the same everywhere. At the eye-
let P, three equally tensioned ropes meet, and can only be in equilibrium if the
angle between any two of them is 120◦ – in particular, the angle between the two
segments of the loop has this value. In the plane-sector drawing of Fig. 1, this
corresponds to each of the angles between line PP and the two lines marked OA
being 60◦. This, in turn, requires ϕ to be 60◦, i.e.

2πr = �
π
3

,

and consequently that

sin θ = r

�
= 1

6
, from which 2θ = 19.2◦.

So equilibrium is only possible for this one particular value of 2θ (and not for
a range of values). And, what is more, even this situation is unstable. If the apex
angle of the iceberg is greater than 19.2◦, then the loaded lasso slips up to the
vertex of the cone, passes over it, and falls back to Earth. If the angle is smaller
than the critical value, then the noose simply slips down to the level of the frustrated
climber. It is not by accident that this type of lasso is specified as only for experts!
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S82 Consider the bike chain when it is at rest, influenced only by gravity. In
this situation the tension (which is tangential at each point) varies continuously
along the chain, in such a way that each link’s weight is balanced by the two tension
forces exerted on it by its neighbours. Denote this force by F1(s), a function of the
arc length s measured from an arbitrary point (say, from the topmost point) of the
chain. Necessarily, F1(0) = F1(L), where L is the total length of the chain.

Consider now a chain of the same shape, operating in weightless conditions
(say, inside the International Space Station), and with all of its links moving with
the same constant tangential speed v. As the tangential acceleration of all the
links is zero, the force stretching the chain, F2, has to have the same magnitude
everywhere, i.e. F2 = constant. In particular, the force is independent of the radius
of curvature of the chain at any given point; this is proved in the following note.

Note. If the radius of curvature of the chain, of mass per unit length λ, is R at
some point (R can vary from place to place), then the mass of an arbitrarily small
piece of length R�α is �m = λR�α, while its acceleration is v2/R, as shown in
the figure.

The equation of motion of the piece is

λR�α · v2

R
= 2F sin

�α

2
,

which leads to the relation

F = F2(s) = λv2,

when use is made of the fact that sin(�α/2) → �α/2 as �α → 0. It should be
noted, in particular, that F is independent of R.

So, whatever the shape of the chain, and whatever the chain’s curvature at any
particular point, the uniform tension provides the appropriate centripetal force for
the chain to maintain that shape.

Finally, consider the situation described in the problem, a moving chain in a
gravitational field. The forces acting are those obtained by superimposing the two
simpler situations already discussed. If the tension varies as F1(s)+F2(s) along the
chain, then Newton’s equation of motion is fulfilled for each chain link. The vector
sum of F1(s) and the gravitational force is zero, and the term F2(s) (equal to λv2
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everywhere) provides the appropriate product of mass and centripetal acceleration
for each link.

The bicycle chain’s moving shape is identical to its stationary one! That shape
is a ‘catenary’ for the hanging part of the chain, and, of course, a semicircle for the
supported part.

Note. The argument above can be illustrated by the following thought experiment.
Let us ‘switch off’ the gravitational field of the Earth while the chain wheel is still
at rest. The shape of the chain remains unaltered, but it no longer exerts a force on
the wheel. As has been proved earlier (see previous note), if each chain link is set
in motion with the same tangential speed, the chain maintains its original shape.
Finally, we ‘switch back on’ the Earth’s (uniform) gravitational field, which (as is
well known) cannot deform the shapes of bodies. So the shape of the chain in the
uniformly moving state remains the same as in the original rest state.

During the increase of the rotational speed from zero, a stationary state cannot
be formed immediately, and there must be some transient effects. These will be
apparent as waves running round the chain. An investigation of the damping of
the transients needs a more sophisticated analysis than we can provide here. (It
seems unlikely in practical terms, but perhaps the transients will not be damped,
and the chain will never settle down to a constant shape.)

S83 Let us follow Peter’s calculations. The mass of the roll (which is continu-
ously changing) expressed as a function of the distance already travelled is

m(x) = M
(

1 − x

L

)
,

its radius (from the proportionality of the mass and cross-sectional area) is

r(x) = R

√
1 − x

L
,

and the horizontal component of its velocity (from the conservation of energy) is

vx ≡ dx

dt
= v0

1√
1 − (x/L)

.

The calculation of vx used the fact that, because R � L, the vertical component
of the velocity is very much smaller than the horizontal one, and so the vertical
kinetic energy term could be neglected.

The vertical component of the velocity of the roll’s centre is

vy = dr

dt
= dr

dx

dx

dt
= dr

dx
vx = −Rv0

2L

1

1 − (x/L)
,

the negative sign appearing because, as x increases, the centre of the roll moves
to a progressively lower position. From this, the vertical component of the linear
momentum can be found:
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py = m(x)vy(x) = −MRv0

2L
.

As this quantity is constant in time, we have reached the, perhaps surprising,
conclusion that the vertical component of the net force acting on the roll must
be zero, i.e. N − m(x)g = 0. This means that the ground does not exert any extra
vertical force on the roll beyond the (current) weight of the fire hose.

It follows that, according to Peter’s analysis, the net torque produced by the
external forces about P is zero; the line of action of F goes through P, and the
normal force N and the weight of the roll cancel each other out. What about
the angular momentum of the roll? If Peter’s calculation is correct, then the total
angular momentum must be constant in time.

The angular momentum about point P has two terms – the internal spin J1 of the
roll, and the orbital angular momentum J2 due to the linear motion of the centre
of mass. Taking the direction of the roll’s rotation as positive, we note that, since
there is no slipping, ω = vx/r. The internal spin J1 can be expressed as follows:

J1 = Iω = 1

2
mr2ω = 1

2
mrvx = 1

2
MRv0

(
1 − x

L

)
.

This quantity changes with time, since x does. The orbital angular momentum is

J2 = pxr − pyx = mrvx − xmvy = MRv0

(
1 − x

L

)
+ MRv0

x

2L
,

and so the total angular momentum of the system is

J1 + J2 = MRv0

(
3

2
− x

L

)
= constant.

So, the angular-momentum theorem is not obeyed for the unrolling fire hose! –
states Peter.45

But Pauline had other ideas! In her opinion, the vertical component of the linear
momentum of the roll (and the system as a whole) should be calculated in a
different way, because, she claimed, py = m(x)vy.

45 While fantasising about being the youngest Nobel Laureate ever!
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And she was right. The linear momentum should be found by calculating the
vertical component of the velocity of the centre of mass of the complete hose, and
multiplying this by M. This prescription gives

p(correct)
y = d

dt

[
m(x)r(x)

M

]
M = MRvx

d

dx

(
1 − x

L

)3/2 = −3

2

MRv0

L
.

This is three times as large as the value of the naively calculated quantity mvy!
Using this linear momentum – calculated correctly – the orbital angular momen-

tum is

J(correct)
2 = MRv0

(
1 − x

L

)
+ MRv0

3x

2L
,

and the total angular momentum of the whole system is

J1 + J(correct)
2 = 3

2
MRv0 = constant.

Everything is now OK, because the angular-momentum theorem is still valid,
even for a body with changing mass, provided the linear momentum and the orbital
angular momentum are calculated correctly (albeit unusually).

Notes. 1. The vertical linear momentum, calculated correctly, is also a constant in
time, and so Peter’s conclusion, that N − m(x)g = 0, was right.

2. Peter and Pauline have both used the same formula (px = m(x)vx(x)) for
the calculation of the horizontal momentum of the roll, and – as we have just
seen – for systems with changing mass, this is not certain to give the right answer.
Fortunately, this particular result is correct; this can be proved using Pauline’s
method (determining the time derivative of the horizontal position of the system’s
centre of mass taken as a whole).

3. When x → L, some of the calculated quantities, namely vx, vy and F(x),
approach infinity, but it is obvious that this cannot happen physically. Our descrip-
tion and approximations cannot be valid at the very end of the motion.

S84 As the cylinder is rotating quite slowly, the sand in it is, to some extent,
piled up against the wall of the cylinder that is moving upwards, and occupies
a volume whose shape approximates that of a cylinder segment (see left-hand
diagram in figure).

The change of temperature �T could be determined if we knew the mass m
of the sand, its specific heat capacity c and the frictional work done: �T =
Wfriction/(mc). The mass of the sand is given (m = 100 kg), and its specific heat
can be estimated from data books (by considering the data for similar materials,
e.g. quartz glass or porcelain) as being in the range of 700–800 J kg−1 ◦C−1.

A detailed description of the motion of the sand (and, from this, a calculation
of the frictional loss of energy) would be a desperately hard (impossible) task.
Fortunately, this is not necessary! It is sufficient to note that, sooner or later, the
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sand in the uniformly rotating cylinder assumes a settled configuration. Though the
individual sand particles are moving, the body of sand as a whole has a stationary
shape that does not change with time. Consequently the centre of mass of the sand
is always at the same position, a horizontal distance a from the rotational axis of
the cylinder (see right-hand diagram in figure).

The increase in thermal energy of the moving sand (the energy dissipated by
frictional forces within it) is equal to the mechanical work done in maintaining the
rotation of the cylinder. This can be expressed as the product of the torque mga
acting on the cylinder and the rotational angle �ϕ through which it turns:

Wfriction = mga�ϕ.

During a 10 minute interval the angle of rotation is

�ϕ = 2π × 0.5 s−1 × 600 s = 1885 rad,

and the magnitude of the gravitational force is

mg = 100 kg × 9.81 m s−2 = 981 N.

But there is still one thing to be done – the calculation of the moment arm a
of the gravitational force. We estimate first the distance rCM between the centre
of mass of the sand and the rotational axis. The volume of a cylinder segment of
length h and radius r that subtends an opening angle θ at the cylinder’s axis is

V = 1
2 hr2(θ − sin θ). (1)

In our case, h = 1 m and r = 0.5 m. The volume of the sand in the cylinder can
be determined from its mass and density. The density of sand � depends on the
constitution of the sand itself, how compacted it is and its moisture content, and
varies over the range 1400–2000 kg m−3. The Engineering ToolBox website gives
a value of 1400 kg m−3 for dry uncompacted sand, and this is the figure we will
use here. So
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V = m

�
≈ 0.07 m3. (2)

Inserting the estimated value (2) for the sand’s volume into (1), and solving the
transcendental equation for θ numerically, we get θ ≈ 90◦ and rCM ≈ 0.41 m.46

The remaining question is: ‘How is the plane surface of the sand-filled cylinder
segment oriented, relative to the vertical?’ From our everyday experience, or after
a bit of deliberate experimentation, in a sand pit, or with an egg-timer or hour-
glass, we conclude that dry sand can be piled up with a ‘scarp angle’47 of up to
approximately 45◦. This, together with the estimated value of θ , implies that the
highest point of the self-renewing sand avalanche is approximately level with the
axis of the cylinder.

So, the length of the relevant moment arm is

a ≈ rCM sin 45◦ ≈ 0.29 m,

and the corresponding frictional work is about 540 kJ. Using this, and taking the
specific heat of sand as 800 J kg−1 ◦C−1, we get

�T ≈ 6.7 ◦C.

As the density and the specific heat of the sand are uncertain by up to 10 %, and
the scarp angle assessment is only a rough one, the estimation of �T may have a
20 % error margin. Consequently, we give the temperature increase of the sand as
being between 5 and 8 ◦C – distinctly ill defined, but definitely detectable.

S85 a) The density of iron is 7.8 times that of water, so the mass of the iron
cube of volume 10−3 m3, i.e. 1 litre, is the same as the mass of 7.8 litres of water.
According to Archimedes’ principle, the buoyancy force (upthrust) acting on the
cube is the same as the weight of 1 litre of water. It follows that, for the cube to be
in equilibrium, the tension in the cord must be equal to the weight of 7.8 − 1.0 =
6.8 litres of water.

On the other side of the pulley, this tension must balance both the water’s weight
and the reaction (on the bottom of the bucket) to the upthrust experienced by the
cube. The latter is, as already noted, the same as the weight of 1 litre of water, and
so the amount of water in the bucket must be 5.8 litres. In reality, there will be a
little less water than this in the bucket, because even a ‘light plastic bucket’ has
some weight.

46 Though it can hardly be justified – given all the other rough approximations elsewhere – rCM has been
calculated for the cylinder segment from the accurate formula

4r sin3(θ/2)

3(θ − sin θ)
.

47 See footnote in the hint, if necessary.
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b) If the amount of water were increased, the bucket would sink and the cube
would rise. Provided the additional water is not more than 2 litres, some part of
the cube would remain under water and the cube would appear to float. If more
than 2 litres were added, making the total mass of water more than 7.8 litres, the
cube would be lifted clear of the water and continue to rise until it jams against the
pulley.

c) If the amount of water in the bucket were to decrease, then the bucket would
rise and the cube would sink to the bottom of the bucket. This equilibrium state (for
the cube and bucket) would remain unaltered, even after all the water had evapo-
rated. The tension in the cord would change during the evaporation, ending up at
approximately half the weight of the iron cube. If the cord were ‘light’, the final
tension in it would be one-half of the combined weights of the cube and bucket.

S86 Initially, the water pressure at the bottom of the container was 1.1 atm
and, because the height of the cylinder was 10 m, at the top it was 1 atm less, i.e.
0.1 atm.

The key to the solution is the fact that water is virtually incompressible. Inside
the closed container there was only the incompressible water and the air bubble
– nothing else. We note that a, perhaps surprising, consequence of this is that the
volume of the air bubble must have remained constant as it rose; the volumes of
both the water and the container could not change, and so, consequently, neither
could that of the air bubble.

Accordingly, after the air bubble had risen, its volume, temperature and amount
of matter must have been as they were initially, and so its pressure could not have
changed either. It follows that the water pressure at the top of the cylinder, which
had to be equal to that in the bubble, had become 1.1 atm. Since the pressure at the
bottom must have been 1 atm more than this (because of the hydrostatic pressure
of 10 m of water), the answer to the problem is that the final water pressure at the
bottom of the cylinder was 2.1 atm.

How is it possible that the pressure in the air bubble remains constant, but the
pressure of the water increases? When we say that water is incompressible, we
mean that, if the pressure on it is increased, the water’s volume change is negligible,
although, in theory, it is not exactly zero. In other words, a moderate increase in
the pressure produces a volume decrease that is ‘almost’ zero. When the air bubble
rises, its volume increases a little, and the decrease in water volume is the same –
almost, but not quite, zero. However, it can correspond to, and cause, a significant
increase in the pressure of the water.

S87 Let us suspend an easily deformed (low-spring-constant) spring from the
roof of the black box, and hang a bucket on its lower end. The rubber hose coming
into the box has a flexible extension that is filled with water and dips beneath the
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surface of water in the bucket (see figure). As the container and the bucket are
connected, the equilibrium state is that their water levels (relative to the ground)
are the same.

If more water is added to the container, some of it will flow into the bucket
through the hose, and then, because of the bucket’s increased weight, the spring
will stretch further and the bucket will be lowered. If the spring is sufficiently
weak and the lowering of the bucket is greater than the rise of the water level
within it, then the level of the water surface in the bucket is lowered with respect to
the ground. When equilibrium has been established, the same will have happened
to the water level in the container. The process is reversible; if a little water is
removed from the container, then the water level within it rises.

S88 Consider notionally covering the funnel with a cylinder that has a base
that coincides with the rim of the funnel, and then pouring water into it up to the
level of that in the funnel (see figure). In this situation the funnel is pushed upwards
by the water inside it with the same force as the water outside it pushes it down.

So, for the funnel to remain in place, its weight must be at least as large as that
of the water outside it. The volume of this water is

18 cm × 200 cm2 − 1000 cm3 = 2600 cm3,
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and so a funnel with a mass of 2600 g = 2.6 kg is just sufficient.48

S89 The external force acting on the hemispherical shell must balance two
other forces, the weight of the shell and the force due to the hydrostatic pressure
in the liquid. We need to find both the horizontal and vertical components of these
forces.

The vertical forces are the weight mg of the hemispherical shell, and the weight
Mg of the liquid, whose mass M = 2

3 πR3�. The upward vertical component Fvert

of the external force must balance the sum of these two forces:

Fvert = (m + M)g.

Horizontally, since the net force acting on the water must be zero, the reactions
on it of the wall and shell – and hence also the forces the water exerts on them –
must all be equal. That on the wall can easily be calculated, as the product of the
average hydrostatic pressure (�gR) and the area of the circle that coincides with
the rim of the shell. It follows that the horizontal component of the external force
has the same value, and so it is Fhor = πR3�g. This can be expressed in terms of
the liquid mass as

Fhor = 3
2 Mg.

The magnitude of the required external force is therefore

F =
√

F2
hor + F2

ver = Mg

√
9

4
+

(
1 + m

M

)2
,

and its direction makes an angle

θ = arctan
Fvert

Fhor
= arctan

2(m + M)

3M

with the horizontal (see figure).

48 The funnel was tacitly assumed to be thin-walled, but the final result is the same without this assumption.
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The appropriate point for the application of the external force can be determined
by considering the necessary balance of the torques that act within the system.

For the hemispherical shell taken in isolation, the forces acting on it are shown
in the figure: the horizontal and vertical components of the external force acting
at the (as yet to be determined) appropriate point, the weight of the shell (whose
centre of gravity is half-way along the radius that forms the axis of symmetry) and
the forces caused by the hydrostatic pressure of the water in the shell (which are
distributed along its the inner surface).

We note that, as the liquid exerts only a radial force on each piece of the surface,
the net torque of these hydrostatic forces is zero if the centre O of the sphere is
chosen as the reference point. As this greatly simplifies the problem, this is our
obvious choice.

The required position of the force application point can be characterised by the
angle ϕ shown in the figure. The remaining effective torques about O are then
mgR/2 and (3MGR sin ϕ)/2, both clockwise, and (m + M)gR cos ϕ anticlockwise.
From their balance, it follows that(

1 + M

m

)
cos ϕ − 1

2
− 3M

2m
sin ϕ = 0.

This equation is quadratic in either sin ϕ or cos ϕ, and can be solved if the ratio of
the masses is known.

Notes. 1. If the hemispherical shell is much lighter than the liquid in it (i.e. m �
M), then F ≈ 1.8Mg and θ ≈ ϕ ≈ 33.7◦. In the other limiting case (m � M),
F ≈ mg, θ ≈ 90◦ and ϕ ≈ 60◦.

2. If the water and shell are considered as a single body, and we write the
equation expressing the torque balance for it, then, of course, we should get the
same result as previously for the positioning of the external force. In this case, in
addition to the torques due to the applied force and the weights of the water and
the hemispherical shell, we have to take into account the torque produced by the
compressive forces that the wall impresses on the water.

Warning! Though it is true that the liquid presses on the wall with a net force
of the same magnitude as would be the case if the pressure had the same value
everywhere as it has at the centre of the circle, the same simplification does not
apply to the net torque produced. Just as the hydrostatic pressure in the lower half
of the base circle is greater than that in the upper half, so are the compressive
forces imposed on the water by the wall, and their net torque about a horizontal
diameter of the circle cannot be zero.

S90 Denote the gauge pressure in the tyres by �p. If the weight of the car per
tyre is w, then the ‘flatness’ of the tyres can be calculated from:

w = �p · A,

where A is the surface area touching the road (see figure).
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If the gauge pressure is a factor of 4
3 times larger, then the surface area touching

the road will be 3
4 times smaller, because the weight �p · A of the car (per tyre)

does not change. For the sake of simplicity, let us suppose that the shape of the
surface touching the road does not change, meaning its linear size decreases in

both directions by a factor of
√

3
4 .

When the steering wheel is rotated, the rubber surface in contact with the road
slides, if the torque is sufficiently large. Notionally divide the dented rubber surface
into small pieces, so that the total torque can be calculated as the sum of the torques
produced by ‘elementary’ frictional forces acting on each of these pieces. After

the increase in the tyre pressure, all of these pieces will be
√

3
4 times closer to the

‘centre’ of the reduced flat area in contact with the road, and so the moment arms
of the elementary frictional forces will decrease in the same proportion.

As the normal forces, which press the pieces of the dented rubber surface onto
the road, do not change (because their surface areas decrease at the same rate as �p
increases), the frictional forces acting on the pieces are unaltered. Consequently,

the total torque needed for the relative movement of road and tyre will be
√

3
4 ≈

0.87 times smaller than the original one. Correspondingly, the force required to
rotate the steering wheel decreases by approximately 13 %.

In the above argument, it was assumed that the size of the rubber area that
touches the road varies inversely with the gauge pressure, but maintains its shape.
In reality, this is not strictly true! The construction of car tyres is such that the trans-
verse size of the contact surface is about the same for ‘soft’ tyres as it is for those
that have been inflated hard; the change in the surface area A is effected by a change
of the lengthwise dimension, parallel to the length of the car. If such a tyre were
very narrow, then an areal decrease by a factor of 3

4 would require a lengthwise
size change by the same factor, resulting in a 25 % decrease in the required steering
force. The real situation is probably somewhere between these two extreme cases,
and so the force decrease lies between 13 % and 25 %, say about 20 %.

S91 Initially, the gauge pressure, �p, in the balloon is 10 cm of water. After
the iron rod has been carefully placed on the top of the balloon, the water in the
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manometer will overflow if the gauge pressure exceeds 10 + 20 − (−20) = 50 cm
of water; or more scientifically, approximately 5 kPa. The weight of the cylindrical
iron rod, of length 50 cm and diameter 2 cm, is mg = 12 N. The pressure on the
bottom of the rod due to its own weight is 7.8 × 103 × 9.8 × 0.50 ≈ 40 kPa; this
is many times larger than the gauge pressure required to cause overflow. However,
the manometer water does not overflow.

The reason for this is the additional upward force on the rod due to the defor-
mation of the balloon’s rubber wall (see Fig. 1) as it is placed on the balloon and
allowed to sink, depressing the balloon’s upper surface (but not so far that it touches
its lower surface). Thus, the rod is held up, not only by the hydrostatic force from
the gauge pressure �p, but also by the elastic force F due to the tension in the
rubber wall of the balloon.

Fig. 1

It can be shown, as follows, that the pressure increase in the balloon is not very
large, and that only its shape changes significantly. The new gauge pressure �p
can be estimated by considering the static equilibrium of a hypothetical cylindrical
region within the balloon, as shown in Fig. 2, in which p0 denotes the atmospheric
pressure. The diameter of the volume is determined by the nearly circular contour
on the balloon’s upper surface on which F is horizontal. The position of the lower
horizontal boundary A is somewhat arbitrary but must be below the bottom of
the rod.

There are no vertical components of the elastic forces acting on this body
(region), and the condition of equilibrium can be written as mg = �pA, where the
bottom area A is about 10–20 cm across and therefore of the order of 10−2 m2 in
size. This estimate gives the gauge pressure as

�p ≈ 12 N

10−2 m2
= 1.2 kPa.

This is equivalent to 12 cm of water, indicating that the (gauge) pressure increase
is only 2 cm of water, far short of the 50 cm needed. The conclusion that the
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Fig. 2

water does not overflow is not at all sensitive to the estimation of area A. If we
assume one-half, or even one-third, of our initial estimate for A, the additional
gauge pressure is still not enough to cause overflowing. We note, in passing, that
the effective A cannot be much larger than our assumed value, as this would lead
to a value for �p that is less than the original 10 cm of water – clearly a physically
unacceptable conclusion.

Note. The pressures involved in this problem are in accord with the fact that
a balloon can be inflated fairly easily using the lungs, but the maximal gauge
pressure in the human lung is clearly much less than atmospheric. If this were not
the case, there would be an unbearably large force acting upon the chest.

S92 Consider a water jet emerging from a hole located a distance h below
the surface level of the water (see figure). According to Torricelli’s theorem, the
speed of efflux is

√
2gh, and the formulae for horizontally launched projectiles

give the equation of the trajectory of this jet (in the coordinate system shown in the
figure) as

y(x) = x2

4h
+ h. (1)
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The water can reach a point with coordinates (x, y) only if the quadratic equation

4h2 − 4hy + x2 = 0, (2)

given by a rearrangement of equation (1), has real root(s) for h. The condition for
this is that its discriminant is non-negative:

16y2 − 16x2 ≥ 0.

As only positive values for x and y are physically possible, this is equivalent to
the inequality y ≥ x. So the envelope of the water jets is the lateral surface of a
right-circular cone, truncated so that its top coincides with the water surface in the
cylinder. The generatrix of the cone makes an angle of 45◦ with the horizontal.

Note. If the measuring cylinder is placed on a horizontal table-top, then, to pro-
duce the whole envelope, it is sufficient to bore holes only above the height H/2.
The jets emerging from the holes at height H/2 are the ones that reach the table
furthest from the cylinder, and they ‘mark out’ the perimeter of the truncated
cone’s base.

S93 If an upright cylindrical vessel containing liquid is steadily rotated in the
Earth’s homogeneous gravitational field, then, after a while, the surface of the
liquid takes the shape of a paraboloid (a solid of revolution) (see Fig. 1).

Fig. 1

The equation of a plane section of the liquid surface (the ‘rotated parabola’) is,
in the coordinate system indicated in the figure,

y = ω2

2g
x2,

where ω is the rotational angular velocity.

Note. The above equation can be established in several different ways. For exam-
ple, in the rotating frame of reference, the centrifugal force acting on any small
liquid element, one of mass m, is similar to that in Hooke’s law (in that the force is
proportional to the current displacement), the one difference being that the ‘spring
constant’ is negative: k = −mω2. Accordingly, the ‘centrifugal potential energy’
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is −mω2x2/2, and when this is added to the gravitational potential energy, we get
the total potential energy as

Epot = −mω2x2

2
+ mgy.

The free surface of the liquid must be an equipotential surface, with the same total
potential energy everywhere. Setting Epot equal to a constant yields the stated
equation to within an unimportant shift in the origin of the y-axis.

With the given data, it can be shown that the surface of the rotating liquid can
assume the appropriate paraboloidal shape, while still retaining all of the water
within the flask’s neck. The system behaves as just described, with the flask’s neck
as the rotating cylinder.

However, a further question arises (and this is the key question for the correct
solution to this problem): If the paraboloid of revolution were notionally extended
as far as the spherical part of the flask, would it, or would it not, ‘cut’ into the
sphere? If the answer is ‘yes’, then it would be energetically favourable (i.e. a
lower energy) for some of the water to reside in the sphere, provided it lay below
the extended paraboloid surface. The gain in gravitational energy would be more
than offset by the reduction in centrifugal energy brought about by its increased
distance from the axis. How it might get there is another question (but one that we
will tackle later); first we must decide if the possibility exists.

To do this, we take a plane section containing the rotational axis of the flask and
determine the lowest point of the particular parabola (whose shape, but not vertical
position, is predetermined by the given angular velocity ω) that just touches the
circle in which the plane and the flask’s sphere intersect.

Suppose that this point is a distance h below the centre O of the circle. Then, in
a coordinate system whose origin is at O, the equation of the parabola is

y + h = ω2

2g
x2,

and the equation of the circle is

x2 + y2 = R2,

where R is the radius of the flask’s spherical part. Substituting for x2 into the
equation for the parabola, we get a quadratic equation for the y coordinates of
points common to the circle and parabola:

y2 + 2g

ω2
y + 2gh

ω2
− R2 = 0.
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Fig. 2

When the parabola just touches the circle (as shown in Fig. 2), the above equa-
tion must have a double root and its discriminant must be zero; this gives a condi-
tion on height h as

h = g

2ω2
+ ω2

2g
R2.

Substituting the given data, g = 9.81 m s−2, ω = 2π×3 s−1 and R = 0.1 m, yields
h = 0.195 m = 19.5 cm. The radius of the sphere is 10 cm, as is the length of the
flask’s neck, and together they are 0.5 cm longer than the calculated value for h
of 19.5 cm. Thus the lowest point of this critical paraboloid lies half a centimetre
above the bottom of the neck of the inverted flask.

Any water remaining in the flask’s neck behaves as if it were in a rotating
cylinder, and the difference in height between the rim and the lowest point of
the free surface is (ω2/2g)r2, where r is the radius of the neck. Numerically, this
difference is about 2 mm. Clearly, within the neck, there is not enough volume
‘below the critical surface’ to accommodate all of the original water. The ‘missing’
water is inside the sphere in a strip running around it below the critical paraboloid
(see Fig. 3). As already discussed, when it is there, the water has a lower energy
than it could have if it stayed in the neck.

Fig. 3
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How did the water get there, we may wonder? Perhaps some water splashed
up during the accelerating phase of the flask’s rotation. But this is not the proper
answer to the question; rather, it is that water evaporates from the neck of the flask
and then condenses on its wall at the relevant place. The driving force for this
thermodynamic process is simply the tiny pressure difference in the flask produced
by the combined effect of the gravitational force and the rotation of the flask.

In the rotational reference frame, the water is in equilibrium along any para-
boloid of revolution that has the appropriate proportionality constant, ω2/(2g). If
two different paraboloid surfaces are compared, the specific (i.e. per unit mass)
potential energy of water is larger along the higher surface than along the lower
one. In equilibrium, the surface of the water must follow the same paraboloid in
the neck of the flask as it does in the sphere. If this were not so, the concurrent
processes of evaporation and condensation would ‘move the system’ to one with
lower total energy.

After a (very) long time, the arrangement of the water in the flask is as sketched
in Fig. 3.

Note. This unusual phenomenon is quite unbelievable at first sight, and we might
think that it would not happen in reality. We could, for example, argue that: ‘It
cannot happen – just as water does not climb out of a water glass onto a supporting
table-top, even though the water would lower its energy by doing so.’49 The
interesting fact is that the water can climb out of the glass, even if the thermal
equilibrium is perfect. The reason it can do so is the tiny barometric pressure
difference between the level of the water surface in the glass and the level of the
table-top. Experimentally, this can be shown by covering the glass of water on the
table-top with a large bell jar, and then waiting for a (very) long time – that is the
most difficult part of the experiment! The water ‘climbs out’ of the glass, with or
without the bell jar, but because of the large volume of air in a room, it cannot
condense anywhere, and remains in the air as unsaturated water vapour.

S94 Solution 1. When the razor-blade is floating on the surface of the water,
and the level of the water in the glass is at a height h1, then the compressive force
acting on the bottom of the glass is

F1 = �gh1A,

where A is the inner cross-sectional area of the bottom of the glass, and � is the
density of water (see Fig. 1).

When the blade, of mass m, sinks, the height of the water level changes to h2,
and now the force acting on the bottom of the glass, is given by:

F2 = �gh2A + mg

(
1 − �

�blade

)
.

49 But do not mention superfluid liquid helium, which is well known for doing just that!
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Fig. 1

The negative term in the brackets represents the buoyancy force that acts on the
blade when it has sunk to the bottom of the glass. We have assumed here that there
is a thin water layer between the blade and the bottom of the glass. If this is not
so, then the same negative term would arise from the slight pressure difference
between the bottom and the top surfaces of the blade – at the top the hydrostatic
pressure is a little less than at the bottom.

However, F1 and F2 must be the equal, because each of them is equal to the total
weight of the water and blade. Measurements on a set of scales would show exactly
this weight difference between the glass with water and blade, and the empty glass,
whether or not the blade is floating.

It follows that h1 > h2, and so, when the razor-blade sinks, the height of the
water decreases a little. The amount by which the water level is lowered is given
by the height of a water layer, spread uniformly across the glass, that has the same
weight as the razor-blade, less the upthrust the blade experiences.

Note. For the sake of simplicity, we have implicitly assumed that the material of
the glass is such that the contact angle between the water and the glass is 90◦, i.e.
the water level remains horizontal right up to the wall. If this is not so, then the
surface tension force exerted on the glass by the water surface’s rim must be taken
into account. But this effect would add the same terms to the expressions for both
F1 and F2 and would not change the conclusion reached.

Solution 2. Consider the water displaced by the razor-blade, i.e. the region ABCD
of ‘missing’ water denoted by grey shading in Fig. 2.

Fig. 2

In this region, besides the razor-blade (dark grey), there is also air (light grey),
though the mass of the latter is negligible. So, the razor-blade maintains its static
equilibrium because the gravitational force acting on it is balanced by the net
(upward) force exerted by the liquid (within which the pressure is greater than
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atmospheric). This same net force could equally well have balanced the weight of
the water that is missing from the same volume ABCD.

It is therefore clear that the weight mg of the razor-blade is just equal to the
weight of the displaced water, as was recognised by Archimedes many years ago.
The interesting thing is that the ‘displaced water’ in Archimedes’ principle is not
only the missing water from the volume occupied by the razor-blade, but also that
from the additional region affected by surface tension. So, the volume of displaced
water is greater than the blade’s own volume, and it follows that the water level
must drop when the blade sinks.

Note. For a floating body of greater density than water, its weight is balanced by
the sum of the compressive force of the water below it and the vertical component
of the surface tension forces acting along its edges. The former is equal to the
weight of ‘missing’ water directly above the body; its magnitude is proportional
to the area of the body’s horizontal projection. The latter, the surface tension
term, is equal to the weight of the remaining part of the displaced water; this
contribution is proportional to the perimeter of the body’s horizontal projection.

For the flotation of relatively large bodies, the hydrostatic pressure makes the
dominant contribution, and the surface tension only stabilises the balance. For
bodies with smaller cross-sectional areas (e.g. the legs of water boatmen and
pond skaters, or floating metal paper clips), the situation is just the opposite:
their weights are mainly balanced by surface tension forces, and the effect of
hydrostatic pressure is not important. In the case of the razor-blade, the forces
associated with the two different effects have the same order of magnitude, and
so both of them are significant.

S95 In the central region of horizontal radial flow, the water moves rapidly
until it reaches the jump. The whole surface of this flowing water is in contact with
air at atmospheric pressure; accordingly, the pressure in it is everywhere equal to
1 atm (neglecting small effects due to the viscosity of water). From Bernoulli’s
law, it follows that the speed of the water in this horizontal plane segment must be
uniform. The continuity equation then implies that the depth of the fast-flowing
layer at any point must be inversely proportional to the distance of that point
from the centre of the disc. In reality, although the fast flow is laminar, because
of viscosity, the decrease in depth of this layer does not exactly follow this simple
‘inverse proportionality’ rule.

The vertical water jet pushes the disc downwards with quite a large force when
the former is abruptly halted by the depression in the latter (this is called hydrody-
namic pressure), and so the disc should sink. The gravitational force acting on the
disc is also directed downwards (as is the weight of the water that flows quickly
across the top of the disc, but this is negligible). So the key problem is that of
finding the origin of the upwardly directed force that balances the downward ones.
In this phenomenon, the role of the hydrostatic pressure is paramount (as it is in the
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solution referred to in the original problem). The disc does not float exactly at the
top of the water, but in a slightly lower position. In this situation, the hydrostatic
pressure of the water under the disc can provide the upward force required to
maintain it in equilibrium.

Fig. 1

The lowering of the disc can be estimated by considering the force balance in
the system. The forces acting on the disc, as well as the geometrical nomenclature,
are shown in Fig. 1. The force Fimp of the hydrodynamic pressure can be calculated
from the vertical momentum lost when the water jet impacts on the disc:

Fimp = d(mv)

dt
= �

dV

dt
v = �Qv,

where v is the impact speed of the jet, � is the density of water and Q = dV/dt is
the flow rate of the water jet; the latter can be measured by collecting water from
the jet over a measured time. From the flow rate, the impact speed of the water can
be found if we also measure the diameter d of the jet:

v = Q

π(d2/4)
= 4Q

πd2
,

yielding

Fimp = 4�Q2

πd2
.

At the top of the disc, the pressure is roughly the atmospheric pressure p0,
whereas at the bottom it is pb = p0 + �gh, where h is the height of the water
level outside the hydraulic jump relative to the bottom of the disc (see Fig. 1).
Neglecting the (relatively small) cross-sectional area of the jet at the centre of the
disc, where the impact takes place, the net upward force �Fpress due to the pressure
difference between the bottom and top of the disc is

�Fpress = Fb − Ft = pb(πR2) − p0(πr2) = π(R2 − r2)p0 + π�ghR2.
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The force balance of the disc can be expressed as

mg + 4�Q2

πd2
= mg + Fimp = �Fpress = π(R2 − r2)p0 + π�ghR2.

As mentioned in the next paragraph, r increases if Q does, and if the flow rate is
sufficiently large, then r approaches R, and the first term on the right-hand side of
the equation becomes zero. In an experiment we carried out – using a copper disc
of diameter 10 cm, thickness 0.20 mm and weight mg = 0.137 N – this happened
when the flow rate was Q ≈ 4.3 × 10−5 m3 s−1 and the diameter of the jet was
d ≈ 5 mm. Calculating the height h from our measured data, we obtained h ≈
3 mm, which is a reasonable result, and in accord with our visual observations.
It was of some interest that the hydrodynamic pressure produced a force of only
Fimp = (4�Q2)/(πd2) = 0.094 N, which was less than the weight of the disc.

When the flow rate is reduced, the impact of the water jet is smaller, so the
upwardly directed force due to the pressure difference �Fpress must also be smaller.
When doing the experiments, we observed that, as expected, a weaker flow rate
results in a smaller value for r, i.e. the hydraulic jump recedes towards the centre of
the disc. According to a more sophisticated analysis, the radius r of the ‘hydraulic
jump circle’ is proportional to Q2/3, confirming that a reduced flow rate causes the
faster-flowing area around the centre of the disc to decrease in size. The conse-
quent widening of the high-water ring spreading inwards from the disc’s perimeter
increases the downward force acting on the disc. If the flow rate decreases below a
certain critical value, then the disc sinks.

Notes. 1. If the flow rate is increased, the system remains stable, but the radial
location of the jump does not increase beyond r = R; only h increases, meaning
that the disc lies deeper in the water. It takes extremely strong jets to push the disc
beneath the water surface. It is rather surprising how stable the system is – the
disc is almost unsinkable!

2. If you would like to try this experiment, then a disposable CD (or DVD) is
recommended as a readily available alternative to a metal disc with an engineered
depression. Attach one or two quite heavy coins50 to the CD with adhesive tape,
so as to cover the central hole symmetrically. The opposite side of the hole should
also be covered with tape, but carefully, because a small hollow (the ‘depression’)
is important for the stability of the system. This latter tape smoothes off the sharp
rim around the hole, and greatly reduces the splashing produced when the water
jet hits the depression. When the CD is placed on the water, make sure that the
coin is underneath (see Fig. 2). A kitchen sink with a suitable tap is ideal for this
demonstration, which will surely produce hours – well, maybe a few minutes – of
enjoyment.

50 A UK £2 coin is one possibility.
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Fig. 2

S96 The soap film between the two bubbles is a spherical cap of radius � (to
be found). The line joining the centres, A and B, of the two spheres is a normal to
the film. Fig. 1 shows a plane section of the spheres that contains this line; we have
assumed that R > r.

Fig. 1

Inside the two-sided spherical soap bubble of radius R, the gauge pressure is

p1 − p0 = 4γ

R
, (1)

where p0 is the atmospheric pressure, and γ is the surface tension of the liquid
(water containing soap or some detergent). Similarly, the gauge pressure in the
smaller bubble is

p2 − p0 = 4γ

r
, (2)

while for the separating soap film, the pressure difference between its two sides is

p2 − p1 = 4γ

�
. (3)

Subtracting (1) from (2), and inserting the difference into (3), the radius of curva-
ture can be expressed in the form

� = Rr

R − r
.
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For the record, we note that the film’s centre of curvature lies on the same side of
it as that of the smaller bubble.

The radius a of the perimeter circle can be determined by the following argu-
ment. A small segment of the circle going through point C in Fig. 1 is in equilib-
rium under the action of three forces with identical magnitudes – determined by
the common value of the surface tension – and so the angles between the forces
must be 120◦.

Now, a tangent to a circle is perpendicular to the corresponding radius, and so
the angle between radius AC and the tangent to the film is 30◦, as is the angle
between the latter and radius BC. It follows that angle  ACB = 60◦.

Denoting the angle  BAC by θ , we now apply the cosine and sine laws to the
triangle ABC:

(AB)2 = R2 + r2 − 2Rr cos 60◦

and
sin θ

sin 60◦ = r

AB
.

From these, the radius a of the perimeter circle can be written as

a = R sin θ =
√

3

2

Rr√
R2 + r2 − Rr

.

Note. Three special cases have been sketched in Fig. 2:

a) If R → r, then � → ∞ (the separating surface becomes a plane), and
a = r

√
3/2.

b) If R � r, then � = r, and a = r
√

3/2 .
c) If R = 2r, then � = R, and a = r.

Fig. 2

S97 The shape of the puddle is such that the sum of the surface energy and the
gravitational potential energy is minimal. The surface energy has two terms: the
energy of the water–air boundary, and the corresponding energy at the water–floor
interface.

A water drop on the floor is in contact with both the air and the floor. The
energy per unit area of the water–air boundary is γ , usually referred to simply
as the surface tension of water (without specifically mentioning the air).51 But,

51 Surface tension γ is measured in J m−2 or N m−1, according to context.
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in addition, the water has contact with the floor over some particular area. If this
contact area changes (e.g. the water spreads out and as a result the contact area
between the floor and air decreases), then there is an energy change proportional
to the change in area. Denote this ‘surface energy density’ by γ ′.

Fig. 1

The three quantities γ , γ ′ and the contact angle ϑ , which characterises the
equilibrium at the edge of the body of liquid, are not independent of each other.
For if, notionally, the contact line at the edge of the water drop (see Fig. 1) were
shifted from its equilibrium position by a small distance s1, then – by the principle
of virtual work – the sum of the first-order changes in the surface energies would
be zero. Along a contact line of unit length,

γ ′s1 + γ s2 = 0,

where s2 is the resultant lengthening of the water–air interface. Using the geomet-
rical connection s2 = s1 cos ϑ (as shown in Fig. 1), we have

γ ′ = −γ cos ϑ . (1)

In our case, ϑ = 60◦, and so γ ′ = − 1
2γ < 0.

Notes. 1. The negative sign of the energy density γ ′ expresses the fact that the
water ‘wets’ the floor, and so, insofar as lowering energy is concerned, it is more
favourable if the contact area between the water and the solid floor material is as
large as possible. There are some combinations of liquids and solids (e.g. mercury
and clean glass) for which γ ′ > 0, and the contact angle is then ϑ > 90◦. For
such combinations ‘wetting’ does not take place, and the tendency is to decrease
the area of contact, because this provides a lower energy.

2. The quantity γ ′ can be written as the difference between two surface energy
densities, γSL and γSG (the so-called interfacial surface tensions). The first of
these is the energy per unit area of the liquid–solid interface, and the second that
of the gas in contact with the solid. But this separation into two terms is purely
formal, as in formulae only their difference γ ′ ever arises; the separate energy
densities of a solid (with respect to liquids and gases) have no roles in themselves.

The surface area of a puddle containing V = 5 litres of water is relatively large
(see Fig. 2), and so the areas of the water–air and water–floor interfaces can, to a
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good approximation, be taken as having a common value A. So, it is good enough
for our purposes to write the total energy of the puddle as

E = γ A + γ ′A + mg
h

2
,

where m is the mass of the puddle and h = V/A is its height. Using result (1), and
expressing m in terms of the density � of water, E can be written as a function of A:

E(A) = γ (1 − cos ϑ)A + �gV2

2A
. (2)

Fig. 2

Since E(A) is of the form αA+β/A, it is minimal when dE/dA = α−β/A2 = 0,
i.e. A = √

β/α. Using this result, the energy-minimising area of the puddle can be
found directly (without the need to actually evaluate Emin(A)):

A =
√

�gV2

2γ (1 − cos ϑ)
≈ 1.8 m2.

As he had knocked the bucket over on several previous occasions, the student knew
that, almost irrespective of the volume of water spilt, the depth of the resulting
puddle is always the same, about 2.7 mm (see note below). He was therefore able
to produce the above answer within seconds – but only after getting out his pocket
calculator!

Note. From the surface area of the puddle, its depth can also be calculated:

h = V

A
=

√
2γ

�g
(1 − cos ϑ) ≈ 2.7 mm.

This result can also be obtained from the force balance of an appropriately chosen
segment of the puddle.52 The dimensional quantity that appears in this formula
(i.e. ignoring dimensionless constants) is the so-called capillary length λcap =√

γ /�g; it has the dimensions of length and, for most liquids, is of the order of
millimetres in magnitude. It gives the characteristic scale size when the effects
of surface phenomena and gravity are comparable. Liquid drops that are much
smaller than λcap are spherical to a good approximation; their shape is determined

52 A similar calculation can be found in the predecessor of this book: see ‘Problem 130’ in P. Gnädig, G. Honyek
& K. F. Riley, 200 Puzzling Physics Problems (Cambridge University Press, 2001).
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by the pressure produced when surface tension acts within a curved surface.
The shape of ‘drops’ with typical sizes much larger than λcap is mostly influenced
by the gravitational field, and so they spread out and form puddles.

These considerations are not confined to static phenomena. For example, the
speed v of surface waves of wavelength λ, on a liquid of density � and surface
tension γ , is given by

v2 = gλ

2π
+ 2πγ

�λ
.

The two terms are equal, and the speed is minimal, when λ = 2π
√

γ /�g =
2πλcap.

S98 The initial arrangement is sketched in Fig. 1a), in which the glass rod is
shown levitating near the water ball.

Fig. 1

The process starts when one end of the rod, of radius r, gently touches the water
drop (Fig. 1b)). The water wets the glass, and so a little of it ‘flows’ onto the blunt
end of the rod (Fig. 1c)). But the process cannot stop there, because the net force
now acting on the glass rod is not zero.

The pressure inside the water drop, of radius R and surface tension γ , is a little
higher than the outside air pressure (�p = 2γ /R), and this means that a force of
πr2�p tends to push the rod out again. But the attractive force 2πrγ exerted by the
water film on the perimeter of the rod is much larger than this. So the rod penetrates
further into the water drop, and an intermediate situation is shown in Fig. 1d).

But the forces acting on the rod are still not balanced, and so there is no reason
for it to stop. It continues moving forwards until the situation is as shown in
Fig. 1e). Here, the rod has reached the left-hand edge of the water drop; actually,
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a little beyond it, with the water surface pushed out slightly. A force balance on
the rod can only be achieved if the left-hand end of the rod fully emerges from the
water drop, as shown in Fig. 1f ). In this position, the shape of the water surface
surrounding the rod is the same at both of its ends; the situation is symmetric and
there is no net force acting on the rod.

We still need to consider whether or not the water drop spreads itself over the
whole rod. The total energy of the system is the sum of the surface energy of the
water in contact with the air and the surface energy of the glass in contact with
water (and maybe with air); for an equilibrium state, this total energy needs to
be as small as possible. As the rod is thin, the total surface area of the glass is
negligible compared to that of the water ball. Thus, the equilibrium of the system
is dominantly controlled by the requirement for a minimal surface area of the water,
and, for any given volume of water, this is going to happen when its shape is that
of a sphere.

So, in the final state, the water drop is almost spherical, the glass rod forms a
diameter of that sphere and ‘sticks out’ of it at both ends.

S99 a) For the water, which ‘perfectly’ wets the glass, it is energetically
favourable for it to be in contact with the wall of the container over as large an
area as possible. As gravity imposes no limitations, the water will cover the total
inner surface of the shell, and an air bubble will be formed somewhere inside it.
Its shape will be governed by the condition that its surface – for any given fixed
volume – should be as small as possible. The volume of the air is fixed, because
the pressure of curvature produced by the surface tension is negligible compared
to normal atmospheric pressure. Consequently, both the pressure and temperature
of the gas are independent of the bubble’s shape, and so therefore is the volume it
occupies.

Fig. 1

Of all the solids having a given volume, the sphere is the one with the smallest
surface area.53 So, the shape of an air bubble, enclosed in a spherical shell that has

53 Even in ancient times, this was well known.
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radius R = 4 cm and centre O, is a smaller sphere (see Fig. 1). The radius r of the
latter can be calculated from its volume:

4πr3

3
= 2

3
× 4πR3

3
,

from which

r = 3

√
2

3
R = 3.5 cm.

The position of the centre P of the air bubble is somewhere within 0.5 cm of O,
but is otherwise arbitrary; within this constraint, the equilibrium is indifferent as to
the position of P. The air bubble can move in the hollow shell as the consequence
of the smallest of effects (e.g. a slight acceleration of the space station), but when
it reaches the shell wall, it bounces back and does not ‘stick’ to it.

Note. At every point of a spherical surface, the curvature is the same, and, as
a result, so is the pressure of curvature produced by surface tension at the wall
of the air bubble. That is how it must be, because, under weightless conditions,
neither the pressure of the gas inside, nor the pressure of the water outside, can
vary along the interface; their (constant) difference is everywhere equal to the
pressure of curvature.

b) The air bubble enclosed within a silver spherical shell assumes a shape that
is such that its mean curvature does not vary over the water–air interface; as a
formula, this is

1

2

(
1

rmax
+ 1

rmin

)
= constant,

where rmax and rmin are the principal radii of curvature. The reason for this is the
same as in part a), namely, that, with zero gravity and STP conditions, both the
air and water pressures are constant across the whole surface – and so the mean
curvature also has to be.

A further constraint on the shape of the interface is that, because the angle of
contact is 90◦, everywhere along the line in which the water surface meets the
wall, the tangent plane to the surface must be perpendicular to that of the inner
wall. These two conditions are met by a spherical cap (a portion of a sphere ‘cut
off’ by a plane) with appropriately chosen values for its size and the position of
the sphere’s centre; this is therefore a possible solution. But the solution to this
formally mathematical problem is – for physical reasons – unambiguous; it is the
solution! The shape of the water in the silver shell is that of two spherical caps,
joined to each other by their common plane face (see Fig. 2). The radius of one cap
is obviously R; that of the other is calculated below.
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Fig. 2

Note. In a more general situation, the liquid–air interface is neither a spherical
surface, nor a segment of one, but takes on a more complex shape (though still one
with a constant mean curvature). For example, if the hollow within the levitating
vessel were not a sphere, but an irregularly shaped cavity, the liquid–air interface
could not be a spherical surface. This is because, if it were, then its tangent planes
along the line of intersection of the wall and liquid surface could not all make
the requisite angle with the wall (an angle that is predetermined, and equal to
the contact angle between the liquid and the shell material). In our problem, the
required conditions can be satisfied by quite a simple surface, i.e. by a spherical
cap, because along any line of intersection of two spheres, the angle between the
tangent planes is the same everywhere.

The radius of curvature r of the interface and the distance of its centre P from
O are jointly determined by the volume of the water and the contact angle. Since
the contact angle is 90◦, a number of right-angled triangles can be used to ease the
calculation; we also note that the two marked angles in Fig. 2 are equal (to α, say).

Using Pythagoras’s theorem and the ratio properties of similar triangles, we have

OP =
√

R2 + r2, OQ = R cos α = R2

√
R2 + r2

, PQ = r sin α = r2

√
R2 + r2

.

The heights of the two spherical caps, shaded in Fig. 2, can now be found as

h1 = r − PQ = r

(
1 − r√

R2 + r2

)
, h2 = R − OQ = R

(
1 − R√

R2 + r2

)
.

The volume of a spherical cap with radius � and height h is 1
3 πh2(3� − h), and

so, equating the two expressions for the given volume of water:

π
3

h2
1(3r − h1) + π

3
h2

2(3R − h2) = 1

3
× 4π

3
R3.

From this and the values found for h1 and h2, we can obtain an equation for the
radius ratio x = r/R:

x3

(
1 − x√

1 + x2

)2 (
2 + x√

1 + x2

)
+

(
1 − 1√

1 + x2

)2 (
2 + 1√

1 + x2

)
= 4

3
.
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This equation can be solved numerically (or graphically by plotting a graph
of the left-hand side of the equation as a function of x) and yields the result
x = 3.206 ≈ 3.2.

Fig. 3

So, the interface between the air and water enclosed in the levitating hollow
silver sphere is the surface of a spherical cap of radius r = 3.2R = 12.8 cm; it is
drawn to scale in Fig. 3. Because of the weightless conditions, the location of the
‘water lens’ is arbitrary, though it must be ‘up against the wall’.

In principle, it is possible for the air bubble to take the form of a sphere as in
Fig. 1, and float somewhere inside the spherical shell; but this state is unstable.
If the bubble – as the result of any tiny disturbance – approaches the wall of the
shell, it does not bounce back (as it did in case a)), but sticks to the wall. It can
be shown that the total surface energy is much smaller for the arrangement shown
in Fig. 3 than for that illustrated in Fig. 1. The corresponding energy comparison
is much easier if the bubble sticks to a plane surface. Then the sphere becomes a
hemisphere with the same volume, and its new surface area will be 1/

3
√

2 ≈ 0.8
times smaller than the original one.

S100 Suppose that we construct a container with two adjacent but separate
compartments; all the outer walls are to be insulating, but the common connecting
one is to be heat-conducting. One compartment is for tap water and the other for
the distilled water, the only interaction between them being thermal conduction
through the intervening wall.

For our analysis, we assume that the specific heats of distilled and tap water
are equal, and so the ultimate equilibrium temperature for any particular stage is
the mass-weighted arithmetic mean of the temperatures of the components when
the stage begins. For example, if distilled water of mass M and temperature T0

(measured in degrees Celsius) and tap water of mass m and temperature 100 ◦C are
poured into the compartments, then the common equilibrium temperature will be

T1 = MT0 + m × 100 ◦C

M + m
.

For M = m = 1 kg, the common temperature would be 50 ◦C, which is not good
enough!
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By dividing the hot tap water into a number, say six, of smaller equal portions,
we can do better. If all the cold distilled water is put into one of the compartments
of the heat exchanger, and 1

6 kg of tap water at 100 ◦C is placed into the other, then,
after equalisation, the common temperature will, from the above formula, be

T1 = 1 × 0 + 1
6 × 100

7
6

= 14.3 ◦C.

We now pour away the cooled tap water, and refill its compartment with a further
1
6 kg of water at 100 ◦C. After the second heat exchange, the common temperature
will be

T2 = 1 × 14.3 + 1
6 × 100

7
6

= 26.5 ◦C.

Continuing in this way, after the sixth and final heat exchange, the temperature of
the distilled water will be T6 = 60.3 ◦C – and the task set in the problem has been
accomplished!

Notes. 1. The problem can also be discussed in a more general way. Suppose that
the ‘hot water’ at temperature Thot is divided, not into six, but into n portions,
and the individual portions are brought, one by one, into thermal contact with the
distilled water, whose initial temperature is T0.

Denoting by Tm its temperature before exposure to the (m+1)th portion of hot
tap water, we can write the heat balance equation as

Tm + 1

n
Thot =

(
1 + 1

n

)
Tm+1,

which can be rearranged as the recurrence relation

Tm+1 = α + β Tm with α = Thot

n + 1
and β = n

n + 1
.

This recurrence relation has the general solution54

Tm = T0 βm + α
1 − βm

1 − β
, m = 0, 1, 2, . . . , n.

This gives the temperature of the distilled water at each stage, and, in particular,
its final temperature, Tn:

Tn =
[

1 −
(

n

n + 1

)n]
Thot +

(
n

n + 1

)n

T0.

For n = 6 we recover our earlier result of 60.3 ◦C, but for n = 5 the final
temperature is only 59.8 ◦C, and short of our target.

54 See, for example, equation (15.25) on page 498 of K. F. Riley, M. P. Hobson & S. J. Bence, Mathematical
Methods for Physics and Engineering, 3rd edn. (Cambridge University Press, 2006). Its validity can be verified
by direct substitution in the recurrence relation; the boundary value T0 can be checked by setting m = 0.
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As we have done in other problems, we can use the fact that

lim
n→∞

(
1 + x

n

)n = ex,

and that therefore lim(n/(n + 1))n = 1/ lim(1 + 1/n)n = 1/e, to show that, even
if the hot water is divided into an arbitrarily large number of portions (n → ∞),
the final temperature cannot exceed

T∞ =
(

1 − 1

e

)
Thot + 1

e
T0.

This temperature limit for the data given in the problem is 63.2 ◦C, which is only
slightly larger than 60 ◦C, a value that was exceeded for n as small as 6.

2. Up until now the distilled water has been treated as ‘indivisible’. If its parti-
tioning is allowed, then the warming process can be made much more effective.

First, divide both the distilled water (DW) and the hot tap water (TW) into two
identical portions. The equilibrium temperature of half a litre of TW at 100 ◦C
and half a litre of DW at 0 ◦C is 50 ◦C. Next, equalise the temperatures of the
remaining half-litre of hot water and the half-litre of DW previously warmed to
50 ◦C; this results in half a litre of DW at 75 ◦C.

But do not be satisfied with this! Equalise the temperatures of the TW that
has been cooled to 50 ◦C and the so-far unused half-litre of DW at 0 ◦C, to give
a common temperature of 25 ◦C. Next we put this half-litre of DW at 25 ◦C in
contact with the half-litre of TW that is at 75 ◦C. We have now produced, in
addition to the half-litre of 75 ◦C DW prepared previously, a further half-litre
of DW at 50 ◦C. Finally, we pour together the two half-litres of DW, to obtain one
litre of distilled water at a temperature of 62.5 ◦C.

If both the hot water and the distilled water are each divided into three identical
portions, then, using the method described above, we can get a litre of DW at a
temperature of 68.75 ◦C; this is substantially higher than the maximum temper-
ature obtainable using undivided DW. It is perhaps surprising that, by refining
the division even further, we can, in principle, warm up the DW to a temperature
arbitrarily close to 100 ◦C.

This principle outlined in the previous paragraph is used in counter-flow heat
exchangers, where the fluids enter the exchanger from opposite ends, and flow in
opposite directions along long tubes. For example, this is the typical method of air
ventilation in so-called passive houses, where the cold fresh air moves close to,
but in the opposite direction to, the used warm air. In practice, because of various
losses, 100 % efficiency cannot be obtained, though 90 % is a realistic goal.

In Nature, some animals, living in cold climates, are regionally heterothermic
and are able to allow their less insulated extremities to cool to temperatures much
lower than their core temperature – nearly to 0 ◦C. They can do this because their
smallest blood vessels, the network of capillaries, act as a heat exchanger working
with very good efficiency. Returning blood flowing in their veins is warmed by
the warmer blood flowing outwards in nearby arteries. Consequently, close to the
surface of the skin, the blood has cooled down nearly to the temperature of its
surroundings, while the core temperatures of the animals remain high compared
to that of the environment.
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S101 At first sight, we might think that in a stationary state the outer and inner
pressures are equal; but this is not true! More explicitly, the system is not in thermo-
dynamic equilibrium with its surroundings; because of the small hole, the furnace
cannot be considered as isolated, and the temperature inside it is higher than that
of its surroundings. However, considered on its own, it is (after a suitable interval)
in a stationary state. This implies that, during any given period, the number of gas
molecules leaving the furnace is equal to the number entering it, with the hole as
the only means of entry or exit.

The number of molecules passing through a hole of cross-sectional area A during
a time interval t is AvNt, where v is the component, perpendicular to the wall, of the
average molecular velocity, and N is the number density (the number of particles
in unit volume). In dynamic equilibrium,

AvoutNoutt = AvinNint, that is,
vout

vin
= Nin

Nout
.

The square of the speed of the molecules (a measure of the internal energy of the
gas) is proportional to the gas temperature T , and, from the ideal gas equation, the
number density is proportional to the quotient of the pressure p and the tempera-
ture, i.e. N ∝ p/T . Collecting these various equalities together, we have

vout

vin
=

√
Tout

Tin
and

Nout

Nin
= Tin

Tout

pout

pin
.

From these it follows that

pin = pout

√
Tin

Tout
= 100 kPa ×

√
330 K

273 K
≈ 110 kPa.

Note. In the solution, it was assumed that gas molecules moving towards the hole,
from either direction, can pass through it unimpeded. This is the case only if
the depth of the hole is much smaller than the average distance travelled by a
molecule between successive collisions, the so-called mean free path. For normal
air the mean free path is about 10−7 m – a very small distance, and certainly much
less than any realistic thickness for a furnace wall. For the approximation to be
valid for a real wall, the pressures involved, both inside and outside the furnace,
have to be several orders of magnitude less than atmospheric.

S102 a) Let us consider this case first, in which the system is heat-insulated.
Let the initial pressure and volume of the gas be p1 and V1, and denote the cor-
responding final values by p2 and V2. Because of the small hole, the gas seeps
slowly from the upper to the lower part, with the pistons moving uniformly, and
with no net force acting on them. Consequently, in each ‘chamber’ the pressure
remains constant; further, these constant values must be p1 and p2. We can be
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even more specific. As the process is quasi-stationary, p1 = p0 + (mg)/A and
p2 = p0 − (mg)/A, where p0 is the atmospheric pressure, m is the mass of a piston
and A is the cross-sectional area of the cylinder. These pressures are constant, and
totally independent of whether the system is heat-insulated or not.

During the gas transfer, the work done by the upper piston is p1V1 and that done
by the lower one is −p2V2. No heat is added to or taken from the gas, and so, in
accordance with the first law of thermodynamics, the total work done is equal to
the change in the internal energy of the gas:

p1V1 − p2V2 = f

2
nRT2 − f

2
nRT1 = f

2
p2V2 − f

2
p1V1.

Here n is the number of moles of gas present, and f is the number of degrees of
freedom it has (neither matters from the point of view of the problem); we have
also used the ideal gas equation to make the final step. The overall equality reduces
to p1V1 = p2V2. It follows that T2 = T1, and so in the final state the internal energy
of the gas is the same as it was initially (with the common temperature equal to
that of the outside air).

b) In this case, we can say immediately that, because the gas is always in thermal
equilibrium with its surroundings, the final temperature is equal to the initial one.

So, in the two cases, a) and b), the final temperatures and pressures are equal; this
means that the final volumes must also be the same. So the answer to the question
in the problem: the lower piston will stop at the same position in both cases.

Notes. 1. We can easily be led to a false result if we try to apply the equation
pVγ = constant, which is normally appropriate for adiabatic processes (here γ

is the heat capacity ratio of the gas). This equation is only obeyed in reversible
processes in which no heat enters or leaves the gas and its entropy is constant.

However, the process in this problem is inherently irreversible, as the gas,
squeezed through the hole, gains some kinetic energy, which is then dissipated by
gas viscosity and transformed into thermal energy. Although Q = 0, the entropy
of the gas increases. As the entropy is a function of state, the final state of the
gas cannot be that which would be found using an incorrect application of the
formula pVγ = constant.

Another well-known example in which the heat gain is zero, but the quantity
pVγ is not constant, is the free expansion of an ideal gas into a vacuum. This
process is also irreversible (the gas does not climb back into the open container),
and so the entropy of the gas increases. The mechanical work done is zero, and in
the sense of the first law of thermodynamics, its internal energy, and consequently
its temperature, do not change.

2. In both cases, a) and b), the change in the internal energy of the gas, the
mechanical work done, and the heat gain or loss, are all zero. We may won-
der whether the decreases in gravitational potential energy of the pistons should
appear somewhere in the reckoning. They do not, because it can be shown that
each potential energy loss is exactly equal to the mechanical work done against
atmospheric pressure.
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S103 At an altitude of h, relative to the ground, let the atmospheric pressure
be p(h). At a marginally higher altitude h+�h, the pressure is lower by an amount

�p = −�(h)g�h,

where �(h) is the density of air, and g is the gravitational acceleration. Using the
ideal gas law, the density can be expressed in terms of the pressure and temperature
of the air:

�p

�h
= −Mg

R

p(h)

T(h)
, (1)

where M = 29 g mol−1 is the average molar mass of air, and R is the gas constant.
Both p and T are functions of h, and so we need one more relationship between
them in order to find T = T(h).

Imagine that a small volume of air at a height h in the troposphere, which is
assumed to have a time-independent temperature distribution T(h), suddenly rises
by �h to a slightly higher altitude. For the reasons given in the problem, it cannot
receive heat, and so it expands adiabatically, and gets colder.

If the final temperature T ′ of the raised air is greater than the temperature
T(h + �h) of the surrounding air, then the air mass, which is less dense than its
surroundings, rises still further, and the atmosphere becomes unstable. But if the
final temperature of the expanded air is lower than that of its surroundings, it will
sink back to its original position, and the temperature distribution will be a stable
one. We now investigate the (critical) threshold situation that separates these two
cases, namely when T ′ = T(h + �h).

In an adiabatic expansion, the quantity p1−γ Tγ remains constant; here γ ≈ 7/5
is the heat capacity ratio of air. So, in the hypothetical situation leading to the
adiabatic expansion of the air, we have

p(h + �h)

p(h)
=

[
T(h + �h)

T(h)

]γ /(γ−1)

. (2)

The small changes �p and �T in the pressure and temperature are

�p = p(h + �h) − p(h), �T = T(h + �h) − T(h).

Using these, equation (2) can be written in the form

1 + �p

p(h)
=

[
1 + �T

T(h)

]γ /(γ−1)

.

The quotient �T/T(h) ≡ ε, on the right-hand side, is arbitrarily small, and so we
can use the approximation (1 + ε)n ≈ 1 + nε to obtain:

�p

p(h)
≈ γ

γ − 1

�T

T(h)
. (3)
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With the help of equations (1) and (3), an expression for the critical temperature
gradient, characteristic of the troposphere, can be found:

�T

�h
= −γ − 1

γ

Mg

R
.

Inserting the known data (γ ≈ 1.4 and M = 29 g mol−1), we get the value −9.8 ×
10−3 ◦C m−1; this is (perhaps fortuitously) very close to the observed temperature
decrease of 1 ◦C over 100 m.

Because of the constant temperature gradient, the temperature is a linear func-
tion of the altitude:

T(h) = T0

(
1 − γ − 1

γ

h

h0

)
, (4)

where the notation h0 = RT0/(Mg), called the scale height, has been introduced.
Taking the ‘sea-level’ air temperature as T0 = 15 ◦C, then h0 ≈ 8.4 km.

Notes. 1. The altitude dependence of the air pressure can be determined from
equation (4), when it is used in conjunction with the adiabatic equation p1−γ Tγ =
constant:

p(h) = p0

(
1 − γ − 1

γ

h

h0

)γ /(γ−1)

, (5)

where p0 is the air pressure at sea level. This expression (which is often called
the adiabatic barometric formula) gives values very similar to those derived from
the isothermal barometric formula p(h) = p0 e−h/h0 when h < h0. But there are
two significant differences between the two equations: (i) for the derivation of the
isothermal barometric formula, a constant atmospheric temperature is assumed;
and (ii) equation (5) predicts zero pressure at an altitude of h = h0γ /(γ − 1) ≈
30 km, whereas in the isothermal barometric formulation the atmosphere has no
sharp border. In reality, equations (4) and (5) become inaccurate at altitudes much
lower than 30 km, namely, at the diffuse border between the troposphere and the
stratosphere (10–12 km).

2. With the help of the adiabatic temperature–altitude formula (4), the air tem-
perature at the flight altitude of commercial aircraft can be calculated. The result
is about 100 ◦C lower than the ground-level temperature, i.e. about −80 ◦C. Actu-
ally, the temperature at such heights is a little higher, ≈ −60 ◦C. The difference is
caused by the water vapour in the atmosphere. During the cooling of a rising
air mass, some of the water vapour in it condenses, resulting in (latent) heat
being released. This heat reduces the rate of temperature decrease with height,
as compared to that predicted by equation (4).

The higher temperature produced by condensation in a rising humid air mass
results in a lower air density and the air reaching higher altitudes, while the
condensation causes strong cloud formation to take place at the same time. In
the tropics (where the humidity is very high), the rate of atmospheric temperature
decrease with altitude is much smaller than that predicted by the adiabatic formula
(4), though it does gives correct values in dry regions of the Earth.
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S104 When the helium gas is close to its minimal volume, to first order there is
no change in the volume for a finite change in the temperature. This means that, in
this region, the process is approximately isochoric, and so the molar heat capacity
of the monatomic helium gas must be CV = 3

2 R. Equating this to the given form
for the molar heat capacity,

3

2
R = 3RT

4T0
,

shows that the temperature at the end of the process (the point at which the volume
is minimal) is Tf = 2T0.

We now apply the first law of thermodynamics, using the given molar heat
capacity,

dU = dQ + dW,

i.e.

3

2
nR dT = 3nRT

4T0
dT + dW,

where the change in internal energy dU is expressed in terms of the molar heat
capacity (CV = 3

2 R) of helium gas at constant volume. The total work done on the
system, as it goes from the initial to the final temperature, can be expressed as the
following integral:

W = 3

2
nR

∫ 2T0

T0

(
1 − T

2T0

)
dT = 3

8
nRT0.

Notes. 1. The same result can be obtained without explicitly using integral cal-
culus, if we take the average molar heat capacity over the relevant temperature
range:55

Cav = C0 + CV

2
=

3
4 R + 3

2 R

2
= 9

8
R.

The total heat transferred is then Q = nCav(Tf − T0) = 9
8 nRT0, while the total

change of the internal energy is �U = nCV(Tf − T0) = 3
2 nRT0. It follows

that the work that must have been done on the helium gas is W = �U − Q =
( 3

2 − 9
8 )nRT0 = 3

8 nRT0.
2. Using the ideal gas equation, we can express the gas pressure as p =

(nRT)/V , and insert it into the equation stating the first law of thermodynamics,
provided we write the work done in the form dW = −p dV:

3

2
nR dT = 3nR

4T0
T dT − nRT

V
dV .

55 This is justified only because the molar heat capacity is directly proportional to the temperature, and so its
average × its range is equal to its integral.
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This straightforward differential equation can be integrated, and from it we can
find the volume of the gas as a function of temperature in the particular (unspeci-
fied!) process of the problem:

V = V0

(
T0

T

)3/2

exp

[
3(T − T0)

4T0

]
,

where V0 is the initial volume of the helium gas.

S105 Solution 1. The role of the easily expanded bag is the same as that of a
frictionless piston that encloses gas in a horizontal cylinder. And so, from here on,
we will use phraseology appropriate to the piston analogy.

If the outside pressure is decreased slowly, then the piston moves slowly, and
the interim states of the gas can be considered as intrinsically equilibrium states.
In this scenario the process is adiabatic, and so the decrease in the internal energy
of the gas is just equal to the work it does during the expansion.

In the second case, in which the outside pressure decreases rapidly, there is a
finite pressure difference across the piston, and the net force acting on it is not
zero. Consequently, the piston initially accelerates and its speed increases, but later,
when it has overshot the final equilibrium position, it decelerates and stops, after
which it starts moving backwards.

If there were no friction (neither between the piston and the wall of the cylinder,
nor inside the gas as viscous ‘inner friction’), then the piston would never stop
moving, and the volume, the pressure and the temperature of the gas would all
change periodically; it would make no sense to seek ‘the final temperature of the
gas’. But, in reality, this does not happen, the oscillation stops sooner or later,
because the (ordered) kinetic energy of the piston’s motion is dissipated, and results
in an increase in the internal energy of the gas, i.e. in the kinetic energy associated
with the disordered microscopic motion of its constituent particles.

The final (equilibrium) volume of the gas – as well as its internal energy and
hence its temperature – cannot be the same in this second case as they were in the
first (quasi-static) process. They have to be larger, because the decrease in internal
energy is smaller than the work done by the gas during the expansion, and the
energy difference (or a part of it) ‘gets back’ to the gas-plus-piston system as a
result of friction.

So, the temperature drop of the gas in the container (in the bag) is greater if the
outside pressure is decreased slowly.

Solution 2. When the outside pressure is decreased slowly, the successive states
of the gas are equilibrium states throughout the expansion; so the process is
reversible. Contrariwise, if the decrease of the outside pressure occurs suddenly,
then the interim states of the gas cannot be considered as equilibrium states.



Solutions 285

The bag (or the piston) is going to oscillate quickly in a motion that is damped by
the dissipative processes; the change of state of the system is an irreversible one.
We can use this distinction between the two scenarios to draw a conclusion about
the relative final temperatures of the gas in the two cases.

According to the second law of thermodynamics, in reversible processes, the
change of entropy, �S, of a system is the sum (or integral) of quantities of the
form �Q/T , where �Q is a heat input or output and T is the absolute temperature
at which the heat is gained or lost. In an irreversible process, the gain in entropy is
always larger than this.

In the first of our cases, the process is reversible, and (because of the thermal
insulation) there is no heat transfer (�Q = 0), so �Srev = 0. In the second case
(involving a sudden pressure decrease), the process is irreversible, and the heat
transfer into the gas is either zero (if the damping of the oscillation is caused
by inner friction of the gas) or positive (if the friction of the bag/piston con-
tributes significantly to the dissipative forces). Whatever the cause of the damping,
�Sirrev > 0.

The change of entropy of a given amount of gas undergoing a thermodynamic
change is independent of the details of the process involved – it is determined
unequivocally by the initial and final states. In other words, entropy is a state
function, and, as such, can be expressed in terms of other state functions, such
as pressure and temperature.

Denote the initial temperature of the gas by T1, and its final one by T2. To cal-
culate the change of entropy between the initial and final states, consider a process
in which, first the pressure is decreased from p1 to p2 at constant temperature T1,
and then the gas is warmed up (or cooled down) to the temperature T2 at constant
pressure p2 (see figure). Our formulation will be for general values of T1 and T2,
though it will (formally) take p1 to be greater than p2. In the figure, it is (again
formally) assumed that T2 > T1, despite the fact that for our particular application
the reverse is true; the calculated expressions apply to both heated and cooled final
situations.
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The change of entropy in the first, isothermal section is

�S1 = Q

T1
= Wgas

T1
= 1

T1

∫ V2

V1

p dV

= 1

T1

∫ V2

V1

p1V1

V
dV = p1V1

T1
ln

V2

V1
= −nR ln

p2

p1
.

And in the second, isobaric process, it is

�S2 =
∫

dQ

T
=

∫ T2

T1

nCp
dT

T
= nCp ln

T2

T1
,

where Cp is the molar heat capacity of the gas at constant pressure. The total change
of entropy of the gas from state (T1, p1) to state (T2, p2) is

�S = �S1 + �S2 = −nR ln
p2

p1
+ nCp ln

T2

T1
.

It should be noted that for both of our processes p2 < p1 and T2 < T1, and so �S1

is positive while �S2 is negative.
Now, whether the expansion is fast or slow, the ratio of initial to final pressure is

the same, and so, therefore, is the �S1 term. As the initial temperature is also the
same in both cases, the difference between the reversible and irreversible entropy
changes is related only to the final temperatures. As �Sirrev > �Srev, it follows that
(�S2)fast > (�S2)slow, and that in the final state Tfast > Tslow.

So the gas in the bag suffers a smaller temperature drop when there is a fast
decrease in the outside pressure, as compared to when the pressure decreases
slowly.

S106 Solution 1. Until all the ice has melted, the temperature difference
between the two junctions of the thermocouple is constant, and so, therefore, is the
potential difference:

VAB = SAB(TA − TB),

where SAB is the Seebeck coefficient of the materials of the thermocouple. This
potential difference drives a current I = VAB/R round the circuit, and so the rate of
Joule heating in the resistor is

PJoule = V2
AB

R
= S2

AB(TA − TB)2

R
.

The Peltier effect in the circuit causes heat release (output) at junction B and
heat absorption (input) at junction A. The rates of heat release and absorption are

Pinput
A = �AI = SABTAI
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and

Poutput
B = �BI = SABTBI = SABTB(VAB/R) = S2

ABTB(TA − TB)/R,

where we have used the connection between the Peltier and Seebeck coefficients.

Note. It might be questioned how we can be sure of the direction of the current in
the circuit, and so of the sense in which heat is transferred at each of the junctions.
To answer this, we note that the above expressions for the power in terms of SAB

and T show that the rate of heat input or output is larger at the higher-temperature
junction. Consequently, an alternative process in which heat would be released at
A, and B would further cool its surroundings – to say nothing of the Joule heat
production in the resistor – would violate the law of conservation of energy.

It follows from the above that the ratio of the Joule heat warming up the water,
to the output heat given to the ice, is

QJoule

Qoutput
B

= cm�Twater

Lm
= PJoule

Poutput
B

= TA − TB

TB
,

where c is the specific heat of water, L is the latent heat of fusion of ice and m is
the common mass of ice and water. So the temperature increase of the water by the
time that the last of the ice has melted is

�Twater = TA − TB

TB

L

c
≈ 7.9 ◦C.

Solution 2. The system can be considered as a heat engine. The hot reservoir is
the room-temperature air, the cold reservoir is the ice at 0◦C, and the net work done
by the engine is not mechanical work but the Joule heat released in the resistor:

W = QJoule.

In accord with the conservation of energy, the heat dissipated in the resistor is equal
to the difference between the input heat at point A and the output heat at point B:

QJoule = Qinput
A − Qoutput

B .

Although the heat dissipation in the resistor is irreversible, the operation of the
thermocouple itself is reversible. To see this, we note that the net electrical energy
produced by the cell could have been used to charge a battery, which could be later
connected to the resistor to warm up the water. However, we might decide to use
the stored energy in the battery, not for warming up the water, but to drive a heat
pump with the ice and the room-temperature air as the two reservoirs; in this case
the ice would freeze and the air would be warmed up, i.e. the direction of the whole
process would be reversed.
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It follows from the reversibility of the process that the entropy of the thermo-
couple is constant, i.e. the entropy increase at point A because of heat input equals
the entropy decrease at point B where heat is released:

Qinput
A

TA
= Qoutput

B

TB
.

Using this and the previous equation, we can find the connection between the Joule
heat generated in the resistor and the heat absorbed by the ice:

QJoule =
(

TA

TB
− 1

)
Qoutput

B ,

in agreement with Solution 1. After this, we may find the temperature increase of
the water in the same way as previously.

Note. Solution 2 shows that the thermoelectric generator works as an unusual
continuously functioning Carnot engine; heat input and heat output take place not
as separate phases of a cycle, but with continuous and simultaneous heat transfer
to and from the two heat reservoirs.

S107 The surface temperature TSun of the Sun, its radius R and the Sun–Earth
distance D are all well-known data; denote the radius of the lens by r and its
focal length by f . The total amount of energy emitted by the Sun per unit time
(its luminosity) is

LSun = 4πR2σT4
Sun,

where σ is the Stefan–Boltzmann constant.56 Of this emitted power, a fraction
πr2/(4πD2) reaches the lens, and so the image of the Sun produced by the lens
receives a total power of

P =
(

R

D

)2

πσT4
Sunr2.

From geometrical considerations (see figure, which is clearly not to scale), the
radius s of the Sun’s image is

56 The Sun’s actual spectrum is not that of a true black body, to which the formula strictly applies. The effective
surface temperature TSun ≈ 5800 K is that which a true black body would need to have to match the observed
total radiation from unit area of the Sun’s surface.
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s = R

D
f , and so P = π

(
rs

f

)2

σT4
Sun.

Each point of the image has the same brightness, and so the radiative power inci-
dent on unit area of the image is

w =
(

r

f

)2

σT4
Sun = 1

16
σT4

Sun.

An object illuminated by this power will warm up to a limiting temperature T ,
such that the absorbed power will be equal to the power of the black-body radiation,
AσT4, emitted by the object. As the latter depends on the surface area A of the body,
the maximal temperature T reached depends upon the shape of the object. If the
radius of the sphere in the problem is � = s (as shown in the figure), the absorbed
power is still P, but the emitted one is 4πs2σT4. It follows that

T = (1/64)1/4 TSun = (1/64)1/4× 5800 K ≈ 2040 K ≈ 1770 ◦C.

If the body were a thin disc, rather than a sphere, and had a radius � ≤ s, then
the input power would be π�2w, and the output 2π�2σT4; the maximal temperature
would then be T = (1/32)1/4 TSun ≈ 2430 K ≈ 2160 ◦C.

Returning to the original problem, if the radius of the sphere were smaller than
the radius of the Sun’s image (� < s), then the sphere would still warm up to the
same value. Suppose, for example, that the radius of the sphere is half that of the
image. Then the solar energy reaching the sphere in unit time is one-quarter of that
striking the lens, but as its (re-radiation) surface area is only one-quarter of that of
a sphere of radius s, it attains the same temperature.

If the sphere’s radius is larger than the radius of the Sun’s image, and the material
of which it is made is not a perfect heat insulator, then its maximal temperature will
be smaller than the value calculated above.

Notes. 1. Our result, that it is impossible to warm up a small body to any arbitrary
high temperature using a lens, may be quite surprising. The reason for it is that,
even with perfect optics, the Sun’s image is not a point-like dot, but a small disc.
The Sun is far from us, that is true, but clearly its size (its angular diameter or
visual angle) is finite, and so its image has to be. The illumination (the incident
energy per unit area in unit time) of this image determines the maximal tempera-
ture of the heated body. This temperature cannot exceed the surface temperature
of the Sun.

In reality, T < TSun, and the maximum temperature of the warmed body is
reduced relative to that of the Sun by a factor that depends on the fraction r/f .
Thus the fraction r/f , which depends only on the physical properties of the lens,
and not on its use, is a quantity that characterises its ‘light strength’. It is very
similar to the so-called f -number or focal ratio of the lens, defined as N = f /d,
where f is the focal length and d is the effective diameter of the lens aperture
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(perhaps deliberately reduced by a shutter). Note that the f-number is essentially
one-half of the reciprocal of r/f .

2. In principle, the ratio r/f could be larger than 1 – even r � f is imaginable.
In such cases, the derived formula would indicate that a temperature T > TSun is
possible; in reality, this is not so. In the derivation, we tacitly supposed that the
light rays contributing to the image travelled close to the optical axis. When this is
not the case, detailed calculations show that, for both large-diameter convex lenses
and large-aperture parabolic mirrors, we always get a temperature T < TSun. It
can be proved more generally that, for linear optical systems (i.e. ones in which
the principle of superposition holds) using only solar energy, it is impossible to
exceed the surface temperature of the Sun. This theoretical limit is a consequence
of the second law of thermodynamics.

3. If a small body is heated by solar energy, but not by using (linear) optical
devices, then the theoretical limit mentioned above no longer applies. As a simple
‘nonlinear device’, we could use solar cells to collect electrical energy during
daylight, and store this energy in batteries. Later we could produce an electric arc
(a plasma discharge) using the stored energy. Clearly, the electric arc does not
‘remember’ the temperature of the body (in our case, the Sun) from which the
stored energy came.

4. In our calculations, we assumed that the Sun’s radiation reaches the Earth’s
surface unattenuated. In reality, the Earth’s atmosphere reflects a considerable part
of the incident radiation; further, in the atmosphere there is also some absorption.
Both of these effects will reduce the maximum realisable temperature.

S108 As we all know, in calm weather, and usually overnight, water vapour
condenses on surfaces that are colder than 0 ◦C in the form of hoar frost. This frost
contains tiny ice crystals, and, strictly speaking, this phenomenon is called vapour
deposition. We have to explain how the windscreen of the car can be colder than
the air around the car.

The windscreen glass at temperature T is in thermal contact with the surrounding
air at temperature T0, and, in addition, it can gain or lose energy in the form of heat
radiation. A stable situation can be maintained if the heat gain and the heat loss
due to these two processes cancel each other out.

The heat flux � (the amount of energy that flows through unit area in unit time)
that is taken in via thermal conduction through the stationary air adjacent to the
screen is given by

� = −α(T − T0).

Here α is the so-called conductance, which has a value of about 20 J m−2 s−1 K−1

for stationary air. In the stable situation under consideration, T < T0, and so � > 0.
Now for the radiation aspect. According to Kirchhoff’s law of thermal radiation,

all bodies at the same temperature, when receiving or emitting thermal radiation,
have the same ratio of emissivity to absorptivity at any particular wavelength.
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We now consider the various sources (and sinks) of radiative energy that might
affect the windscreen.

The air can hold very little heat, and so the radiation received from the air is
negligible. The windscreen is not affected by radiation from the surface of the
Earth, and, if the sky is cloudless, then it too will contribute nothing. In brief, there
is no significant incoming radiation to the windscreen. The outgoing heat flux �

′

from the glass can be calculated from the Stefan–Boltzmann law:

�
′ = εσT4,

where ε is the emissivity of the glass, and σ is the Stefan–Boltzmann constant.
For a stationary state, �

′ = �, and, since T0 � T0 − T , the difference between
the general air temperature and the temperature of the windscreen is

�T = T0 − T ≈ εσT4
0

α
.

According to tabulated data and other measurements, the relevant value of the
emissivity is ε ≈ 0.2, and substituting this into the approximate formula, we find
that a temperature difference of as much as 3 ◦C is possible.

To protect against hoar frost, it is sufficient to place a heat-reflecting (to stop the
windscreen radiating effectively) or heat-radiating (to provide a source of incoming
radiation) surface near the windscreen. As an illustration, it is common experience
that, for a car parked next to a tree or house, those of its windows that ‘look at’ the
tree or house do not frost up.

Notes. 1. In the building industry, the conductance is called the U-factor or
U-value, and is an overall heat transfer coefficient that describes how well (or
badly, for preference!) a building element conducts heat. It is calculated as the rate
of heat transfer (in watts) through 1 m2 of a structure divided by the difference
in temperature across the structure. Conductance α for a particular material is
closely connected to its thermal conductivity k: α = U = k/L, where L is
the material’s thickness. In our problem, we assumed that the thickness of the
stationary air layer covering the windshield, was about 1 cm, and that the heat
conduction takes place through this layer. In windy weather, this layer is thinner,
and so the conductance is larger. The heat conduction can then compensate for
the cooling effect of the radiation, and results in the windscreen being held at a
temperature closer to that of the surrounding air and consequently protected from
frost.

2. The cooling of the windscreen cannot be explained by the evaporation of
the dew on it, because, in calm weather, the latent heat released when the water
vapour condenses from the increasingly colder surrounding air produces a larger
(and opposing) effect than the subsequent evaporation; the net effect of humidity
is to increase the temperature of the glass.

3. In more modern cars with an electronic display on the dashboard, a pic-
togram (a snowflake), or some other visible indication, is displayed if the road
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could become slippery because of potential icing. The numerical result of the
problem explains why the computer system switches on the snowflake if the air
temperature outside drops to a predetermined value of about 3 ◦C.

S109 Denote the temperature at the centre of the triangle by T0, and the heat
flows into the three vertices by Ik (k = 1, 2, 3). In a stationary state, we must have

I1 + I2 + I3 = 0.

Now imagine the two new arrangements produced by rotating the system by 120
and 240 degrees, and superimpose them on the original, as illustrated in the figure.
In the resulting configuration, the temperature is the same at all three vertices of
the triangle, and equal to T1 + T2 + T3. As the net heat flow (I1 + I2 + I3) is zero
at all three vertices, the temperature distribution must be homogeneous.

At the centre of the superposed triangles, the (superposed) temperature is 3T0,
and, since the temperature is the same everywhere, we must have 3T0 = T1 + T2 +
T3, i.e. the temperature at the centre of the original equilateral triangular plate is
the arithmetic mean of the temperatures at its vertices:

T0 = T1 + T2 + T3

3
.

Note. The problem can be generalised to regular polygon-shaped plates with n
vertices, and to Platonic solids (regular, convex polyhedrons). For example, the
temperature at the centre of a homogeneous dodecahedron is

T0 = 1

20

20∑
k=1

Tk.

S110 The ice cubes float on the surface of the liquid in both vessels. In the
first beaker, the density of the melted water from the ice cube, at a temperature of
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0 ◦C, is greater than that of the tap water at room temperature, and so it sinks to the
bottom of the vessel and is replaced by room-temperature water. The convection
currents arising in this way assist the melting.

In the second beaker, the density of the brine is greater than that of the cold melt
water, and so the latter does not sink, but remains around the ice cube. In this case,
convection does not set in, and the melting of the ice cube is much slower than it
was in the tap water.

Notes. 1. Our explanation can be strengthened by the following ‘experimentum
crucis’. A small amount of lead shot is frozen into the ice cubes, so that they sink
in both the tap water and the brine. No convection currents are set up around the
cube melting in tap water at room temperature, because the latter has a density
less than that of the cold melt water. The cold water produced in the depths of the
brine rises to the surface, convection currents are set up, and the cube melts more
quickly than its freshwater counterpart.

2. The phenomenon is quite sensitive to the initial temperature of the water in
the vessels. If this initial (room) temperature is relatively low – and consequently
the density of the tap water is very close to that of the water from the melting cube
– then, experimentally, we have found differences between the melting times of
the two floating ice cubes of as much as a factor of 10.

The convection currents in the water are readily apparent if the ice cubes are
made of tap water dyed with food colouring. Both experiments are relatively
simple to set up, and each provides a reassuring insight into the obviously different
melting processes in the two vessels.

3. The melting of icebergs floating in the oceans can take many years, and
the main reason for this is that these ‘giant ice cubes’, made of fresh water, are
floating in their own ‘fresh water puddles’ and convection currents, which would
speed their melting, do not get set up.

S111 Suppose that we first freeze the 1 kg of supercooled water at −10 ◦C, and
after this warm up the ice so formed to 0 ◦C. During the freezing stage, the energy
released is simply the heat Q that is to be determined, and warming up the ice by
10 ◦C requires 21 kJ of energy, as the specific heat of ice is about 2.1 kJ kg−1 K−1.

However, there is another way in which the same final state could be reached,
starting from the given initial one. We could first carefully warm up the supercooled
water from −10 ◦C to 0 ◦C (being careful not to initiate freezing – more easily done
in this theoretical exercise than in practice!), and then freeze the water at its normal
freezing point. In the first part of this alternative process, the heat that has to be
supplied is 42 kJ – assuming that the specific heat of supercooled water does not
differ considerably from the value 4.2 kJ kg−1 K−1 for water at room temperature;
during the freezing stage the heat released is 334 kJ.

Because, in the two processes, the initial and final states are the same, and the
same amount of work is done on the surroundings, the two amounts of heat energy
supplied must be equal:
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−Q + 21 kJ = 42 kJ − 334 kJ.

From this, Q = 313 kJ, and so the latent heat (enthalpy) of fusion – or, more
simply, the freezing heat – of supercooled water at a temperature of −10 ◦C is
about 313 kJ kg−1 .

Note. If the supercooled water at −10 ◦C suddenly starts freezing, then, after a
short time, a mixture of water and ice, both at 0 ◦C, is formed; the energy needed
to warm the water–ice mixture is that released during the freezing. This same
final state could be created from pure water at 0 ◦C by removing about 42 kJ of
heat, corresponding to the formation of about 42 kJ ÷ 334 kJ kg−1 ≈ 0.13 kg of
ice. This implies that, during the sudden freezing of supercooled water at −10 ◦C,
only about 13 % of the total mass will freeze.

S112 In our investigation of what happens to the water vapour when its vol-
ume is changed, we need consider only its own saturated vapour pressure (SVP),
because – according to Dalton’s law of partial pressures – the presence of other
gases has no influence on it.

To a good approximation (unless it is in the vicinity of its critical point), the
saturated water vapour follows the ideal gas equation:

pV = NkT .

If the volume of the saturated water vapour is decreased slowly, then its temper-
ature remains constant; since the SVP depends only on the vapour’s temperature,
it too cannot change. So, from the gas law, it follows that the number of particles
N must decrease. This, in turn, means that some of the slowly compressed vapour
must condense. A slow expansion would cause the reverse process to take place;
some of any liquid water present would evaporate.

If an increase in the volume is so fast that there is no time for significant heat
transfer through the walls separating the mixture of air and water vapour from the
outside surroundings, then the mixture will undergo an adiabatic expansion and
its temperature will fall. Because SVP increases rapidly with temperature, even a
modest fall in the latter produces a significant drop in the former; this more than
compensates for the increased volume, and some of the water vapour condenses.

So, condensation of some of the water vapour can be brought about by either a
slow decrease or a fast increase in the volume.

Notes. 1. If we decide to follow the change of state of the water vapour in a more
precise way than through the ideal gas approximation, then we could use, for
example, the van der Waals equation of state, or we could investigate the matter
empirically, on the basis of measured results.

In Fig. 1 a real isotherm (and the various water phases) are shown in a p–V
diagram. (The gas and supercritical phases, situated above the isotherm going
through the critical point C, are not plotted.)
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Fig. 1

During the isothermal compression, the (unsaturated) water vapour pressure
increases until it reaches the value p∗, the SVP corresponding to the given temper-
ature T∗. After this, the pressure does not increase any further, but condensation
of the vapour does begin. As the volume continues to decrease, the amount of
condensed liquid increases. The pressure remains constant until the whole of the
vapour has condensed. In this way, vapours can be liquefied at constant tempera-
ture by decreasing their volumes.

If the aim is to liquefy the vapour via an adiabatic process, then somehow the
temperature needs to be decreased. As there is no heat transfer (Q = 0), the first
law of thermodynamics indicates that, in order to reduce its internal energy, and
hence its temperature, the vapour has to do some external work, �U = −Wvapour.
The work done by the vapour is positive if the volume increases.

As previously noted, the condensation of the vapour can happen in a variety of
ways, two examples being an isothermal decrease of the volume, and an adiabatic
increase in it.

Fig. 2

In the p–V diagram, the curve that separates the vapour phase from the two-
phase states can be described by a function of the form p ∼ 1/V1+x over quite a
wide range (see Fig. 2). The parameter x is usually quite a small positive number;
in the case of water vapour it is about 1/16. This means that the limiting curve is
‘steeper’ than the isotherm (for which x = 0 in the ideal gas model), but less steep
than an adiabatic curve (for which x = 2/f for an ideal gas with f thermodynamic
degrees of freedom).
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2. For the condensation of water vapour that has been expanded rapidly and
become supersaturated, the existence of so-called condensation nuclei is neces-
sary. Typical suitable nuclei include dust, ionised atoms and soot nanoparticles.
Soot particles are responsible for the formation of the condensation trails (referred
to briefly as contrails) behind some aircraft. The role of ionised atoms is important
in the Wilson cloud chamber, a device used for detecting ionising radiation. Fast-
moving, electrically charged particles (such as protons or electrons) ionise atoms
in an adiabatically expanded vapour, and the resulting ions act as condensation
nuclei, around which a mist forms, so making the particle trajectories visible as
mist trails.

S113 As the wording of the question suggests, in the final stationary state, the
pressure is the same all along the tube. If it were not so, then net forces would act
on some or all parts of the steam and cause them to accelerate and move. We can
ignore the very small hydrostatic pressure difference between the top and bottom
of the test tube, because it is negligible compared to the saturated vapour pressure.

Initially, the test tube is open at the top and water is boiling in it. So, at the
bottom, there is water at 100 ◦C, and above that there is saturated water vapour
(steam) at 100 ◦C; the pressure of the steam must be equal to the atmospheric
pressure (≈ 101 kPa).

When the test tube is sealed, there is still a little water at the bottom. As, finally,
the temperature is 200 ◦C at the top of the test tube, and 100 ◦C at the bottom,
the average temperature of the steam has increased. So its pressure cannot have
decreased.

But, at the bottom of the test tube, the remaining water and the steam just above it
are in equilibrium at 100 ◦C; so the pressure there must be 101 kPa, the pressure of
the saturated steam at its boiling point. It follows that, since the pressure is constant
all along the test tube, the initial pressure in it cannot have increased (anywhere).

This conclusion can only be explained if the steam’s local density decreases as
the local temperature increases; clearly, the decrease will be greatest at the top,
where the temperature increase is the highest. The density decrease is brought
about by the condensation of some of the steam to liquid water.

So, ultimately, there is liquid water at the bottom of the tube (more than when the
tube was sealed), and the steam pressure still has its initial value, that for saturated
steam at 100 ◦C.

So the pressure of the steam in the test tube in the final state is still 101 kPa!

Note. The density of the steam decreases from the bottom to the top of the test
tube, and so only the steam just above the meniscus is saturated – further up the
tube it is unsaturated.

S114 a) At a temperature of 77.4 K (i.e. at the boiling point of nitrogen), the
pressure of saturated nitrogen vapour is 1 atm = 101.3 kPa, while the saturated
pressure of oxygen becomes 1 atm at a higher temperature, namely at 90.2 K.
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On Earth, the molar ratio of oxygen and nitrogen is approximately 1 : 4. The
ratio of the partial pressures of the two components will also be very close to this
figure, because, until the start of liquefaction, the behaviour of each gas constituent
is very close to that of an ideal gas. So, when, on the Earth, the liquefaction of
oxygen begins at the stated pressure of 113 kPa, one-fifth of this, that is, 22.6 kPa,
is due to the partial pressure of the oxygen; this pressure is, at the same time, the
saturated vapour pressure of oxygen at a temperature of 77.4 K.

It also follows that, under these conditions, the pressure of nitrogen is
113 kPa − 22.6 kPa = 90.4 kPa. This is less than the saturated vapour pressure of
nitrogen at this temperature, which, since 77.4 K is nitrogen’s boiling point, has a
value of 101 kPa. Consequently, the nitrogen does not liquefy at this pressure.

During the subsequent compression, the partial pressure of the oxygen, already
in two phases, does not change, while the nitrogen pressure increases from
90.4 kPa to 101 kPa. This latter pressure will be reached when the volume has
been reduced by a factor of (90.4/101) ≈ 0.9. After that, the total pressure remains
constant (at 22.6 kPa + 101 kPa ≈ 124 kPa) until the liquefaction is complete.

On Exo-Earth, the liquefaction of the nitrogen, at a constant temperature of
77.4 K, begins at a pressure of 113 kPa. So, in this state, the partial pressure of
nitrogen is 101 kPa, while that of oxygen is 113 kPa − 101 kPa = 12 kPa. The
quotient of the partial pressures of the two constituents is approximately equal to
their molar ratio: 12/101 ≈ 1

9 , and so, on Exo-Earth, about 10 % of the atmosphere
is oxygen, and the rest is nitrogen.

b) On the basis of the foregoing, we can see that at a pressure of 124 kPa (and
a constant temperature of 77.4 K) both gases will be liquid. The two components
will begin liquefaction together if their molar ratio is exactly equal to the ratio of
their saturated vapour pressures, which is 22.6/101 ≈ 2

9 . This means that, if the
oxygen : nitrogen ratio were about 2 : 9, then, during isothermal compression at
77.4 K, both gases would begin to liquefy at the same time.

Note. In reality, on Earth, the make-up by volume of dry air is 78.09 % nitrogen,
20.95 % oxygen, 0.93 % argon, 0.039 % carbon dioxide and small amounts of
other gases. So our assumption that the atmosphere contains only oxygen and
nitrogen, and that their ratio is 1 : 4, is only approximately true, and this further
increases the uncertainty in our numerical results.

S115 At normal atmospheric pressure, the given temperatures 100 ◦C and
34.6 ◦C are the boiling points of water and ether, respectively. The molar mass
of water is 18 g mol−1 and the molar mass of ether is 74 g mol−1. Although
the behaviour of real vapours does not follow the ideal gas laws exactly near a
substance’s boiling point, it is certainly reasonable to suppose that the density
of steam is lower, and that of ether vapour is higher, than the density of air.
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For brevity, we will (unscientifically) say that steam is ‘lighter’ and ether vapour
is ‘heavier’ than air.

a) Consider first the case in which water is used in both flasks. In the straight-
necked one, steam will fill the neck of the flask sooner or later, but, with the
‘heavier’ air above it, the situation is unstable; the steam rises, making space
subsequently occupied by air. This convection circulation increases the rate of
boiling, so all the water will boil away in a comparatively short time.

In the retort, the steam also occupies the neck of the flask, but the ‘heavier’
air cannot flow downwards into the retort. After a time, only water and steam are
present inside the retort, and the pressure of the steam becomes slightly larger than
atmospheric. This extra pressure is the only mechanism responsible for the escape
of any steam from the retort. In addition, the pure steam just above the remaining
water impedes its vaporisation. So, in summary, for case a), the water runs out
more quickly in the flask with a straight neck.

b) It is obvious that in this case, in which there is boiling ether in both flasks, the
situation is just the opposite. The ether is trapped in the straight neck, and cannot
rise up into air of lower density. At the top of the neck, the ether molecules can
leave only because of the extra pressure of ether vapour above the boiling liquid.

From the retort, the ‘heavy’ ether ‘flows down and out of the flask’, and the
resulting convection circulation speeds up the boiling of the remaining ether. So,
in case b), the retort is the first to be exhausted of ether.

S116 In the narrow test tubes, no convective flow sets in, and the dominant
process is diffusion. According to the law of diffusion (Fick’s law), the speed of
material flow is determined by the concentration gradient. Experimentally, these
two quantities are, to a good approximation, proportional to each other:

�m

�t
= −DA

��

�z
,

where �m denotes the mass of the vapour moving through the cross-sectional
area A during a time interval �t, � is the vapour density at height z, and D is the
diffusion coefficient (also called diffusivity). We assume that the diffusion of eau-
de-Cologne can be described by an ‘average diffusivity’ of water and alcohol in air.

Initially, there is no vapour in the test tube, as shown in Fig. 1a). For this
very reason, strong evaporation begins, and, transitionally, some kind of density
distribution is formed in the test tube, as illustrated in Fig. 1b). After a very short
time, compared to the total evaporation time, a stationary density distribution is
established.

This stationary distribution of vapour density can only be one that varies linearly
along the tube, as shown in Fig. 1c). That this is so can be deduced from the fact that
the rate at which vapour enters any arbitrary part of the tube from below is equal
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Fig. 1

to the rate at which it leaves its upper boundary; this implies that the concentration
gradient is the same everywhere within the tube. At the very bottom of the test
tube, just above the liquid, the vapour must be saturated, its density depending
only on the temperature. At the top of the test tube, where the vapour is in contact
with the free atmosphere, its density is practically zero – if it were not (and the
density changed sharply there), the vapour would move rapidly and a stationary
state would not be possible.

At both the bottom and top of each of the two test tubes, the vapour densities are
equal, and so the density gradient – and, consequently, the speed of the material
flow – in the longer test tube is one-half of that in the shorter one; this is illustrated
in a comparison of Fig. 1c) and 1d). Taking into account that the amount of eau-de-
Cologne in the longer tube is twice that in the shorter one, we conclude that total
evaporation from the 40 cm tube takes four times longer than from the 20 cm one.

What happens when both test tubes are covered, and identical but very small
holes are made, one in each cover? If the concentration gradient in the test tube is
much lower than that around the hole, the amount of vapour that diffuses through
the small cross-section opening will be controlled by the rate at which vapour
moves through the wider tube. With the covers in place, the vapour density hardly
varies along the tubes (see Fig. 1e) and f )) and almost everywhere it is equal to the
density of saturated vapour. Only in the immediate vicinity of the hole does it drop
to zero, the value of the outside density. Thus there is virtually no concentration
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gradient and, under such circumstances, the length of the test tube does not play
any role in the process. The ratio of the evaporation times depends only on the ratio
of the initial masses, i.e. 2 : 1.

S117 Solution 1. Take as the optical axis the straight line joining the point
source and the centre of the sphere. If the light source is placed at an arbitrary
point P1 inside the sphere, the virtual image formed is not point-like. Although
the (backwardly continued) rays of a narrow beam travelling close to the axis
are almost focused at a single point on the axis, the continuations of any slightly
divergent group of rays further from the optical axis do not intersect each other at
that same point.

Fig. 1

Consider two light rays moving close to each other, as shown in Fig. 1. The paths
covered by the rays are s1 and s′

1 from the light source to the surface of the sphere,
where they are refracted, followed by the optical paths L and L′, terminating at
the (distant) retina of the eye of the observer. According to Fermat’s principle, the
light moves along the particular path (among nearby trajectories) that requires the
minimal transit time; it is also the path with the shortest optical path length. If
the light can traverse two nearby trajectories in the same time, then their optical
path lengths are equal:

ns1 + L = ns′
1 + L′. (1)

The eye observes the light source, actually placed at point P1, to be at the
intersection P2 of the backward continuations of the two particular rays. This
intersection is generally not on the optical axis, and its position depends on how
the two light rays are selected (i.e. on the position of the observing eye). If we
imagine a light source to be placed at the position P2 of the virtual image, then we
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can again apply Fermat’s principle to the two rays shown in Fig. 1. The equality of
the optical paths from the point P2 to the retina of our eye gives

s2 + L = s′
2 + L′. (2)

Note that s2 and s′
2 are simply physical distances, and do not involve n, even though

in Fig. 1 their trajectories do cross the sphere.
Take the difference between equations (1) and (2):

ns1 − s2 = ns′
1 − s′

2. (3)

This relationship characterises the position of the intersection of two neighbouring
light rays. In general, similar equalities are not obeyed for light rays moving at
large angles relative to each other. However, there is one special case in which it is
– when both sides of equation (3) are equal to zero, i.e. for each ray that is traced,
s2/s1 = n.

This condition can be met if the surface of the glass sphere is an appropriate
Apollonian sphere, i.e. it is the three-dimensional version of an Apollonian circle.
The latter is the locus of the set of points in a plane whose distances from two fixed
points (known as foci) have a specified non-unit ratio; this locus is a circle, and an
Apollonian sphere is obtained by rotating such a circle around an axis passing
through the foci.57 Working backwards, for a given sphere there are positions P1

and P2 that are such that any ray from P1, after refraction at the sphere’s surface,
appears to the observer to have come from point P2 on the optical axis.

Fig. 2

As we have already shown, for perfect image formation, any arbitrary point on
the sphere has to be n times further from the image point than it is from the light
source. In particular, this has to be true for the points C and D shown in Fig. 2:

57 Apollonius of Perga (c. 262 BC–c. 190 BC) was a Greek geometer and astronomer noted for his writings on
conic sections. It was Apollonius who gave the ellipse, the parabola and the hyperbola the names by which
we know them.
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x − r

r − d
= n,

x + r

d + r
= n,

where x is the distance of the image point from the centre O of the sphere. From
these two equations, the two unknown distances can be determined:

d = r

n
and x = nr.

Solution 2. Consider the plane section of the sphere shown in Fig. 3 (this is
circle k1), and denote the positions of the point source of light and its perfect
image by S and I, respectively. Consider also the light ray that leaves the sphere
tangentially, denoting its exit point by A (the point of tangency). To give perfect
image formation, the line of this light ray must appear to come from point I. The
refracted ray is perpendicular to the radius OA, and so the angle of refraction is
β = 90◦. According to Snell’s law

sin β

sin α
= n, (4)

from which it follows that the angle of incidence α of this particular light ray
satisfies sin α = 1/n.

Equation (4) is obeyed, not only by the tangential ray, but also by all other
observed light rays emerging from the sphere – their tracks are secants of circle
k1 followed by straight lines that seem to emanate from the point I. Since n is
fixed, among all possible light rays, sin α is maximal for the one for which the
value of sin β is as large as possible, and the latter cannot exceed 1. So the ray
emerging at A makes the angle α maximal.

Near a maximum, values do not change to first order, which means that the
incident angles of the light rays emerging close to point A are all the same. It
follows that the circular arc k2, on which marked angle α is subtended by section
SO, just touches the circle k1 at the point A. (If this were not so, circles k1 and
k2 would cut each other at point A, and so shift by a little the exit point of the
light ray emerging at point A; the incident angle would then necessarily either
increase or decrease.) It can be seen that the diameter of circle k2 is the radius
AO, and so k2 is the ‘Thales circle’ of triangle OSA, and angle  OSA is a right
angle.

The side SO (opposite angle α) of the right-angled triangle OSA is the required
distance d, and so, since

sin α = d

r
,

we have d = r/n. Using the similarity of triangles OSA and OAI, the distance x
between the image point and the centre of the sphere can be found: x = nr.
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Fig. 3

What still remains to be proved is that the backward continuations of all
refracted light rays, arising at point S and travelling to the right, meet at point
I. We denote by A′ the point of refraction of the light ray that is emitted from S at
an angle ϕ to the axis (see Fig. 4), and calculate the distance x′ from O at which
the backward continuation of this light ray cuts the optical axis (at angle ψ say, as
shown in Fig. 4).

Fig. 4

The sine rule for triangle OSA′, combined with the previous result d = r/n,
gives

sin α

sin ϕ
= d

r
= 1

n
.

From this and Snell’s law (4), we get sin β = sin ϕ, and, as the angles are acute
angles, it follows that β = ϕ. From the exterior angle property of triangles SOA′

and I′OA′, we must have ϕ + α = ψ + β, and so the relationship α = ψ is also
valid. From this and the sine rule for the triangle OI′A′, it also follows that

x′ = r
sin β

sin ψ
= r

sin β

sin α
= nr,
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and so I′ coincides with I. As this conclusion is valid for all the angles ϕ (≤ 90◦),
the image formation is perfect for all rays that contribute to it.

S118 Fermat’s principle states that, when light travels between two points, it
follows a trajectory for which the optical path length (the sum of the geometrical
path segments, each weighted by the relevant index of refraction) is the shortest
available – or, equivalently, that the total transit time is minimal. More explicitly,
a ray of light starting, say, from a given point S, and finishing at another point F,
follows a path that can be traversed in a time that is minimal, when the actual transit
time is compared to those for ‘neighbouring’ paths.

If the light can travel from S to F along several different paths (the task in the
problem is to find the conditions for just such a situation), then the optical paths,
corresponding to different geometrical paths, must be identical. If any of the optical
paths were smaller, or larger, than that of a neighbouring ‘trajectory’, then the
criteria in Fermat’s principle would not be met.

We investigate first the parallel light beam, considering it to have come from a
very distant source S that lies on the axis of the rod (but is not shown in Fig. 1).
It is clear that the situation has axial symmetry, so it is sufficient to investigate a
plane section taken through the axis t of the rod. Consider an arbitrary light ray,
meeting the surface at point P and, after refraction, taking a straight-line path in the
glass to point F. According to Fermat’s principle, the optical path length of this ray
must be the same as the corresponding path length for any other arbitrarily chosen
refraction point on the surface.

Fig. 1

We now need to express the equality of these optical paths quantitatively. Draw
two auxiliary lines perpendicular to the optical axis: one of them (�1) is placed at
a distance H from the peak of the glass rod on the air side, and the other (�2) is
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located, on the other side of F, at a distance L from the peak of the glass rod. (The
magnitudes of H and L will be fixed later.)

Denote the distance between point P and focus F by r, and the distance between
point P and the auxiliary line �2 by s, as shown in Fig. 1. The optical paths, from
the very distant source S (not seen in Fig. 1) to the auxiliary line �1, are all equal
and can be ignored. The criterion for Fermat’s principle is that for an arbitrary
incident ray

H + nf = (H + L − s) + nr.

Clearly the (positive) value chosen for H is irrelevant, and this equation can be
simplified even further by choosing the arbitrary L to be equal to nf . With this
choice, the Fermat criterion takes the form

s = nr or
1

n
= r

s
,

i.e. the ratio of the distance r from P to F must be a fixed fraction (e < 1) of the
distance s of P from the line �2. It may seem that the choice of the value of L is
‘special’ (and devious?), but, if a different value L′ were selected, we could replace
s in what follows by s′ = s − L′ + L and arrive at the same conclusion.

It is well known from elementary geometry that an ellipse can be defined as the
set of points for which the ratio of the distance of each point on the curve (in the
present context, r) from a given point (the focus or focal point, F) to the distance
(s) from that same point on the curve to a given line (the directrix, �2) is a constant
(e < 1), called the eccentricity of the ellipse.

In our case, the eccentricity of the ellipse is 1/n, and in the usual notation, in
which 2c is the distance between the two foci of the ellipse,

1

n
= c

a
,

and the distance between the straight line �2 and the centre of the ellipse is

L − a = a2

c
.

From these expressions, we get the major and minor semi-axes of the ellipse:

a = n

n + 1
f and b = f

√
n − 1

n + 1
,

respectively. The required surface is an ellipsoid of revolution (a prolate-elongated
spheroid), obtained by rotating the ellipse around the rod’s axis. The focus of the
glass rod, in an optical sense, is the same point as one of the foci of the ellipsoid
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(in the geometrical sense). It can be seen (see Fig. 2) that the diameter of the light
beam brought to a focus cannot be larger than

2b = 2f

√
n − 1

n + 1
.

Fig. 2

Note. This problem can also be solved by defining a Cartesian coordinate system
whose origin is located at the point at which the rod’s axis meets the surface;
its positive y-axis is directed axially into the rod, and its x-axis can be in any
orthogonal direction. The Fermat criterion then reads

y + n(x2 + ( f − y)2)1/2 = nf for all x,

which, after some careful algebra, can be arranged as(
n + 1

nf

)2 (
y − nf

n + 1

)2

+ n + 1

f 2(n − 1)
x2 = 1.

In the notation used in the main solution, this takes the form

(y − a)2

a2 + x2

b2 = 1,

which is the standard equation for an ellipse, except that the major axis is now
in the y direction and the centre of the ellipse has been moved along it by a
distance a.

Using similar arguments, we can find the conditions needed to focus a light beam
propagating inside the glass rod onto a point outside it. Following the notation of
Fig. 3, the criterion in Fermat’s principle is

(H − L) n + f = (H − s) n + r,

and if L is chosen to satisfy

L = 1

n
f ,
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Fig. 3

we get (for arbitrary H)

s = 1

n
r or n = r

s
.

Again, from elementary geometry, a hyperbola can be defined as the locus of
points for which the ratio of the distances to one focus and to a line (called the
directrix) is a constant greater than 1; that constant is the eccentricity of the hyper-
bola. In our case the eccentricity is n, and one of its foci is the focus of the glass
rod in an optical sense. This means that the solution to this part of the problem is
(part of) the surface of a hyperboloid of revolution. Now, the diameter of the beam
that can be brought to a focus is limited only by that of the rod.

S119 Solution 1. According to Fermat’s principle, light rays very close to each
other traverse their trajectories in equal times. We apply this principle to two light
rays, one near the surface of the planet of radius R, and the other at an altitude h
(h � R). The first travels along a path of length 2πR with a speed of c/n(0) = c/n0;
the second travels along a path of length 2π(R + h) with speed c/n(h). Then

2πR

c
n0 = 2π(R + h)

c
n(h) = 2πRn0

c

1 + h/R

1 + εh
.

This condition is satisfied for all positive values of h (� R), provided R = 1/ε.

Solution 2. According to Huygens’ principle, every point of the wavefront
becomes a source of a spherical wavelet, and the new wavefront is formed by the
envelope of these wavelets moving with the speed of propagation of the wave. This
is the so-called ‘phase velocity’, which is c/n(h), where c is the speed of light in a
vacuum, and n(h) is the refractive index of the medium at the current position.

Consider the cross-section of a wavefront ‘orbiting’ the planet, which, at some
particular time, includes the points marked as A and B in Fig. 1; the wavefront
itself is perpendicular to the plane of the figure. A short time interval �t later,
the wavefront has moved to include the points A′ and B′. If the radial line A′B′ is
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Fig. 1

simply the radial line AB rotated through an angle �α, then the light rays, which
are perpendicular to it, will move ‘horizontally’ forwards – as is stated to be the
case. This puts conditions on the phase velocities, namely

(R + h)�α = BB′ = c

n(h)
�t,

R�α = AA′ = c

n0
�t.

Dividing the first equation by the second:

1 + h

R
= n0

n(h)
= 1 + εh,

from which it follows that R = 1/ε, in line with Solution 1.

Note. The two solutions above are not independent of each other, as Fermat’s
principle (expressed in the framework of geometrical optics) is a consequence of
Huygens’ principle in wave optics.

Solution 3. The phenomenon of the light ‘running around in circles’ can also be
interpreted as the result of a series of total internal reflections (see Fig. 2). These
start to occur when the sine of the angle of incidence at a boundary is equal to the
ratio of the refractive indices of the materials on either side of the boundary.

We approximate the continuously changing refractive index of the atmosphere
by layers of small thickness h � R, and consider the refractive index to be con-
stant within a layer. Combining the condition for total internal reflection with the
geometry indicated in Fig. 2, we have for the lowest layer that

1

n0

n0

1 + εh
= n(h)

n0
= sin α = R

R + h
.
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Fig. 2

This condition is satisfied if R = 1/ε. In these circumstances, the light ray, starting
horizontally, is totally internally reflected at the top of the layer. It arrives back at its
starting point following a series of total internal reflections that take it around the
planet. (Of course, for this to happen, the absorption of light needs to be negligibly
small, something that does not happen in real circumstances – but then, neither
does the existence of planets with such carefully matched atmospheres and radii!)

S120 Assume that the sphere is transparent (so that light can reach the lens
from any point of the sphere’s surface), but that it is made from material whose
refractive index does not differ from that of the air. Refraction of the light rays
then occurs only at the two surfaces of the lens. In practice, this situation can be
closely reproduced using a sphere of thin, relatively large-meshed wire netting.

Because of the rotational symmetry of the sphere, it is sufficient to determine
the image of one of its plane sections – more specifically, the image of one of the
great circles that contain the optical axis. The whole image will be the surface of
revolution generated by rotating this curve around the optical axis.

Consider an arbitrary point A on the circle of radius r drawn around one of the
foci F1 of the lens, and construct its image point B as determined by two specified
rays, as shown in the figure.58 It is convenient to specify point B by coordinates
(x, y) in a Cartesian system that has its origin at the other focus F2.

Using the similarity of triangles OA′A and OB′B, we get

y

x + f
= S

u
,

and from the similarity of triangles F2B′B and F2OQ, it follows that

y

x
= S

f
,

58 This method is called ray tracing.
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where u is the object distance of point A, and the size of the ‘object’ is denoted by
S (see figure). From these ratios S and u can be expressed with the help of x and y:

S = f
y

x
, leading to u = f + f 2

x
.

The distance between points A and F1 is given by

(u − f )2 + S2 = r2,

from which, after substituting for u and S and some algebraic manipulation, we get(
rx

f 2

)2

−
(

y

f

)2

= 1.

This equation describes a hyperbola with a ‘real’ (transverse) semi-axis of f 2/r
parallel to the optical axis, and a ‘virtual’ (conjugate) semi-axis of f perpendicular
to it.

The image of the whole spherical surface is a surface of revolution created by
the rotation of both arms (branches) of the hyperbola around the optical axis; the
result is called a hyperboloid of two sheets. The image of one half of the sphere
(where u > f ) is a real image – its plane section is shown as a continuous line on
the right-hand side of the figure. The image of the other half of the sphere, closer
to the lens, is a virtual image, corresponding to the left-hand side ‘sheet’ of the
hyperboloid – its plane section is shown as a dashed line in the figure.

No image is formed of the points forming the great circle of the sphere that lies
in the focal plane of the lens. The images of nearby points are very far away on
one of the hyperboloid sheets (and, in the limiting case, at infinity). If the sphere
is opaque, then, of course, only the virtual image of the half of it that lies nearer to
the lens is formed.

Note. In the solution, we assumed that the lens is thin, and that the image for-
mation is distortionless. For the latter, it is (also) necessary to justify the use of
the so-called paraxial approximation, which is a small-angle approximation. A
paraxial ray is a ray that makes a small angle with the optical axis of the system,



Solutions 311

and lies close to the axis throughout the system. In our case, this condition is met
if the focal length of the lens is much greater than both the radius of the sphere
and the diameter of the lens. The figure in the solution is grossly out of scale; if
the real sizes were proportional to those shown, then only a small section of the
calculated image surface would accord with reality.

For similar reasons, it does not make much sense to investigate arrangements
in which the sphere penetrates the lens, or envelops it (r ≥ f ). Though the
investigation of the whole range of the parameters is mathematically interesting,
and the case r > f can be achieved physically by caging the lens in wire netting,
the analysis of the image formation is largely pointless, because of the difficulties
encountered when trying to make experimental observations.

S121 Consider, for example, an astronomical or Keplerian telescope, in which
the image is formed by two convex lenses.59 The image of a very distant object,
formed by the objective lens, lies almost exactly in the focal plane of that lens. If
we use an ocular (eyepiece) lens to look at this image, its focal plane is made to
almost coincide with the position of the image; this is because our eye is naturally
accommodated to ‘infinity’, i.e. to view objects as if they were very distant. Let us
denote the focal lengths of the objective and ocular lenses by f1 and f2, respectively.

Fig. 1

It can be seen from Fig. 1, which is strongly distorted, that the angular magni-
fication of the telescope (the factor by which the angular diameter of the Moon’s
circular face appears to be magnified) is

Mang = β

α
≈ tan β

tan α
≈ (I/f2)

(I/f1)
= f1

f2
.

Next consider how much greater is the light energy that enters our eye via the
telescope compared to what it would be if we looked directly at the Moon. Assume
that the diameter d2 of our pupil is the same in both cases, and that it is smaller than
the diameter of the telescope’s ocular lens. It can be seen from Fig. 2 (which shows
only almost-parallel light rays, and omits those needed for image construction) that
the amount of light entering the eye, when using a telescope, is a factor of

59 Other telescopes can be analysed in similar ways.
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d1

d2

)2

=
(

f1
f2

)2

= M2
ang

times larger than it would be without the telescope.

Fig. 2

Finally, we compare the sizes of the images formed on the retina in the two cases.
The linear size of the image is, to a good approximation, directly proportional to
the visual angle (angular diameter) of the object, so the ratio of the areas of the two
different images is equal to the square of the angular magnification, that is, M2

ang –
exactly the same factor as the energy ratio.

Apparently, the Moon seems just as bright when looked at with the naked eye
as it does through a telescope!

Our considerations are not valid for celestial bodies that subtend such a small
visual angle that their images are not extended areas, but cover only a single
photoreceptor in the retina (or a single pixel in a digital camera). In such cases
the telescope still increases the power of the incoming light, but it is not diluted by
a size increase of the image; consequently, we observe the star to be brighter than
it appears to the naked eye.

Notes. 1. The human eye is a sophisticated optical system containing several
refractive interfaces, which cannot be described by an equivalent single thin lens.
The light rays entering the eye are refracted at two distinct places: first at the
cornea, and then at the eye lens. The refractive indices of the two media filling
the rest of the eye (aqueous fluid and vitreous humour) are significantly different
from that of air, with values of about 1.3. It follows that most of the light refraction
occurs at the air–cornea interface. The thick eye lens (with its different refractive
index) only ‘modifies’ the directions of the light rays passing through it to achieve
a sharp image.

Nevertheless, image construction by the human eye can be approximated quite
well by a single spherical ‘substitute’ refractive medium, in which the light rays,
going through its centre C, strike the retina without any change of direction (see
Fig. 3). Accordingly, it follows that, for both naked eye and telescopic observa-
tions, the sizes of the images formed on the retina are directly proportional to the
visual angles α and β.
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Fig. 3

2. If the diameter of the ocular lens were smaller than the distended pupil
(this does not happen in practice!), then the Moon would seem fainter through
the telescope than with the naked eye. The same effect is brought about by the
automatic (reflex) reduction in pupil size that occurs when we look at a strong
light source.

S122 The two halves of the lens form two point-like, real images of the source,
which, acting as two coherent light sources, then create an interference pattern on
the screen. So we first investigate what kind of interference pattern is formed by
two coherent monochromatic point sources, a distance d apart, on a screen placed
a distance h (� d) from them.

Maximal constructive interference occurs at those points for which the difference
in path lengths to the two sources is an integral multiple of the wavelength λ. The
mathematical implications of this in three dimensions are complex, but a detailed
analysis shows that constructive interference takes place on the surfaces of a series
of two-sheet hyperboloids, whose common axis of symmetry is the line passing
through the two light sources.

Fig. 1

On the screen, whose plane is parallel to this axis, a section of the hyperboloids
can be observed as very slightly curved hyperbola-shaped lines. The hyperboloids,
and hence the hyperbolic fringes, do not intersect each other, and the spacing of the
latter is smallest along their common symmetry axis. As we are interested only in
the maximum number of observable fringes, we need only consider rays that lie in
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the plane that contains that axis; this is the one that is perpendicular to the screen
and contains the two sources (see Fig. 1).

The condition for maximal constructive interference for rays travelling at an
angle θ to the optical axis, as shown in Fig. 1, is

d sin θ = nλ,

where n is an integer. For small values of angle θ , the approximation sin θ ≈ x/h
can be used, and so

xd

h
= nλ, that is x = n

λh

d
.

Thus, the distance between neighbouring interference fringes is � = λh/d.

Fig. 2

Now consider the image formed by one of the converging half-lenses with focal
length f . We apply the thin lens formula for the point-like source at object dis-
tance p:

1

p
+ 1

q
= 1

f
,

from which the image distance q is

q = pf

p − f
.

Using the similarity of particular triangles in (the not-to-scale) Fig. 2, it can be seen
that, if the thickness of the gap between the two half-lenses is δ, then the distance
d between the formed images I1 and I2 can be written as

d

δ
= p + q

p
,

from which

d = p + q

p
δ = pδ

p − f
.
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The images I1 and I2, formed by the lens, produce interference fringes on the
screen with separation (as we have shown earlier) � = λh/d, where h is the
distance between the images and the screen:

h = H − q = H(p − f ) − pf

p − f
.

So the distance between the neighbouring interference fringes is

� = λ(H(p − f ) − pf )

pδ
.

However, interference can be observed only on that part of the screen where
the light beams from the two image points overlap. Again, using the similarity of
suitable triangles, we can get the width D of the overlapping zone:

D = δ
H + p

p
.

The number of interference fringes observable on the screen is therefore

N ≈ D

�
= δ2

λ

H + p

H(p − f ) − pf
.

Substituting the given data into the formula, we get the result N ≈ 46.7, and so
about 47 interference fringes are visible on the screen.

Note. With the given numerical data, the screen is located further from the lens
than the point marked A in Fig. 2. If this were not so, the size D of the overlapping
zone would need to be calculated in a different way, and, in addition, the diameter
of the lens would be required. If the screen is located closer to the lens than point
B, there can be no interference at all.

S123 First, let us suppose that alternate slits (the second, fourth and so on)
are covered. We then have an ordinary grating with slit separation 4d, and the
position on the screen xn of the nth-order maximum can be found using the standard
equations

4d sin θn = nλ and sin θn ≈ xn/L

to give

xn = n
λL

4d
. (1)

The diffraction pattern would be the same if the other series of slits (the first, third
and so on) were covered.
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Fig. 1

To tackle the original problem, we need to investigate the net amplitudes of
the light in the directions determined by equation (1), taking into account the
relative displacement of the two gratings by a distance d. This displacement will
add (or subtract) an additional d sin θ to the path length of the light from one of
the gratings, causing a phase difference between the light from the two sources
of 2πd sin θ/λ for light diffracted through a general angle θ . For the nth-order
spectrum at angle θn, this phase difference is

2π(nλ/4)

λ
= nπ

2
.

Thus, there are four different cases to consider, depending on the form of the
integer n:

• If n = 4k, then the phase difference is a multiple of 2π and there is
perfect constructive interference between the light from the two sources;
consequently, the net amplitude is double that produced by a single series
of slits, and the intensity is four times larger.

• If n = 4k+1, the phase difference is 2πk+π/2; clearly, the 2πk can be dis-
carded. The amplitude of the sum of two waves with the same amplitude E0

and a phase difference of π/2 between them (at any particular position) is

E0 sin(ωt) + E0 sin(ωt + π/2) = E0 sin(ωt) + E0 cos(ωt)

= √
2E0

(
1√
2

sin(ωt) + 1√
2

cos(ωt)

)
= √

2E0 sin(ωt + π/4).

So, the amplitude is
√

2 times larger than that from a single series of slits,
and the intensity is therefore doubled.
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• If n = 4k + 2, then the phase difference between the light from the two
series of slits is π, and there is perfect destructive interference. No light
travels in these directions

• If n = 4k +3, the phase difference is 3π/2, so the light amplitude (as in the
case of a π/2 difference) is

√
2 times larger than that due to a single series

of slits, and the intensity is correspondingly doubled.

In summary, the intensity distribution of the diffraction pattern can be seen in
Fig. 2; the distance between the high-intensity maxima is λL/d.

Fig. 2

Notes. 1. This ‘unusual’ optical diffraction grating can be considered as a grating
with a spacing of 4d, but with complex slits, each slit being a (Young’s) double slit
with a slit separation of d. The intensity distribution of a normal optical grating
(of very narrow slits) with slit spacing 4d has sharp peaks of identical height,
separated from each other by λL/(4d). It can be proved that the diffraction pattern
of one double slit with slit separation d is a cosine function – shown in Fig. 2 as
a dashed line. The intensity distribution of the unusual grating can be found if the
two intensity functions (mentioned above) are multiplied by each other.

2. It is particularly striking that the four times longer repeat period of the
optical grating produces a four times denser diffraction pattern. This kind of
inverse proportionality holds generally for diffraction phenomena: the features
with the largest period determine the finest details of the diffraction pattern, and,
vice versa, the smallest periodic signals produce the large-scale structure of the
pattern. In the current problem, along with periodicities of d and 4d, there is a
third size scale, one that has so far been neglected – the width of the slits. If this
were also taken into account, then it would result in a long-period modification
of the diffraction pattern; the intensity distribution shown in Fig. 2 would have to
be multiplied by the intensity pattern of a single slit. The latter would be almost
constant over a significant range of diffraction angles centred on 0◦, but would
drop off at larger angles.

3. The intensity peaks are not infinitely ‘sharp’, but have a finite width, which is
related to the width of the illuminating laser beam. For instance, if the illuminating
laser beam is thin (and the distance to the screen is large), then the light passes
through only a few slits, and this causes a broadening of the intensity peaks. This
statement can be illustrated by reference to a normal optical grating (with simple
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periodic slits). If N slits of such a grating are illuminated, then, along the direction
of an interference maximum, the amplitude is the sum of the contributions from
all N slits. The net amplitude is proportional to N, and the height of the intensity
peak is proportional to N2. The transported power of light passing through the
grating is proportional to N, and the integrated area under an intensity peak must
follow suit (since energy is conserved). This is possible only if the width of an
intensity peak is proportional to 1/N.

S124 The monochromatic light falls perpendicularly onto the grating, and so
the (initial) phases of the outgoing secondary waves from the slits are all the same,
and the amplitude of each is proportional to the width of the relevant (narrow)
slit. The latter part of this statement is justified by the Huygens–Fresnel principle,
since an n times wider slit can be considered as n identical slits side by side, and
the contributions of their wavelets to the net wave are all equal and in phase.

The light intensity on the screen is proportional to the square of the net ampli-
tude. Because there are many slits (N � 1), we have to investigate the interfer-
ence of a large number of waves; the outcome depends on the phase differences,
which in turn depend on the optical path differences. If there are phase differences
between the waves coming from adjacent slits, then, in general, the contributions
from the many waves cancel each other out. The only exception is the case in
which the waves from alternate slits reach the screen in phase. Then, the waves
originating from both the even-numbered and the odd-numbered slits (separately)
show constructive interference, and their net amplitudes are

Eeven = K
N

2
b and Eodd = K

N

2
a.

The constant K depends on both the intensity of the grating illumination and
the distance of the screen, but its precise value is not important in the following
analysis.

Fig. 1
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What are the directions for which the above condition is fulfilled? It can be seen
from Fig. 1 that, if, for waves travelling at an angle θ to the normal, the equality

2d sin θ = kλ (k = 0, ±1, ±2, . . .)

holds, then, separately, all the even-numbered waves and all the odd-numbered
waves are in phase. Consequently, for each set, the amplitudes simply add up
arithmetically, producing totally constructive interference.

The task has now been reduced to combining only two waves, the net amplitude
Eeven of the even-numbered slits and the net amplitude Eodd of the odd-numbered
ones. What is the phase difference between these two waves? As the path difference
between every second slit is kλ, that between adjacent ones is kλ/2 (as can be seen
in Fig. 1). For even k, this is a whole number of wavelengths, and so the two waves
are in phase and are to be added; for odd k, they are out of phase and their net
amplitude is their difference. Accordingly, the intensity of the light at angle θk (i.e.
the intensity of the kth-order maximum) is

Ik ∼
{

(a + b)2, if k is even,

(a − b)2, if k is odd.

The kth-order intensity peak is formed at a distance

xk = L tan θk ≈ L sin θk = k
Lλ

2d

from the central maximum on a screen placed a distance L behind the grating. Here,
we have used the fact that, because d � λ, the diffraction angles are small.

On the screen, we can see a line of equidistant, relatively sharp light bands,
but their intensities are not equal: stronger and weaker bands follow each other,
alternately (see Fig. 2).

Fig. 2

There are two cases to consider: a) if a ≈ b, then the intensity distribution shown
in Fig. 3a) will be observed; while b) if a � b, then Fig. 3b) shows the intensity
distribution on the screen.
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Fig. 3

S125 The location of the holes on the sheet can be specified by the two-
dimensional position vector r = (x, y) (see Fig. 1), where x and y are integral
multiples of the lattice constant d.

Fig. 1

The distance of a particular hole from a point on the screen given by the position
vector R = (X, Y) is

s(x, y) =
√

L2 + (X − x)2 + (Y − y)2 ≈
√

L2 + X2 + Y2 − 2(xX + yY),

as, in general, x and y are much smaller than X and Y (except for X = Y = 0).
Since L � d, this distance can be further approximated:

s(x, y) ≈
√

L2 + X2 + Y2

√
1 − 2

xX + yY

L2 + X2 + Y2

≈
√

L2 + X2 + Y2 − xX + yY√
L2 + X2 + Y2

.
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The path difference between light arriving from a hole with coordinates x and y
and an arbitrarily chosen reference wave, say, that from the hole x = y = 0, is

�s = − xX + yY√
L2 + X2 + Y2

≈ −xX + yY

L
. (1)

In the final step, we have assumed that L is much larger than the size of the screen,
and hence much larger than any feasible value of X or Y .

If the path difference (1) is an integral multiple of the wavelength for all permit-
ted values of x and y, then all of the waves arrive at (X, Y) in phase, and there is an
interference maximum there. The condition for this is

r · R = xX + yY = integer × (λL). (2)

Taking account of the possible values of x (= nxd) and y (= nyd), condition (2)
will always be satisfied if

X = n
λL

d
and Y = m

λL

d
,

where n and m are arbitrary whole numbers. It follows that the diffraction pattern
is also a square grid – one with ‘lattice constant’ λL/d, as shown in the upper part
of Fig. 2.

Fig. 2
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If the square grid is compressed along the x-axis by a factor of N, then condition
(2) still holds, provided the X coordinates of the maxima are increased by a factor
of N. So, the diffraction pattern of light passing through a rectangular grid is also
a ‘rectangular grid’. However, the scales in any particular direction – of the holes
on the sheet and the intensity maxima on the screen – are inversely related: the
smaller the hole separation on the sheet, the further apart are the locations of the
bright spots on the screen (see lower part of Fig. 2).

S126 In the triangular grid (T), consider two adjacent ‘unit cells’ that share a
common horizontal side. If this formation is compressed vertically by a factor of√

3, then we get a square of side a = d/
√

2 (see Fig. 1).

Fig. 1

The diffraction pattern of the square grid (S), with lattice constant a, is also a
square grid with ‘lattice constant’ λL/a = √

2λL/d, and with the same orientation
in space (see solution on page 320).

From that same solution, it also follows that we could have obtained the diffrac-
tion pattern of S by stretching that of T vertically by a factor of

√
3. Conversely,

the unknown pattern for T can be found by vertically compressing the diffraction
pattern of S in the ratio 1 :

√
3. (See Fig. 2, which shows the two grids and their cor-

responding diffraction patterns. The logical order of calculation is anticlockwise,
starting in the top left-hand corner.)

So, the diffraction pattern of T is a grid with an equilateral triangle as its unit
cell. An edge of this triangle has length

d∗ = 1√
3

√
2

λL

a
= 2√

3

λL

d
.

It is interesting to note that, on the perforated sheet, one side of each equilateral tri-
angle is horizontal, and the other two are ‘tilted’, but the triangles in the diffraction
pattern have no horizontal sides. On the contrary, one side of each is vertical.



Solutions 323

Fig. 2

Note. In the above solution, we have used the inverse relationship between the grid
constant of the hole pattern in the sheet and that of the diffraction pattern (in the
same direction) on the screen. In the solution on page 320, this was only shown to
hold for a rectangular grid, compressed or elongated in an axial direction, whereas
in the current problem the compression is in a direction that makes non-zero
angles with both axes (45◦ with each, in this case).

However, the result is still valid, as can be shown by recognising that the
diffraction pattern on the screen is essentially a spatial representation (R) of the
Fourier transform (a function of wavenumber (k)) of the hole pattern. The com-
pression is a particular example of a so-called affine transformation – one that,
in general, involves a reversible linear mapping followed by a translation, and
also preserves straight lines as straight lines. Under such a transformation, a
Fourier transform keeps its original form, but its arguments are those obtained
by applying the inverse mapping to the original arguments – more explicitly,
the values of wavenumber components ki that are needed to keep the kernel of
the transformation (a function of k · r) unchanged. For a simple compression
by a factor N, the inverse mapping is that describing an elongation, in the same
direction, and by the same factor. This behaviour of Fourier transforms is directly
reflected in that of diffraction patterns.
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S127 a) The intensity of the light passing through the first polarising filter is
maximal if the incoming light is already polarised, and its polarisation plane is par-
allel to the orientation of the filter’s polarisation axis. Then, neglecting absorption,
the whole of the incident light can pass through the first filter.

Fig. 1

Denote the maximal electric field strength (amplitude) of the incoming light
by E0 (see Fig. 1). The electric field of the light moving towards the second filter,
which is rotated through an angle ϕ relative to the first one, can be resolved into two
components: one parallel to that filter’s polarisation axis, and another perpendicular
to it. The second filter lets through only the first of these, which has amplitude
E0 cos ϕ. Similarly, the amplitude of the light passing through the third filter is

E = E0 cos ϕ cos(90◦ − ϕ) = E0 cos ϕ sin ϕ = 1
2 E0 sin 2ϕ.

The absolute value of E is maximal if sin 2ϕ = ±1, that is, ϕ = ±45◦. Then the
amplitude of the transmitted light is one-half of the incoming amplitude, and so
the light intensity (proportional to the square of the amplitude) decreases to one-
quarter of its original value.

b) As in part a), maximal light passes through the first polarising filter if the
polarisation plane of the incoming light is parallel to the filter’s polarisation axis.

Fig. 2

The amplitude of the light moving towards the birefringent plate can be thought
of as being resolved into two components: one, E‖, is polarised parallel to the
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direction of e, and the second, E⊥, is polarised perpendicular to it (see Fig. 2).
Because of the two different refractive indices, the two components entering the
plate leave it with different phases – how different depends upon the thickness of
the plate. At the exit face of the plate, the superposition of the two components,
with their different polarisations, determines the polarisation of the ongoing light;
it can be linear, circular, or even elliptical, depending upon the size of the phase
difference.

If the phase difference between the two components passing through the bi-
refringent plate is π, or an odd multiple of π, then, on leaving the plate, the two
components are superimposed with opposite phases, which is equivalent to one
of the components (say, E⊥) changing sign. The condition for this is that the two
optical path lengths differ by an odd number of half-wavelengths:

|n1d − n2d| = (2k + 1)
λ

2
, that is d = (k + 1

2)
λ

|n1 − n2| , (1)

where k is a whole number. In this situation, the polarisation remains linear, the
light’s amplitude does not change, but the plane of its polarisation is rotated.

If the plate’s birefringence axis e makes an angle of 45◦ with the polarisation
directions of both filters, then the polarisation plane of the light is rotated by 90◦

(see Fig. 2) as it passes through the plate. As a consequence, the third polarising
filter does not reduce the light amplitude. Thus, if the thickness of the plate is as
given by formula (1), and the orientation of the plate is ϕ = ±45◦, then, provided
absorption is negligible, 100 % of appropriately polarised light can pass through
the system.

Notes. 1. If the incoming light is unpolarised (i.e. a mixture of the two uncorre-
lated light waves, polarised perpendicularly to each other, and changing rapidly
but uniformly in time), then the first polarising filter alone reduces its intensity
by one-half, however that filter is oriented. Then, in case a), the intensity of the
transmitted light is at most one-eighth of the incident intensity, and in case b), at
most one-half.

2. In optical experiments requiring the rotation of the polarisation plane of
linearly polarised light, birefringent plates with a thickness calculated according
to formula (1) are often used. Because of the optical path difference for the two
components with perpendicular polarisations, they are known as half-wave plates.
There are also quarter-wave and three-quarter-wave plates; with the help of these,
linearly polarised light can be made circularly polarised, and vice versa (see the
problem on page 41).

S128 First we need some technical information. 3D movies are shot using two
motion-picture cameras with slightly different ‘viewpoints’. In the cinema (movie
theatre), the footage from the two cameras is projected onto the screen using two
separate projectors: one image is for viewing by the left eye, and the other is for
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the right eye. By making use of the properties of polarised light, it can be arranged
that each of the viewer’s eyes receives only light from the appropriate image.

In older 3D cinemas, each projector has a linear polarising filter placed in front
of it, with the two polarisation axes mutually perpendicular. The diffuse light
reflected back from the screen, which is a special textile covered by metal grains,
mainly aluminium, retains its plane of polarisation. In the spectacle frames worn
by the audience, there are also two linearly polarised filters with perpendicular
orientations. They are aligned with the polarisation directions of the projected
images, which are usually at angles of 45◦ to the horizontal, one clockwise, the
other anticlockwise. With this arrangement, both the right and left eyes see only
the images intended for them (see left-hand side of Fig. 1, where the orientations
are vertical and horizontal).

Fig. 1

The disadvantage of using linearly polarised light appears when viewers’ heads
are tilted, because then some unintended light passes through each filter, and ghost
images are formed. Recently, the use of circularly polarised light has been intro-
duced into more up-to-date 3D cinemas, with right-handed and left-handed circu-
larly polarised light projected onto the silver screen by the two projectors. Removal
of the non-required part of the reflected light is provided by the films fitted in the
3D specs (see right-hand side of Fig. 1).60 But these films – as we will see – are not
simple linear polarising filters, because such filters would pass some of the light
of each (circular) polarisation, and the viewer’s eyes would not each be presented
with a separate image.

Now, we can discuss the analysis of Nick’s ‘experiments’!

60 In the figure, ‘right-handed polarised light’ is presented to the right eye, and ‘left-handed light’ to the left one.
But, in practice, it could equally well be the other way round.
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a) The old 3D spectacles, found by Nick when tidying up his room, were
undoubtedly fitted with linear polarising filters. The unpolarised light rays starting
from Nick’s closed (say, left) eye, first pass through the filter and are transformed
into linearly polarised rays. The direction of their polarisation is not changed by
the reflection from the mirror (see left-hand side of Fig. 2), and so these rays cannot
pass through the right-eye polarising filter (which is oriented perpendicularly to
the left-eye filter). Nick’s closed eye does not appear in the mirror, and he sees
only the darkened ‘lens’ in its place. However, (one-half of) the light originating
from his open (right) eye, and subsequently reflected from the mirror, can pass
both ways through the right-eye polarising filter, and Nick can see the reflection of
his open eye.

Fig. 2

b) The fact that the new 3D spectacles produce polarisation effects totally con-
trary to those shown by the old pair indicates that, in the later ‘experiment’, reflec-
tion from the mirror modifies not only the direction of propagation, but also some
other relevant property of the light. As the polarisation of linearly polarised light
is not changed by reflection from a mirror, we must be dealing with circularly
polarised light.

Circularly polarised light can be produced by a linear polarised filter and a so-
called quarter-wave plate, aligned with an angle of 45◦ between their respective
axes, as shown in Fig. 3. A quarter-wave plate is a parallel-sided flat plate made
of birefringent material, which has a different refractive index for light polarised
parallel to its orientation direction than it has for light polarised perpendicular to it
(as described in Note 2 on page 325). This gives rise to an optical path difference
between two components with different polarisations; by an appropriate choice
of plate thickness, this difference is made to be just one-quarter of the relevant
wavelength.
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Fig. 3

The incoming unpolarised light, passing through an oriented (say, vertically)
polarising filter, becomes linearly polarised. On then passing through the quarter-
wave plate, a phase difference of π/2 arises between the electric field components
E‖, parallel to the orientation of the plate, and E⊥, perpendicular to it – the result is
circularly polarised light. Depending on which polarisation component of the light
propagates faster in the birefringent plate, the emerging circular polarisation is
either ‘left-handed’ or ‘right-handed’. In the case shown in Fig. 3, the quarter-wave
plate produces ‘left-handed’ light. If we wanted to form ‘right-handed’ light using
the same birefringent material, then we would need a so-called three-quarter-wave
plate; this has a different thickness (chosen to make the phase difference between
the two electric field components equal to 3π/2).

In Nick’s new 3D spectacles, there are films that can selectively transmit or block
right-handed or left-handed circularly polarised light. These circular ‘analysers’
work very similarly to the arrangement shown in Fig. 3, but the circularly polarised
light now passes through the birefringent plate before reaching the linear filter. If
the incoming light striking the birefringent quarter-wave plate shown in Fig. 3 is
‘left-handed’ (for which the phase difference between E‖ and E⊥ is −π/2), then the
reverse phase change process takes place, and light linearly polarised in a vertical
plane is formed (see Fig. 4). This light is let through by the vertically directed
polarising filter.

Fig. 4
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But if the light striking the quarter-wave plate is ‘right-handed’ (i.e. the phase
difference between E‖ and E⊥ is +π/2), then, because of the phase shift of +π/2
produced by the plate, horizontally polarised light is formed; this is not transmitted
by the polarising filter (see Fig. 5). So, the spectacle ‘lens’ with this arrangement
lets through ‘left-handed’, but not ‘right-handed’, light. If the quarter-wave plate
is replaced by a three-quarter-wave plate, then the ‘lens’ works in the reverse way:
it lets through ‘right-handed’ light, but not ‘left-handed’. So, a 3D movie, using
circularly polarised light, works on the principle illustrated in the right-hand half
of Fig. 1.

Fig. 5

Finally, we are able to explain the outcome of Nick’s second ‘experiment’.
The light rays starting from his closed (say, left) eye are formed into (say, left-
handed) circularly polarised light going through the left-hand side ‘lens’ of the
glasses (since they pass through the polarising filter first, and then through the
birefringent plate). But the ‘left-handed’ light is reflected back from the mirror as
‘right-handed’ (in the same way as the mirror reflection of the left-handed glove is
a right-handed glove, see right-hand side of Fig. 2), and so it can pass through the
right-hand side ‘lens’ of the spectacles without impediment. This is why Nick can
see his closed eye in the mirror.

Conversely, he cannot see his open (right) eye, since the light starting from it
is formed into ‘right-handed’ light when it first passes through the film of the
spectacles, and is then reflected back as ‘left-handed’ light. As such, it cannot
pass back through the right-hand ‘lens’ of the glasses, and Nick cannot see his own
open right eye – even though he can see the closed left one!

Notes. 1. It follows from the operating principle of birefringent quarter-wave
plates that they are able to transform linear polarised light into circular polarised
light (and vice versa) only for a particular wavelength (i.e. a given colour). How-
ever, by applying thin coatings to it, a plate can be made to work ‘reasonably
effectively’ across almost the whole range of the visible spectrum.

2. Some 3D cinemas (movie theatres) and home televisions solve the prob-
lem of separating the two images arriving at our eyes, not with polarising filter
spectacles, but with glasses containing active (computer-controlled) liquid-crystal
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‘lenses’. On the screen of such 3D television sets, the images for the two eyes
are flashed alternately at a frequency in the range 100–200 Hz. The glasses can
be synchronised with the flashing images using radio waves, infrared signals or
cables. These signals are used to switch the voltage applied to the liquid-crystal
‘lenses’, making them alternately dark and light, and so provide the two separated
stereoscopic images, which together give a 3D visual impression.

S129 Increasing all the distances between the charges in the same proportion,
say by a factor of λ, changes the forces acting between them by a factor of 1/λ2.
Since, in the original arrangement, every charge was in stationary equilibrium, the
net force acting on each charge in the new (‘scaled-up’) setting must again be zero.
It follows that the original charge distribution could be ‘blown up’ to arbitrarily
(even ‘infinitely’) large size without any work being done on, or by, the system.
But, for charges very far from each other, their interaction energy is zero, and
so, because no work was required, the system’s original electrostatic interaction
energy must also have been zero.

The stability of any particular (say, the ith) charge’s equilibrium can be investi-
gated by considering the electric field E(r) produced, in the vicinity of the charge’s
equilibrium point ri, by all the other charges. The force acting on this particular
charge is

F(r) = Qi

∑
k =i

Ek(r) = QiE(r).

The equilibrium will be stable if the force field F(r) is such as to return the
charge Qi to ri, if it were to be displaced from there in any direction. If this is
the case, then the total electric flux of E(r) over a small closed surface around the
(vacated) point ri cannot be zero. The flux is either all into, or all out of, the surface,
and the integrated flux has to be a positive or negative number, depending upon the
sign of Qi. However, such a conclusion stands in clear contradiction to Gauss’s
law: the integrated flux of the electrostatic field over a closed surface without any
charge inside it is always zero. Accordingly, the equilibrium of the charge system
cannot be stable, and must therefore be unstable.

Notes. 1. The general considerations discussed above can be illustrated by a sim-
ple example (see figure).

If three point-like bodies, carrying charges Q, −Q/4 and Q, are arranged along
a straight line, with the two outside ones a distance d from the middle one (see fig-
ure), then each of the three experiences a zero net force. The electrostatic interac-
tion energy of the system is
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Wel = ke
(− 1

4 Q)Q

d
+ ke

(− 1
4 Q)Q

d
+ ke

Q2

2d
= 0,

in accord with our general result.61 Further, if the middle (negative) charge is
moved to the right by a small distance x (x � d), then the net force acting on it is

F(x) = ke
Q2

4

[
1

(d − x)2 − 1

(d + x)2

]
≈ ke

Q2

d3 x > 0.

This force acts to the right, and so tends to move the middle charge even further
away from its equilibrium position, demonstrating that the equilibrium is unstable,
as our general result says it must be.

2. The conclusion reached, about the instability of any equilibrium arrangement
of point charges, can be considered as a special case of the so-called Earnshaw’s
theorem.62 This theorem states that, for arbitrarily complex electrostatic, magnetic
and gravitational force fields (or for any combination of them), neither point-
like nor extended bodies can be maintained in a stable stationary equilibrium
configuration if their motion can be described by Newtonian mechanics. In the
late 1800s, this theorem greatly intrigued physicists, because, at that time, they
did not know of any other force fields or of any non-Newtonian mechanics, and
yet there was no doubting the stability of everyday materials. The inexplicable
contradiction was resolved by the introduction of quantum theory, in which the
stability of atoms is explained by the non-Newtonian behaviour of electrons.

In the predecessor of this book, one of the problems63 presents an example
in which a superconducting ring is able to sustain stable ‘levitation’ in station-
ary magnetic and gravitational fields; at first sight, this might appear to violate
Earnshaw’s theorem. However, the current flowing in the ring changes with time
during the ring’s small oscillations around its equilibrium position, and so there is
no violation of the theorem, which deals only with stationary (time-independent)
fields.

S130 In the absence of external forces, the centre of mass (CM) of the three-
pearl system remains at rest. It is therefore convenient to choose it as the origin of
a vector coordinate system in which at any given time the position vectors of the
pearls are ri, and their distances from each other are di (i = 1, 2, 3) (see figure).

The net force acting on pearl 1 is the vector sum of the electrostatic forces
exerted on it by the other two pearls:

F1 = m1a1 = ke
Q1Q2

d3
3

(r1 − r2) + ke
Q1Q3

d3
2

(r1 − r3). (1)

Because the vector origin has been chosen to be at the position of the CM:

m1r1 + m2r2 + m3r3 = 0.

61 Although it is of no consequence in the current problem, more explicitly, ke = 1/(4πε0).
62 Samuel Earnshaw (1805–1888) was an English clergyman and mathematician, noted for his contributions to

theoretical physics.
63 See ‘Problem 182’ in P. Gnädig, G. Honyek & K. F. Riley, 200 Puzzling Physics Problems (Cambridge

University Press, 2001)



332 200 More Puzzling Physics Problems

Substituting for r3 from this into equation (1) gives the equation of motion for pearl
1 as

m1a1 = keQ1

(
Q2

d3
3

+ Q3

d3
2

[
m1

m3
+ 1

])
r1 + keQ1

(
Q3

d3
2

m2

m3
− Q2

d3
3

)
r2. (2)

Now, the condition for a straight-line trajectory for pearl 1 is that the direction
of its acceleration should be the same as that of its instantaneous position vector.
Consequently, the factor multiplying r2 on the right-hand side of equation (2) must
be zero. This happens if Q2d3

2/m2 = Q3d3
3/m3. Similar conditions can be written

for the other two pearls. So we get the requirement that, at any instant,

Q1

m1
d3

1 = Q2

m2
d3

2 = Q3

m3
d3

3 = λ, (3)

where λ has the same value for all three bodies. The common value λ is not a
constant of the motion, but changes with time, as the distances between the charges
increase.

If the equalities (3) are satisfied, then the accelerations of the pearls can, after a
bit of careful algebra, be shown to be given by the following formula:

ai = ke
Q1Q2Q3(m1 + m2 + m3)

λm1m2m3
ri for i = 1, 2, 3.

Accordingly, the ratio of the accelerations of the pearls is the same as the ratio of
the lengths of their position vectors, and the proportionality factor is the same for
all three bodies at any given time; consequently, the ratio of the distances from the
origin of the three pearls remains constant in time.

These ratios can be found from condition (3) and the given proportion for the
mass-to-charge ratios of the three pearls:

d1 : d2 : d3 = 3

√
m1

Q1
: 3

√
m2

Q2
: 3

√
m3

Q3
= 1 :

1
3
√

2
:

1
3
√

3
.
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With such distance and charge-to-mass ratios, the three pearls move in such a way
that at any moment the triangle they form is similar to their initial triangle, and
(using the cosine law) the angles of that triangle are

ϕ1 = arccos

(
d2

2 + d2
3 − d2

1

2d2d3

)
= 84.2◦, ϕ2 = 52.2◦, ϕ3 = 43.6◦.

Note. Because of the similar forms of Coulomb’s law and Newton’s law of uni-
versal gravitational, the above solution can also be applied to three point masses
moving in each other’s gravitational fields. Their trajectories can be straight lines
if the connection between their distances and their ‘mass-to-gravitational-charge’
ratios are in accord with equalities (3). As the ‘mass-to-gravitational-charge’ ratio
is actually the inertial-mass-to-gravitational-mass ratio, which is the same for
every body (for the sake of simplicity and practical common sense, this ratio is
unity), rectilinear motion of the bodies, in the gravitational field of each other, can
occur only if d1 = d2 = d3, that is, the bodies are at the vertices of an equilateral
triangle. Of course, the gravitational force is always attractive, and so the distance
between the bodies decreases after they are released from rest.

S131 The trajectory of the electrons can be divided into three significant seg-
ments: the first is from the electron gun to the capacitor, the second segment is
inside the capacitor, and the last one is from the capacitor to the screen. The elec-
trons, emerging from the gun, move along an essentially rectilinear trajectory with
constant speed until they reach the capacitor. Their trajectory is only ‘essentially’
rectilinear, because, even here, the ‘upstream’ fringing field of the capacitor causes
the electrons to deviate in the direction of the positively charged plate, and at the
same time increases their speed a little.

When the electrons enter the capacitor (with its approximately homogeneous
electric field inside), they start accelerating in a direction perpendicular to the
plates. The force component parallel to the plates is zero, and so the parallel com-
ponent of the electrons’ velocity remains constant, and the trajectory of the electron
beam is a parabola. Because of the work done by the electric field, the speed of the
electrons as they just leave the capacitor is greater than it was when they entered.

Along the trajectory segment between the capacitor and the screen, only the
weak fringing electric field of the capacitor acts on the beam, and so one might
think that the electrons hit the screen with a speed that is obviously larger than that
with which they left the gun.

But let us recognise that the fringing field between the capacitor and the screen
acts on the electron beam for a significantly longer time than does the strong
electric field between the plates. Also, since the electrons are moving slantwise
relative to the axis of the cathode ray tube, it may possibly be that the fringing
field of the capacitor decelerates them. This could happen because, since the beam
is no longer centrally positioned between the plates, it is in a region in which the
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component of the fringing electric field, parallel to the velocity of the electrons,
is not zero. If this component (defined, conventionally, for a notional positive ‘test
charge’) and the velocity vector point in the same direction, the fringing field will
decelerate the negative electrons!

A solution to the overall problem that avoids these conflicting notions can be
found using energy considerations. Initially, the electrons emerge from an electron
gun placed on the symmetry plane between the parallel plates. Because of the
symmetry, the potentials produced by the two plates have the same magnitudes
but opposite signs, and so the electric potential energy is zero where the beam is.
When they impact the screen, the electrons are very far from the capacitor, and so
their potential energy in its field is again (approximately) zero. It therefore follows
from the conservation of energy that when the electrons hit the screen they have
the same speed as they had when they emerged from the electron gun.

S132 We are going to prove that the electric field strength is zero at the so-
called incentre, the centre of the triangle’s inscribed circle (which has radius r in
the figure).

Let us consider a small length of rod at position P on one of the sides of the
triangle; let it subtend an angle �ϕ at the incentre (see figure). Its distance from the
incentre is r/cos ϕ. Its small length �x can be found by noting that P is a distance
x = r tan ϕ along the rod from the fixed point Q and so �x = (r�ϕ)/(cos2 ϕ).
Consequently the charge it carries is

�q = λr�ϕ

cos2 ϕ
,

where λ is the linear charge density on the rods. The magnitude of the elementary
contribution of this small piece to the electric field at the incentre is

�E = 1

4πε0

�q cos2 ϕ

r2
= 1

4πε0

λr�ϕ

r2
.
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It can be seen from this result that the same electric field (in both magnitude and
direction) would be produced by an arc of the inscribed circle that subtends �ϕ at
the circle’s centre and carries the same linear charge density λ as the rod.

Summing up the contributions of the small arc pieces corresponding to all three
sides of the triangle, we will, because of the circular symmetry, obtain zero net
field. It follows that the electric field strength produced by the charged sides of the
triangle is also zero at the incentre.

S133 Solution 1. Since each rod can be regarded as infinitely long, it produces
an electric field that is perpendicular to the rod, and has a magnitude that varies
inversely with distance from the rod (as can be proved by applying Gauss’s law).
As the charge on the rods is all of the same sign, it is clear that the net electric field
strength cannot be zero anywhere outside the plane containing them, and the point
charge could be in equilibrium only if it is placed inside the triangle.

Assume that, at some point P inside the triangle, the net electric field strength is
zero. Denote the sides and vertices of the triangle, and the distances of P from its
sides, in the way shown in the figure. The magnitudes of the electric fields of the
rods are

|Ea| = λ

2πε0

1

ra
, |Eb| = λ

2πε0

1

rb
, |Ec| = λ

2πε0

1

rc
,

where λ is the common uniform linear charge density. Accordingly,

Ea : Eb : Ec = 1

ra
:

1

rb
:

1

rc
. (1)

If the net electric field is zero at P, i.e. Ea+Eb+Ec = 0, then a graphical addition
of the three corresponding vectors produces a closed triangle. If this vector triangle
is now rotated anticlockwise by 90◦, we obtain the triangle A′B′C′ shown on the
right-hand side of the figure. The sides of this triangle are parallel to the sides of
the original triangle ABC, and so the two triangles are similar and, consequently,
their side ratios are identical:
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Ea : Eb : Ec = a : b : c. (2)

Combining this result with (1), we obtain

ara = brb = crc.

According to this, the three straight-line segments that connect point P with the
vertices of triangle ABC divide that triangle into three parts with identical areas.
As the triangle’s centroid (and only its centroid) has this property, the equilibrium
position of the point charge must be the centroid of the triangle.

Solution 2. We use the figure and notations of Solution 1. The electric potential
at a distance r from a single long rod, carrying a uniform linear charge density λ, is

V(r) = − λ

2πε0
ln

(
r

r0

)
,

if the arbitrary zero level of the potential is chosen to be at a distance r0. (This
formula can be found by integrating the electric field, which is proportional to 1/r.)

The potential giving the net electric field of all three rods is the sum of the
individual potentials:

Vnet(r) = V(ra) + V(rb) + V(rc) = − λ

2πε0
ln

(
rarbrc

r3
0

)
. (3)

If this expression, considered as a function of only those points that lie in the
plane, has an extremum at some point P, then the force acting on a charge placed
there is zero. If it were otherwise, i.e. if the force acting on the point charge
were not zero, then the charge could be moved an arbitrarily small distance in
the direction opposite to that of the force, only by doing positive work on it. But
this would contravene the fact that, near the position of an extremum, to first order,
the potential does not change.

We are going to prove that the potential in formula (3) is maximal at the centroid
of the triangle. Since the potential V(r) depends on the position of point P only
through the product S = rarbrc, and the logarithm is a monotonic function, the
extremum of the potential can be found by maximising S. To do this, we employ
the ‘trick’ of multiplying S by an expression with a known value, and which is
independent of the position of P:

S
abc

8
= ara

2

brb

2

crc

2
≡ TaTbTc,

where Ta, Tb and Tc denote the areas of triangles BPC, CPA and APB, respec-
tively. Now, the sum of these areas is a fixed value (the area of triangle ABC), and
so – because of the general inequality that governs the arithmetic and geometric
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means of any set of positive numbers – their product is maximal when all three
areas are equal.

Accordingly, the charge can be in equilibrium only at a point for which it is true
that the line segments connecting the point to the vertices of the triangle divide the
latter into three parts with identical areas. The only point to do this is the centroid
of the triangle.

Note. The equilibrium of the point charge placed at the centroid of the triangle – if
it were allowed to move only in the plane of the rods – would be stable if it had the
same sign as the charge on the rods, but would be unstable if they carried unlike
charges. But if motion perpendicular to the plane of the rods is a possibility, it is
clear that the equilibrium is always unstable – in line with Earnshaw’s theorem
(see Note 2 on page 331).

S134 The electric field vector of one of the rods (say, the horizontal one in the
problem’s figure) is perpendicular to the rod, and has a magnitude, as a function of
distance r, that is given by Gauss’s law as

E(r) = λ

2πε0

1

r
.

We re-sketch the original arrangement in such a way that one of the rods is
perpendicular to the plane of the drawing, and appears as the point O in the figure.
The other rod lies in the plane of the drawing and the nearest point on it to O is
denoted by P.

The amount of charge on a small piece with length �x, at a distance x from the
point P and subtending an angle �ϕ at point O, is �Q = λ�x. The force exerted
on the charge by the electric field of the other rod has a component perpendicular
to the rod given by
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�F = E⊥(r)�Q = λ2

2πε0
· 1

r
cos ϕ · �x.

(The force components parallel to the rod cancel each other out when the net force
is calculated.)

The length of the small piece (marked by a darker segment in the figure) can be
expressed in terms of angle �ϕ:

�x = r�ϕ

cos ϕ
.

So, the perpendicular force component acting on the charge carried by the particu-
lar small segment is

�F = λ2

2πε0
�ϕ.

The total net force acting on the insulating rod can be calculated as the sum of
the elementary forces �F that act on its constituent small pieces. As the angle sub-
tended at O by the very long rod is π, the magnitude of the net force of repulsion is

F =
∑

�F = λ2

2πε0

∑
�ϕ = λ2

2ε0
= 2πkeλ

2,

where ke is the constant in Coulomb’s law.
It is curious that the net force does not depend on the distance d between the

rods – a result that holds so long as the distance d is much smaller than the ‘very
long’ lengths of the rods.

S135 Consider a plane perpendicular to the rods, and denote the points where
the rods intersect the plane by A (positively charged) and B (negatively charged).
For an arbitrary point P on the plane, the electric field Ei produced there by one
of the rods is radial and inversely proportional to the distance ri of P from the
particular rod (i = 1, 2). It follows that

|E1|
|E2| = r2

r1
.

We now use this inverse proportionality and the equality of the angles made with
parallel lines by another line that crosses them, to deduce the geometry of the field
lines.

Although representing a mixture of physical lengths and electric field vectors
(see Fig. 1.), the three triangles formed by the following pairs of vectors (and their
closures) are similar triangles:

−→
AP and

−→
AB, E2 and E, (E1 − E) and −E.

In particular, the angle between E and E2 is equal to angle  PAB.



Solutions 339

Fig. 1

Now, for any triangle KLM, by drawing the radii of its circumscribed circle to
each of the three vertices, and so forming three isosceles triangles, it is straight-
forward to show that the tangent to that circle at any vertex, say K, makes an
angle with side KL that is equal to angle  KML. In the present context, this means
that the line of action of the net electric field vector at point P is tangent to the
circumscribed circle (with centre O) of triangle ABP.

It follows that the net electric field vector at an arbitrary point of the plane is
tangential to an arc of the circle that circumscribes the triangle whose vertices are
A, B and that particular point. Conversely, the curve to which any particular field
line is always a tangent is an arc of a circle. The electric field lines can be seen in
Fig. 2, which also shows, as dashed lines, two sample equipotentials – they too are
circles, but complete ones.

Fig. 2

Note. The two sets of circles, one of field lines, the other of equipotentials, shown
in Fig. 2, together form what is known as a set of Apollonian circles. Every
member of one set intersects every member of the other – and does so at right
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angles (a property possessed by corresponding sets of electrostatic field lines and
equipotentials, more generally).

An Apollonian circle was originally defined as the locus of a point that main-
tains a constant ratio of its distances from two fixed points; the latter are known
as its foci. The individual (non-intersecting) circles that make up one of the sets
each correspond to a different value of the ratio. The other set all have the line
joining the foci as a common chord. In our problem, the foci are the points A and
B and the equipotentials are the non-intersecting set of circles.

S136 According to Newton’s third law, the insulating plate acts on the point
charge with a force of the same magnitude (but opposite direction) as the point
charge does on the plate. We calculate the magnitude of this latter force.

Divide the plate (notionally) into small pieces, and denote the area of the ith
piece by �Ai. Because of the uniform charge distribution, the charge on this small
piece is

�Qi = Q

d2
�Ai,

and so the electric force acting on it is Fi = Ei�Qi, where Ei is the magnitude of
the electric field produced by the point charge q at the position of the small piece.

The force acting on the insulating plate, as a whole, can be calculated as the
vector sum of the forces acting on the individual pieces of the plate. Because of the
axial symmetry, the net force is perpendicular to the plate, and so it is sufficient to
sum the perpendicular components of the forces:

F =
∑

i

Fi cos θi =
∑

i

Ei
Q

d2
�Ai cos θi = Q

d2

∑
i

Ei�Ai cos θi,

where θi is the angle between the normal to the plate and the line that connects the
point charge to the ith piece of it.

The sum in the given expression is nothing other than the electric flux through
the square sheet produced by the point charge q:

�� =
∑

i

Ei�Ai cos θi,

and can be evaluated as follows.
Let us imagine that a cube of edge d is constructed symmetrically around the

point charge (see figure). Then, the distance of the point charge from each side
of the cube is just d/2. According to Gauss’s law, the total electric flux passing
through the six sides of the cube is q/ε0, and so the flux through a single side is
one-sixth of this:

�� = q

6ε0
.
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Using this and our previous observations, we calculate the magnitude of the force
acting on the point charge due to the presence of the charged insulating plate as

F = Qq

6ε0d2
.

S137 Because of the symmetry, the electrostatic force acting on any particular
face of the cube is perpendicular to that face. This is why the magnitude of the force
acting on any one face can be found by summing the perpendicular components of
the forces that act on the elementary pieces of that face:64

F =
∑

i

σEi�Ai cos θi = Q

d2

∑
i

Ei�Ai cos θi. (1)

Here �Ai is the surface area of the ith elementary piece, σ = Q/d2 is the surface
charge density, Ei is the magnitude of the electric field strength at the position of the
ith piece, and θi is the angle between the electric field vector there and the normal
to the square face. In the above expression, the summation is only over the electric
flux �5 that is produced by five faces of the cube, and passes through the sixth
face. To find the flux, consider the next figure.

64 In a similar way to that employed in the solution on page 340.



342 200 More Puzzling Physics Problems

In the figure the arrows represent the flux. The flux, �6, that comes out through
one of the faces of the cube consists of two parts: the flux �1 of the face’s own
electric field, and the flux �5 produced by the other five faces:

�6 = �5 + �1.

The flux �1 of the face’s own electric field can be calculated from Gauss’s law:

�1 = 1

2

Q

ε0
,

since the numbers of electric field lines emerging from the two sides of the face
are equal. The flux �6 coming out from any one face of the cube is, because of the
symmetry, equal to one-sixth of the total flux emerging from the cube:

�6 = 1

6

6Q

ε0
.

Accordingly, the electric flux through the sixth face produced by the other five
faces is

�5 = �6 − �1 = Q

ε0
− Q

2ε0
= Q

2ε0
.

Inserting this into expression (1), we get

F = Q2

2ε0d2

for the magnitude of the electrostatic force acting on each face of the cube.

S138 Small pieces of the upper (positively charged) and lower (negatively
charged) plates that subtend the same solid angle �� at the point P – they just
cover each other when viewed from P – create electric fields at P that have
the same magnitude, but opposite directions. This conclusion follows from the
compensating facts that the charges on the small pieces are proportional to
the squares of their distances from P, and that, according to Coulomb’s law,
the strengths of the electric field they produce are inversely proportional to the
squares of the same distances.

This is the reason why the electric field produced at P by the lower plate is fully
cancelled out by that part of the upper plate that subtends the same solid angle at P
as does the whole of the lower one. So, the task is reduced to determining the net
electric field at P generated by the ‘remaining marginal region’ of the upper plate,
marked off by a dashed line in Fig. 1. In this figure, the plates have dimensions
a × b, with P above the midpoint of one of the edges of length a.
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Fig. 1

Because P is not centrally placed above the plate, the width of the margin is not
the same everywhere. From the ratio property of similar triangles, its width along
the most distant edge of the upper insulating plate is

xb = bd

h
,

whereas along the other two edges it is

xa = ad

2h
.

Consider now an element of the margin that both subtends an angle �ϕ at the
point P′ shown in Fig. 1 and is located along one of the edges of length b. The
distance of this small piece from the point P is (using the notation of the figure)

r =
√(

a

2 sin ϕ

)2

+ h2 ≈ a

2 sin ϕ
,

where the fact that h � a has been used. The length of the small piece is

�s = a

2 sin2 ϕ
�ϕ,

and the charge it carries is

�Q = σxa�s = σ

(
a

2 sin ϕ

)2 d

h
�ϕ.

The magnitude of the electric field strength produced at point P by the margin
element is

|�E| = 1

4πε0

�Q

r2
= σ

4πε0

d

h
�ϕ,

and, because h � a, its direction is roughly horizontal (although this cannot be
seen in our figure, because its scale is heavily distorted). This result is independent
of the edge lengths, a and b, and also of the angle ϕ. The same is true for all other
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elements of the margin – for given d and h, the magnitudes of the electric field
components they produce depend only on the angles �ϕ they subtend at P′.

Fig. 2

Next, notionally divide the whole margin into elements that subtend identical
angles �ϕ � π at the point P′. The electric field vector components produced
by these small elements can be (vectorially) added to each other (see Fig. 2),
yielding one half of a regular polygon. Refining the subdivision (�ϕ → 0), the
semipolygon approximates a semicircle with ‘a curved perimeter’ of length

σ

4πε0

d

h

∑
�ϕ = σ

4πε0

d

h
π.

The length of its ‘diameter’ represents the magnitude of the electric field strength,
and is

|E| = σ

2πε0

d

h
.

The direction of the net electric field is approximately horizontal, and perpendic-
ular to the edges of the plates below the point P. Fig. 3 shows a side view of the
electric field lines in the vicinity of the plate edges.

Fig. 3
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S139 The electric field of the charged holed spherical shell can be found if
it is imagined that the missing piece of the shell (approximately a small disc) has
been replaced into the hole and carries the same uniform surface charge density as
the rest of the shell (see Fig. 1).

Fig. 1

Denote by E1 the electric field at the centre of the aperture in the holed shell. If
we consider the electric field of the missing small disc alone, then, very close to its
centre, the magnitude |E2| of the electric field is the same on both sides of the disc.
If (in thought) the missing piece were replaced into the hole, then we would get
a uniformly charged insulating spherical shell, for which the electric field is zero
everywhere inside. So, from the superposition principle it follows that

E1 − E2 = 0. (1)

Outside the spherical shell, the electric field is the same as if the charge Q were
all condensed into a point charge at the centre of the sphere, and so the electric field
at a distance R from the centre (near the surface of the sphere, but outside it) is

|E1 + E2| = 1

4πε0

Q

R2
. (2)

From equations (1) and (2), we find that, in the case of the holed shell, at the centre
of the aperture the magnitude of the electric field is

|E1| = 1

8πε0

Q

R2
,

and that (because of the symmetry) its direction is radial. Note that this is just one-
half of the electric field due to the whole charged sphere, and as E1 = E2, the
contributions to the net electric field of the small disc and the holed shell are equal.

The sketching of the electric field lines of the holed shell still remains to be done.
From the superposition argument, it follows that the electric flux passing through
the hole – i.e. the number of electric field lines that cross the hole – is just one-half
of the flux through a piece of the shell (with the same surface area as the hole) that
is situated far away from the hole.
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But where do the electric field lines, crossing the hole, start from? They start
on the inner surface of the charged insulating spherical shell! Inside the shell, far
away from the hole, the electric field is similar to what it would be if a point charge
of the same magnitude, but opposite sign, to the charge on the missing piece were
positioned in the centre of the hole. Outside the sphere, as we move away from the
shell, the electric field gradually turns into the isotropic field of a point charge Q.
The electric field lines of the charged, but holed, spherical shell are illustrated in
Fig. 2, which shows a plane section containing the symmetry axis of the shell.

Fig. 2

S140 a) We investigate first the special case in which q = Q. In this case, the
electric field becomes that due to a single uniformly charged insulating spherical
shell carrying a charge 2Q. Anywhere outside the shell, the electric field can be
calculated as if the charge 2Q were all concentrated at the centre of the sphere, and
so the electric field just outside the shell at a distance from the centre marginally
greater than R is

E = 1

4πε0

2Q

R2
,

and inside the sphere it is zero. The uniform charge density on the surface of the
insulating shell is

σ = 2Q

4πR2
= Q

2πR2
= ε0E.

The electric field E exerts a force of �F = 1
2�QE on any small piece of the

spherical shell with surface area �A, and charge �Q = σ�A. The factor of 1
2
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comes from the fact that the magnitude of the electric field is E only on the outer
side of the surface element, whereas it is zero inside, leading to an average value
of E/2.

Note. The factor of 1
2 can also be justified, perhaps more rigorously, by using the

argument given on page 345 in connection with a holed sphere. Close to a small
piece of the spherical shell, the electric field receives significant contributions
from both the small surface element considered, and all the other parts of the
spherical shell. It was shown that the contribution (E/2) of the small piece to the
electric field is the same as that due to the rest of the sphere (also E/2). This
conclusion followed from the fact that the electric field is zero inside the surface
of the sphere, and E outside it. The force acting on the charge �Q situated in an
electric field with strength E/2 is, as stated, �F = 1

2�QE.

Thus the force acting on the charge carried by unit area of the shell is

p = �F

�A
= 1

2
σE = 1

2
ε0E2.

Since this force is the same for all parts of the shell’s surface, i.e. is isotropic, the
situation is just the same as if there were a gas at gauge pressure p inside the sphere.

The net force acting on each of the hemispherical shells is the same (in magni-
tude) as the force that acts on a (theoretical) circular plate that closes it. This has
to be the case because, if it were not, we could create perpetuum mobile by filling
a closed hemispherical shell with gas at a non-zero gauge pressure. So, the force
exerted by one of the two identical hemispherical shells, each carrying uniformly
distributed charge Q, on the other is

FQ→Q = p · πR2 = 1

2
σE · πR2 = 1

8πε0

Q2

R2
.

Let us now return to our original question, in which the two hemispherical shells
carry different charges, namely Q and q. The electrostatic force acting on a body
is directly proportional to the charge it carries, and so

F(a) = FQ→q = Fq→Q = q

Q
FQ→Q = 1

8πε0

Qq

R2
.

b) Solution 1. Complement the arrangement of hemispherical shells of different
radii with its ‘mirror image’ (see Fig. 1)! Denote the net force exerted by the
two left-hand hemispherical shells on the two right-hand shells by F0. This force
consists of four components:

F0 = FQ→Q + Fq→q + FQ→q + Fq→Q.

The last two terms in the sum are equal to each other, and both of them are just the
required force F(b). So, if F0 could be calculated, then with the help of FQ→Q and
Fq→q (found in part a)) the ‘wanted’ force F(b) could be determined.
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Fig. 1

For the calculation of F0, consider the electric field produced by two concentric
spherical shells, an inner shell of radius r and charge 2q, and an outer one of radius
R and charge 2Q. In essence, this is also the electric field produced by the four
hemispherical shells.

Fig. 2

Inside the smaller shell, the electric field is zero. The charge density on the
surface of this shell is (see Fig. 2)

σq = q

2πr2
,

and the electric field just outside the surface of the sphere is given by

E1 = 1

4πε0

2q

r2
.

The electric field of this smaller sphere at the surface of the larger sphere – strictly
speaking, just inside its surface layer of charge – is E2, where

E2 = 1

4πε0

2q

R2
.
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The charge density on the surface of the larger sphere is

σQ = Q

2πR2
.

Outside the larger sphere, both spheres are responsible for the electric field. Con-
sequently, the magnitude of the electric field here (close to the surface) has the
form

E3 = 1

4πε0

2q + 2Q

R2
.

With the help of the above expressions – and following the argument applied in
part a) – the force F0 can be calculated as follows:

F0 = 1
2σqE1πr2 + 1

2σQ(E2 + E3)πR2.

Note that, in line with our discussion in part a), we can assume that the average
electric field inside the surface layer of charge 2q on the smaller sphere is E1/2,
and that inside the charge layer on the larger sphere is (E2 + E3)/2.

Substituting the expressions for σq, σQ, E1, E2 and E3 into the formula for F0,
we get the force between the two double hemispherical shells:

F0 = 1

8πε0

q2

r2
+ 1

8πε0

Q(2q + Q)

R2
.

Using the results from part a), we also have that

FQ→Q = 1

8πε0

Q2

R2
and Fq→q = 1

8πε0

q2

r2
.

Finally, from these we obtain the force in question:

F(b) = FQ→q = Fq→Q = 1

8πε0

Qq

R2
.

The result is surprising, since the force F(b) is independent of r. Accordingly,
the force between the charged hemispherical shells is the same in both cases –
F(b) = F(a)!

Solution 2. Let us notionally enclose the arrangement, seen in Fig. 3a) (in which,
for the sake of simplicity, only the force acting on the smaller hemispherical shell is
indicated), with a spherical shell that carries a uniformly distributed charge −2Q,
and has a radius that is ‘just a hair’ larger than R, as shown in Fig. 3b). When
this is done, the force between the hemispherical shells does not change, as the
electric field inside a uniformly charged spherical shell is zero. This arrangement
is equivalent to that shown in Fig. 3c), from which we get the situation shown in
Fig. 3d) by changing the sign of −Q.
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Fig. 3

Now, reflection of the whole system in the imaginary boundary plane of the
hemispherical shells gives the arrangement in Fig. 3e), and shows that the (uni-
formly charged) hemispherical shell carrying charge Q exerts the same force on a
concentric smaller one carrying charge q when the latter is ‘inside’ it, as it does
when it is ‘outside’, i.e. the force is the same in both magnitude and direction in
Figs. 3a) and 3e). This is perhaps somewhat surprising, as the charges are clearly
closer together in Fig. 3e) than they are in Fig. 3a), and this will lead to larger
forces. However, in Fig. 3a) all the forces, though weaker, are more nearly directed
along the axis of symmetry and so reinforce, rather than cancel, each other, as the
components perpendicular to that axis do in Fig. 3e). It seems that these two effects
exactly compensate for each other.

By adding the effect that the charge Q carried by the larger hemisphere has on the
‘outside’ small hemisphere (Fig. 3a)) to its effect on the ‘inner’ small hemisphere
(Fig. 3e)), we obtain Fig. 3f ), which shows that the larger shell would exert a force
of 2F on a complete sphere carrying charge 2q. On a sphere with half that charge,
i.e. q, the force would be halved, that is, F.

According to Newton’s third law, the magnitude of the force, acting on the larger
hemispherical shell with charge Q, and exerted by the sphere with charge q, is just
the same as the required F(b). But, outside its surface, the electric field of the sphere
(with radius less than R) can be replaced by that of a point charge at its centre (this
is where the dependence on radius r disappears). This point charge exerts the force
F(b) on the larger hemispherical shell as shown in Fig. 3g). The final result can be
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found by applying Coulomb’s law and using the analogy of a gas under positive
gauge pressure:

F(b) = 1

4πε0

q

R2

Q

2πR2
R2π = 1

8πε0

Qq

R2
.

Note. Using similar ‘reflection methods’, it can be shown that the magnitude of
the force between the hemispherical shells is given by the above expression, even
if the symmetrical axes of the two shells make an arbitrary angle α with each
other; the magnitude of the force depends only on the product of the charges,
and the radius of the larger shell. The direction of the force is parallel to the axis
of symmetry of the larger hemispherical shell, but its line of action does not, in
general, go through the common centre of the shells (see Figs. 4a) and 4b)). This
is a strange result, because if r and R are almost equal, but one of them is ‘just a
hair’ larger than the other, then the direction of the force changes precipitously,
depending on which radius is that little bit larger (compare Figs. 4b) and 4c)).

Fig. 4

S141 At the centre of a cube carrying a homogeneous charge density, the
potential Vcentre can depend only on Coulomb’s constant ke = 1/(4πε0), the charge
Q on the cube and the length a of one of its edges. If the units of the quantities
involved, i.e.

[Vcentre] = N m

C
, [ke] = N m2

C2 , [Q] = C, [a] = m,

are taken into account, the functional dependence can only be of the form

Vcentre(a, Q) = cke
Q

a
, (1)

where c is a dimensionless constant (characterising the geometry of the cube).
Imagine a larger cube with edge length 2a, built up from eight identical smaller

cubes with edge length a, and each carrying a charge Q uniformly distributed
throughout it (see figure). The potential at the centre of this larger cube is

Vcentre(2a, 8Q) = cke
8Q

2a
= 4cke

Q

a
.
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The centre of the large cube is one of the vertices of each of the smaller cubes.
Now, further imagine that seven of the eight small cubes are removed to a great
distance; the potential at the position of the centre of the large cube decreases to
one-eighth of its original value. So the potential at the vertex of the remaining small
cube is

Vvertex(a, Q) = 1

8
× 4cke

Q

a
= 1

2
cke

Q

a
. (2)

Comparing expressions (1) and (2), it can be seen that the potential at the centre
of the cube carrying a homogeneous volume charge distribution is exactly twice as
large as that at its vertex.

S142 A small piece of the surface of a charged conductor experiences an
outward normal force that is directly proportional to the square65 of the local charge
density (see Fig. 1). This, in turn, depends on the geometrical shape of the surface.

In our case, the charged conductor is the mercury (as charge moves onto it when
the high voltage is switched on), and its shape is shown in Fig. 2. Inside the part
of the capillary tube that is below the outer mercury level, the electric field is
practically zero, because this region is inside the conductor, and the Faraday cage
effect comes into play. We could also come to the same conclusion by arguing
that, if there were a significant electric field inside the recess, then there would be
a potential difference between the top and the bottom of the cavity, but – because
of the metallic character of mercury – this cannot happen.

Fig. 1 Fig. 2

65 Both the local electric field strength, and the charge on which that field acts, are proportional to the local
charge density.
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So, in practical terms, there is no electric field in the capillary tube that could
exert an upward force on the mercury. But, on the other parts of the mercury
surface, there is such a force, acting vertically upwards. As the total volume of
the liquid mercury is given, the mercury level in the capillary tube must sink.

Note. The phenomenon of thermal conduction can be described with equations
formally similar to the laws of electrostatics. In the analogy, the temperature
corresponds to the electric potential, and the analogue of the electric field is a
vector proportional to the heat flux (current density).

The given electrostatic problem corresponds to the following thermal question:
‘What is the temperature distribution in the vicinity of a good thermal conductor
(with the shape shown in Fig. 2), if the body of the conductor is slightly warmer
than its surroundings, which have only moderate thermal conductivity?’ It is
obvious that heat is being given out by the body, but inside the cavity significant
heat currents cannot be formed, as the temperature of the cavity wall is practically
uniform.

S143 In the derivation of the approximate capacitance formula for a parallel-
plate capacitor, it is assumed that the electric field strength is constant inside the
capacitor, that it is zero outside (the fringing fields are neglected) and that the
electric field lines are perpendicular to the plates. These are good approximations
when the width of the plates is much greater than their separation d.

Within this approximation, the magnitude of the uniform electric field E can be
found if Gauss’s law is applied to a rectangular cuboid that surrounds one of the
plates of the capacitor, and has two of its faces parallel to the plate. In accord with
the approximations and Gauss’s law,

EA = Q

ε0
,

where A is the inner surface area of the plate and Q is the charge on it. The potential
difference (voltage) between the plates is �V = Ed. In this approximation, the
capacitance is

Cappr = Q

�V
= ε0

A

d
.

We now assume that Q is given, and estimate (without the approximations) the
real voltage between the identical plates. We note that their charge distributions
cannot be uniform, because the repulsive forces between the charges mean that
their densities are larger near the edges of the plates, and smaller in the middle,
than their average value. For rectangular or circular plates, the electric field along
the symmetry axis that passes through both plate centres must be normal to the
plates, and its magnitude must be smaller than Q/(ε0A) (because of the less-than-
average surface charge density there).
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As we move along the symmetry axis from the plates to the centre of the capac-
itor, the density of the electric field lines cannot increase (in fact, it decreases),
and so the magnitude of the electric field does not reach the value of Q/(ε0A) at
any point on the symmetry axis. It follows that the potential difference (voltage)
between the plates – which can be calculated along any arbitrary path, in particular
along the symmetry axis – must be less than Qd/(ε0A). Since Q is given, we
immediately conclude that the real capacitance is greater than ε0A/d.

The electric field inside the capacitor may or may not be homogeneous to a good
approximation, but the fringing field outside the capacitor inevitably contributes to
the (fixed) Gauss integral, and reduces the amount of flux attributable to the field
between the plates. This is why, in reality, both E and �V are smaller than predicted
by the approximate calculation. An alternative view is to consider the fringing field
as due to a small capacitor connected in parallel with an ideal capacitor; when two
capacitors are connected in parallel, their capacitances are added and the equivalent
capacitance is always greater than either.

Note. The result of a more accurate calculation of the capacitance depends on the
shape of the plates. In the case of circular plates (A = πR2), the approximate
result can be corrected by a factor that depends on the ratio d/R. As examples, if
d/R = 0.2, then the factor is 1.286; for d/R = 0.01, it is only 1.023.

For rectangles, the calculation is much more sophisticated. Quite a good
approximation is obtained if we work with an enlarged plate area given by
enlarging each of its real dimensions by 3d/8.66

S144 For exercises in physics textbooks, the charges on the plates of a capac-
itor nearly always have equal magnitudes but opposite signs. But here, the signs
of Q1 and Q2 are unknown, and their magnitudes can be different or equal. If the
charges on the plates had values +Q and −Q, then the potential difference would
have the well-known value of

�V = Q

C
.

And if both plates carried charges of +Q, then because of symmetry, the potential
difference between the plates would be zero.

We now apply the principle of superposition and incorporate both of these obser-
vations. Notionally, we add a charge of −(Q1 + Q2)/2 to each plate. The potential
difference between the plates cannot change because of this, but the charges on the
plates change from Q1 to +(Q1 − Q2)/2, and from Q2 to −(Q1 − Q2)/2. We then
have a ‘traditionally’ charged capacitor with a potential difference across it of

66 See R. P. Feynman, R. B. Leighton & M. Sands, The Feynman Lectures on Physics, including Feynman’s Tips
on Physics: The Definitive and Extended Edition (Addison-Wesley, 2006).
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�V = |Q1 − Q2|
2C

.

So this must also be the potential difference across the parallel-plate capacitor
when it was charged asymmetrically.

Note. From the solution found, the charge distribution on the plates can be deter-
mined. Because of charge induction, on the inner surfaces of the plates, charges of
+(Q1 −Q2)/2 and −(Q1 −Q2)/2 have replaced Q1 and Q2, respectively. But, on
the outer surfaces, the amounts of charge are identical, both being (Q1 + Q2)/2.

S145 Solution 1. Consider first a scenario in which the two metal plates, con-
nected by a wire, are grounded, and charges can move freely onto and off the plates.
This is not the situation in the problem, but it is nevertheless quite instructive.
Because of their electrical connection, the two plates behave as if they were a
single, very large (essentially infinite), grounded metal plate. The point charge Q
produces the same electric field above the (combined) plate as would be produced
by a system consisting of itself and a ‘mirror point charge’ −Q, situated on the
same normal to the plate, and a distance d below the plate (see Fig. 1).

Fig. 1

The charge distribution formed on the plate is determined by the (non-uniform)
electric field strength on the ‘upper’ surface of the metal plate. According
to Gauss’s law, the amount of charge on a given surface area of the plate is
proportional to the number of electric field lines passing through that area. As all
of the electric field lines must terminate somewhere on the ‘infinitely large’ plate,
the total charge on the whole (grounded) metal plate must be −Q.

Just as the electric field can be found by superposing the fields of the real charge
and the image charge, so can the number of electric field lines that pass through a
given surface area of the plate be determined. But the two contributions are equal
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to each other, and so the total electric flux arriving at any given area of the plate is
twice the flux due to the real point charge Q.

We next investigate how, if the charges induced on the plate were not present, the
terminations of the Q/ε0 electric field lines originating (with spherical symmetry)
from the point charge Q would be distributed between the two plates. To determine
this, imagine that Q is surrounded by a spherical shell of radius d, as seen in
Fig. 2, with half of the field lines, Q/(2ε0) in number, passing through the lower
hemispherical shell.

Fig. 2

The metal plate furthest from the point charge intercepts those field lines that
emerge through a one-eighth part of the spherical shell (a ‘melon shell’, shaded
light grey in Fig. 2); the corresponding flux is Q/(8ε0). On the other plate, three
times as many field lines arrive, and so the flux passing through it is 3Q/(8ε0). As
these fluxes have to be doubled up (to account for the image charge), we conclude
that a charge of −Q/4 would appear on the upper surface of the right-hand plate,
and a charge of −3Q/4 on the left-hand one – all of this calculated as if the plates
were grounded.

But, in reality, the metal plates are not grounded, and so their total charge must
be zero, even after the electrostatic induction; clearly the total charge to be added
to bring this about is +Q. In the absence of the point charge – i.e. for a large
isolated plane consisting of two identical conducting plates, electrically joined – it
is obvious that any added charge would distribute itself equally between the two
plates. Our problem is the superposition of the above two scenarios. So, if we add
+Q/2 to the charges calculated above for each of the two plates, then we get the
solution to the original problem: the total charge on the left-hand plate is −Q/4,
and that on the right-hand plate is +Q/4.

Note. If charge Q were divided into two equal portions, and one of the halves
were moved parallel to the thin gap between the plates, then, although the charges
would rearrange themselves, the total charge on each individual plate would not
change. Repeating this process many times, charge Q can even be ‘smeared’
uniformly along a thin, straight, insulating rod, and the problem essentially
transformed into a two-dimensional one, as illustrated in Fig. 3. The solution to
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this modified question remains the same as that for the original one, i.e. if the
plates are grounded, the net charge ratio on the plates is 3 : 1 (in line with the
ratio of opening angles of the dark and light grey segments in Fig. 3.)

Fig. 3

Solution 2. Denote the amount of charge on the left-hand metal plate by −q.
Since the combined plate is not earthed, the electrons making up this charge will
have been provided by the right-hand plate, which must therefore now carry a
charge +q. Next consider placing a charge −Q at the position shown in the centre
of Fig. 4; this generates charge +q on the right-hand plate and −q on the left-hand
one. The two arrangements can now be superimposed, with the result shown on the
right of Fig. 4.

Fig. 4

The electric field of this superimposed arrangement can be determined by using
the method of image charges (see Fig. 5), as in Solution 1. The (‘vertical’) plane
delineated by the dashed line in the figure is an equipotential – as would be any
real metal plate inserted there. This hypothetical plate would be an equipotential
surface at zero potential – just like the real ‘horizontal’ plate. From symmetry –
up and down on the left-hand side, as compared to left and right above the plate –
a further charge of −2q would appear on the ‘left-hand surface’ of the upper part
of this hypothetical plate. As all of the field lines that start on charge +Q must
terminate on one of the two semi-planes, we have that −2q − 2q = −Q, that is,
q = Q/4.

As it must, this approach yields the same conclusions as did Solution 1. Charge
−Q/4 appears on the plate closer to the charge Q; charge +Q/4 appears on the
other plate, as the latter supplies the electrons needed to produce the extra charge
on the former.
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Fig. 5

S146 The potentials of the capacitor plates are both zero, and, for this reason,
the method of image charges can be applied. The first few of the infinite number of
image charges of +Q and −Q are indicated in the figure by open circles. (For the
moment, the black circles also shown in the figure are to be ignored, as they are
not true image charges.)

A little careful calculation shows that the open circles carrying a positive sign
are symmetrically placed about the pearl, and so their effects cancel each other
out in pairs. Further, there can be no change in the force acting on the pearl if
this symmetric (about the pearl) set of positive charges +Q is replaced by another
symmetric set of positive charges +Q – not least because neither set has any net
effect on the pearl. The positions of the replacement charges are marked in the
figure by the black circles. (The positively marked open circles are now to be
ignored.)

The net effect of these observations and charge replacements is to reduce the
image charges to a series of electric dipoles, each dipole being ‘formed from a
negative open circle and a nearby positive black circle’. We note that all the dipoles
are aligned in the same direction. As the fields produced by dipoles decay with
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distance much more rapidly than those due to isolated charges, the summation
over the infinite series involved should converge much more rapidly.

Finally, we have to explicitly sum the effects on the pearl of electric dipoles,
each with dipole moment p = Q · 2δ, which are (to a good approximation) located
at distances ±d, ±3d, ±5d, ±7d, . . . from the pearl. The magnitude of the force67

acting on the pearl due to a single dipole at a distance r is

Fdipole(r) = 1

2πε0

pQ

r3
,

and so the effect of all the dipoles is a force

F = 2

2πε0

2Q2δ

d3

(
1 + 1

33
+ 1

53
+ · · ·

)
= 2

πε0

Q2δ

d3

∞∑
n=0

1

(2n + 1)3
,

and this force is directed towards the closer plate. When the first few terms of this
sum are calculated, it soon becomes clear that the series converges very rapidly,
and we get the following result for the force acting on the pearl:

F ≈ 2.1
Q2δ

πε0d3
.

Note. The sum above can be expressed in terms of the Euler–Riemann zeta func-
tion, which can be defined as the sum

ζ(s) =
∞∑

n=1

1

ns

for all values of s that make the series convergent (for real numbers, this means
s > 1). It can be proved that our result (involving only the odd integers) can be
written in the form

F = 7ζ(3)

4

Q2δ

πε0d3
= 2.1036

Q2δ

πε0d3
.

It is interesting to note that calculating only the sum of the first few terms gives
quite an accurate result.

S147 The electric field between the plates, generated by the charged rod and
the grounded plates, is just the same as that produced by the charged rod and a set
of imaginary (linear) image charges, with appropriate positions and signs; none of
them may be located in the space between the plates. In case a) there is in fact only
a single plate, and the required zero potential at the plate can be provided using
only a single ‘image rod’ (see Fig. 1).

67 See, for example, ‘Problem 183’ in P. Gnädig, G. Honyek & K. F. Riley, 200 Puzzling Physics Problems
(Cambridge University Press, 2001).
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Fig. 1

In case b), the potential on the plates can be made zero if the charged rod is
reflected in either metal plate, and the ‘image rods’ are then also reflected in the
plates. The process is repeated, theoretically for ever, but if, at some stage, all the
new images coincide in position with previous ones, the procedure is halted, and
we have an appropriate set of image rods. The charge always changes sign at each
reflection.

As noted earlier, this method can be applied only if, after the multi-reflections,
none of the image charges lie in the segment occupied by real charges (in our
case, between the metal plates, where the charged rod is located). This condition is
fulfilled if 2nθ = 360◦, where n is a positive integer (see Fig. 2).

Fig. 2

The electric field produced by a rod of length L, and carrying uniformly dis-
tributed charge Q, can be calculated as a function of the distance x � L from the
axis of the rod, using Gauss’s law. The electric flux passing through the lateral
area of a right-circular cylinder with base radius x and length L, and having its
axis coincident with the rod, is E · 2πxL. This must be equal to Q/ε0, and so the
magnitude of the field is
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E = Q

2πε0Lx
.

In case a), the electric field of the image rod, at the position of the real rod, can
be found by setting x = 2r, and so the magnitude of the force acting on the charged
rod is

F = Q2

4πε0Lr
,

and its direction is towards the image charge, i.e. towards the metal plate. (In
reality, of course, this force on the rod is due to the electrostatically induced charges
on the earthed metal plate.)

In case b) (when viewed parallel to the rod), the real rod and the image rods
define a regular 20-sided polygon. The force on the original (real) rod is the net
force exerted by all 19 image rods, which acts – because of the symmetry of the
arrangement – perpendicularly to the rod, and in the direction of the bisecting line
(axis) between the plates. So, it is sufficient to calculate the (a-directed, see Fig. 2)
components of the forces exerted by the image charges that point along that axis,
and then, finally, to sum them.

Fig. 3

Consider the image rod shown in Fig. 3, which subtends an angle 2ϕ at the inter-
section line (axis) of the plates, measured from the azimuthal direction (marked a)
of the original (real) rod. The distance between this image rod and the original one
is x = 2r sin ϕ, and so the magnitude of the force acting between them is

F(ϕ) = Q2

2πε0Lx
= Q2

4πε0Lr sin ϕ
.

Its direction is attractive or repulsive, depending on the sign of the image charge.
The component of this force parallel to the bisector a of the metal plates is

Fa = F(ϕ) sin ϕ = ± Q2

4πε0Lr
.

The magnitude of this component does not depend on the angle ϕ. Only its direc-
tion changes, according to the sign of the image charge (for unlike charges, it is
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directed towards the intersection line, whereas for like charges, it points in the
opposite direction).

As 10 of the 19 image rods have charges −Q, and only nine of them have +Q,
the net force is the same as it would be if only a single image rod were present.
So, the magnitude and direction of the force acting on the original rod in case b) is
equal to that calculated in case a)!

Note. It can be seen that the same result is obtained for any arbitrary angle θ

satisfying θ = 180◦/n (where n is a positive integer). It can be proved, using
more sophisticated mathematics, that the electrostatic force acting on the charged
rod is totally independent of the angle between the metal plates, i.e. even if n is not
a whole number, and the method of image charges cannot be applied, the result
still holds.

S148 Consider first a metal sphere of radius R and total charge Q, which
(because of symmetry) is distributed uniformly on its surface, i.e. the surface
charge density is

σ0 = Q

4πR2
= constant.

Inside the sphere – as is well known – the net electric field is zero. This can be
proved at any arbitrary inner point P of the sphere, by calculating the electric field
contributions of the charge �Q1 = σ0�A1 on a (very small) surface piece of area
�A1, and that of the charge �Q2 = σ0�A2 on an area �A2 that subtends the
same solid angle at P but is in the opposite direction (see Fig. 1). According to
Coulomb’s law, the magnitude of the net electric field is

|E1 + E2| = ke
�Q1

r2
1

− ke
�Q2

r2
2

= keσ0

(
�A1

r2
1

− �A2

r2
2

)
= 0.

In the final step we used the fact that, from geometrical considerations,

�A1

�A2
= r2

1

r2
2

.

Note. To prove the above equality, it is necessary to take into consideration that the
area of the small surface piece, around an arbitrary point A on the surface of the
sphere, subtending a given (small) solid angle at point P, is directly proportional –
in accord with the definition of solid angle – to the square of the length of line
segment PA, if the surface is perpendicular to the direction of

−→
PA. Even though

in general the tangent plane of the spherical surface is not perpendicular to
−→
PA,

and makes a different angle with it, this angle is the same at that made with the
opposite surface piece, and so accordingly the ‘distortion factor’ cancels out in
the quotient.
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The field effects of the charges on the small surface pieces opposite each other
cancel out in pairs, so the net electric field of all the charges on the sphere is zero
at any point inside the sphere.

Fig. 1 Fig. 2

Now let us move on to the case of the electrically charged disc. We show that its
charge distribution can be found from the uniform surface density of the charged
metal sphere. Let us (notionally) ‘glue into position’ the charges on the surface of
the sphere, and then project the points of the spherical surface perpendicularly onto
a plane that contains the centre of the sphere and the point P investigated earlier
(see Fig. 2).

As the charges cannot move, the charge �Q1, originally on the surface area
�A1, when projected onto the plane, occupies a somewhat smaller area �A∗

1, and
so the surface charge density (with an unchanged amount of charge) increases. In
addition, its distance from the point P also changes, from the original value of r1

to the smaller one of d1. The corresponding thing happens with the charge �Q2

originally located on the opposite side of the sphere.
What electric field is produced at P by the two charged pieces (projected onto

the plane, and still glued to the disc)? The net field can be calculated again from
Coulomb’s law:

|E∗
1 + E∗

2| = ke
�Q1

d2
1

− ke
�Q2

d2
2

= keσ0

(
�A1

d2
1

− �A2

d2
2

)
= 0.

In the last step, the geometrical results

�A1

�A2
= r2

1

r2
2

and
r1

r2
= d1

d2

were used. The same zero-field result holds for all the other charge pairs, and so
also for the whole charge distribution; the electric field is everywhere zero on the
plane of the disc.
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We have obtained the interesting result that the electric field produced by all
the other charges does not produce any force on the charge fixed at P, for any
P. Consequently, we can even abolish the notional fixing (gluing) of the charges,
because – in the absence of any force – they will not move. The question of
the electrical charge distribution on the disc has thus been solved: the charge is
distributed on the disc in the same way as it would be if that on a uniformly charged
spherical surface were projected perpendicularly onto it.

Fig. 3 Fig. 4

The surface charge density can be found with the help of a ‘side view’ sketch of
a sphere of radius R, in which the particular surface pieces appear as line segments
(see Fig. 3). The charges, originally situated on the area �A, are, after projection,
at a distance r from the centre of the disc of radius R, and occupy an area

�A∗ = �A sin θ =
√

R2 − r2

R
�A

at their new position. So the charge density on the disc at a distance r from its
centre is

σ(r) = �Q

�A∗ = σ0
�A

�A∗ = Q

4πR2

R√
R2 − r2

(see Fig. 4). As expected, the charge density increases away from the centre of the
disc, and at its rim becomes ‘infinitely large’. But this infinity should not be taken
seriously, because, when r approaches the radius R of the disc, the disc’s thickness
(neglected until now), as well as edge effects, become important, and the above
calculation method fails.

Attention! The derived formula represents the charge density on one of the sides
(say, the upper side) of the metal disc, as it was derived from the ‘projection’ of
the charge Q/2 located on the upper hemisphere. The other (lower) side of the disc
also carries charge Q/2, with the same distribution as on the upper side.
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Note. An interesting question might present itself. ‘What happens if we project
the charge on a uniformly charged sphere onto one of its diameters, i.e. onto
a straight-line segment?’ Superficially, the force pairs cancel each other out as
before, and so we might conclude that, on a very thin metal filament (e.g. on a
knitting needle), the linear charge density is uniform (since the area 2πRh of an
azimuthal strip is proportional to the height h of the segment of a sphere, of radius
R, that it covers). But this certainly cannot be true, as, for instance, at the trisection
point of the needle, the force produced by the charges on the two-thirds section of
it would be larger than that due to those on the remaining one-third of the needle’s
length.

Where is the mistake? That is left to the reader!

S149 Let us denote the radii of discs A and B by R, the distance between them
by d (d � R), and the radius of the third disc C, between A and B, by R∗ = λR.
Here λ is a dimensionless quantity. We will also assume that q is positive (q > 0).

We can find the force acting on one of the discs (for example, on the left-hand
disc A) if we can calculate the charge distribution on the surface of that particular
disc. When the surface charge density is σ at any given point, then very close to
that point the outside electric field is σ/ε0, while inside the metal disc it is zero. So
the average field at the surface (where the surface charges reside) is σ/2ε0, and the
outward force per unit area (the ‘negative or inner pressure’) is p = σ 2/2ε0. The
total force can be found by integrating these stresses across the whole surface of
the disc.

The crux of the solution is to consider the system of three discs (as viewed from
outside) as a single metal disc of radius R∗ carrying a charge of 2q. This is a good
approximation because the distances between the discs are very small compared to
their radii. Of course, there is electrostatic induction, which causes charge separa-
tion on all three discs, and so, for example, the central part of the middle disc is
negatively charged, whereas the ring around this centre is positively charged. In the
case of the outer (and smaller) discs, some of the positive charges on their inner
surfaces are face-to-face with the middle disc, and so the charges on their outer
surfaces are smaller than q. From a distant point of view, the system looks like a
single disc that is positively charged, and the two parallel-plate capacitors inside
the system are not apparent.

How do we find the surface charge distribution on a thin metal disc of radius R∗

carrying a charge 2q? This was exactly the task that was solved in the solution on
page 362. Using the result given there, the surface charge density on one side of
our ‘single disc’ is

σ(r) = q

2πR∗
1√

R∗2 − r2
,

where r is the distance from the centre of the disc.
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Now, considering one half of the whole arrangement (say, the left-hand side), let
us denote the charge on the outer surface of disc A by q1. This means that on the
outer ring of the middle disc C the charge is q − q1 ≡ q2. On the inner surface of
disc A the charge is also +q2, and so the central part (a circular plate with radius
R) of disc C will carry a charge −q2. This part of C and the whole of A together
act as a simple parallel-plate capacitor with a homogeneous field and hence with a
homogeneous surface charge density (which we denote by σ ∗). It is obvious that
this surface charge density is

σ ∗ = q2

πR2
.

Let us now calculate the charges involved:

q1 =
∫ R

0
σ(r)2πr dr = q

R∗

∫ R

0

r dr√
R∗2 − r2

= q

⎡
⎣1 −

√
1 − R2

R∗2

⎤
⎦

= q

[
1 −

√
1 − 1

λ2

]
,

q2 = q − q1 = q

√
1 − 1

λ2
,

where we have used the notation R∗ = λR.
The force F acting on disc A can be calculated using the surface charge densities

σ and σ ∗, where

σ ∗ = q2

πR2
= q

√
1 − λ−2

πR2
,

and the positive direction points outwards,

F = 1

2ε0

∫ R

0
(σ 2 − σ ∗2

)2πr dr = q2

4πε0R2

[
1

2λ2
ln

λ2

λ2 − 1
− 2

(
1 − 1

λ2

)]
.

This force is zero if the term in the large square brackets vanishes. Using graph-
ical or numerical methods, we find that the force is zero if

λ = R∗

R
= 1.1584 ≈ 1.16.

This means that the net force acting on disc A (or B) is zero if the middle disc C is
about 16 % larger in diameter than discs A and B.

Notes. 1. If the middle disc C is very large (so λ approaches infinity) then the net
force exerted on A and B becomes

F = − q2

2πε0R2 as λ → ∞.
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This result is reassuring because it is the well-known formula for the attractive
force between the plates of a charged circular parallel-plate capacitor.

2. If λ approaches 1, the second (attractive) term of the force formula
approaches zero. This means that there are no induced electric charges inside
the discs (as might be expected in this case). But the first (repulsive) term of
the force formula becomes divergent and the force approaches infinity, showing
that fringing effects cannot be neglected in this case. If we want to find a good
estimate for the magnitude of the force in these circumstances, we have to
introduce a cut-off for the integration range at R − d, where d is the distance
between the plates:

F ≈ q2

8πε0R2
ln

R

2d
if λ → 1.

3. One can see clearly from the formula for F that, if the middle disc C is
small, then the net forces acting on discs A and B are repulsive and also that, if
the middle disc C is very large, then the net forces are attractive.

S150 a) The charge +Q on the (left-hand) solid spherical cap induces electro-
static charge separation in the neutral (right-hand) spherical dome. The insulated
cut between the two parts of the sphere is actually a parallel-plate capacitor with
negligible plate separation. If we denote the charges on this ‘capacitor’ by q and
−q, the overall charge distribution on the sphere is as shown in Fig. 1.

Fig. 1

Of course, because both parts of the sphere are made from metal, all the charges
shown are surface charges. It should be noted that the total charge on the outer
surface of the sphere is +Q, independent of the value of q.

Now consider the energy of the system. Because of the negligible separation
between the left cap and the right dome, the capacitance of the ‘capacitor’ is very
large, and the energy stored in it can be neglected. The same is true of the net
interaction energy between the charge +Q on the outer surface of the sphere and
the charges ±q on either side of the ‘gap’. Since we are seeking the equilibrium
charge state by minimising the total electrostatic energy of the system, the question
comes down to finding the minimal energy of a conducting sphere when the total
amount of charge on its surface is +Q. The answer is simple: the minimal energy
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corresponds to a uniform surface charge density – just the same as for a truly solid
conducting sphere.

This means that the charge on the cap’s surface area of πR2 (one-quarter of the
total surface area) is Q/4, and that on the dome’s outer surface area is 3Q/4. Since
the total charge on the (neutral) larger part of the sphere must be zero, we have
3Q/4 − q = 0, and so q = 3Q/4, in accord with Fig. 1 and the conclusion reached
in the previous sentence.

We can also reach the same conclusion in a different way. In electrostatics, solid
metals are always equipotentials, and inside them the electric field is always zero.
As the gap between the two parts of the sphere is very small, and the electric field
within the gap is finite, the potential difference between the two parts is zero, and
the whole sphere is an equipotential! The condition V = constant on a sphere
carrying a given amount of charge Q can be fulfilled in only one way, and that is
with a (spherically symmetric) uniform surface charge density σ . That density is

σ = Q

4πR2
= constant.

The uniform surface charge distribution results in a zero electric field everywhere
inside the sphere (except for the volume within the ‘parallel-plate capacitor’).
Outside, it closely approximates the well-known Coulomb field with magnitude

E(r) = 1

4πε0

Q

r2
(r > R)

at a distance r from the centre. Outside the sphere, the electric field lines are very
close to those illustrated in Fig. 2.

Fig. 2

b) The electrostatic interaction force between the cap and the dome has two com-
ponents: the attraction between the two ‘plates of the capacitor’, and the repulsion
between the like (positive) charges on the two parts of the sphere’s outer surface.



Solutions 369

Denote the height of the cap by h (in the actual problem h = R/2, since the
curved surface area of the cap 2πRh must be equal to πR2). The attractive force
component between the ‘plates of the capacitor’ is

Fattr = 1

2
qE = q2

2ε0A
,

where q is the charge on, and A = πr2 is the area of, the capacitor plate; here r is
the radius of the spherical cap’s base and is given by r = √

2Rh − h2.
The amount of charge on the ‘capacitor’ is

q = σ(4πR2 − 2πRh) = Q

4πR2
(4πR2 − 2πRh) = Q

(
1 − h

2R

)
,

and so the attractive force component is

Fattr = Q2(2R − h)

8πε0R2h
.

The surface charge density σ on the spherical cap is

σ = Q

4πR2
,

and the amount of charge on an area �A is �Q = σ�A. The electric field strength,
which is E outside the sphere, and zero inside, has an average value of E/2, and
so exerts a force on this charge of magnitude E�Q/2, directed along the outward
normal to �A.

Since the force acting on surface area �A is proportional to �A, the quantity

p = E�Q

2�A
= σE

2
= Q

4πR2

Q

8πε0R2
= Q2

32π2ε0R4

has the characteristics of a pressure. So far as the cap is concerned, it is as if it were
being pushed horizontally to the left by a gas at pressure p. If a closed vessel with
thin walls containing gas at pressure p were formed from the surface of the cap and
a flat circular closing plate of radius r, then the net pressure forces on the cap and
on the plate must balance – or the vessel would move of its own accord! It follows
that the magnitude of the net force acting on the cap is

F = p πr2.

Note. This same result can be found by summing the horizontal components of
the forces acting on the various surface pieces. The net vertical component must
be zero because of the azimuthal symmetry:

F =
∑

p�A cos θ = p
∑

�A cos θ ,

where θ is the angle the tangent plane at a surface piece makes with the vertical.
As �A cos θ is the area of the vertical projection of the surface piece, the sum of
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these vertical projections is simply the projected area of the whole spherical cap,
i.e. it is equal to the area πr2 of the cap’s base, which has radius r.

Accordingly, the repulsive force component is

Frep = p πr2 = Q2

32π2ε0R4
π(2Rh − h2) = Q2(2R − h)h

32πε0R4
.

Since physically 0 < h < 2R, it seems that the attractive force is always greater
than the repulsive one. In the limiting case (h = 0, implying that r is also zero), the
attractive force would appear to be infinitely large, and the repulsive force zero, but
this situation is unphysical because it is impossible to concentrate a finite amount
of charge into an infinitesimally small volume. In the other limiting case (h = 2R),
both forces are zero because we would have only a uniformly charged ‘whole’
sphere. So, in fact, the net force is always attractive and equal to

Fnet = Fattr − Frep = Q2(2R − h)(4R2 − h2)

32πε0R4h
.

In the actual problem, h = R/2, and so the net attractive force is

F(h=R/2)
net = 45Q2

128πε0R2
.

S151 When the ring is very far from the metal sphere, the electric potential at
its centre is

V0 = 1

4πε0

Q

R
,

where Q is the total charge on the ring.
If the ring is placed above the metal sphere in the way described in the problem,

then the value of the potential at its centre must become zero, since the centre
of the ring is just at the top of the grounded metal sphere. The charges on the
ring cause electrostatic induction in the metal sphere, and an unknown charge
distribution forms on its surface. These surface charges on the sphere, together
with those on the ring, produce zero potential at the centre of the ring. If we knew
this non-uniform surface charge density, we could calculate the total charge on the
sphere – but finding it requires sophisticated analysis. Fortunately, we can answer
the question posed without having to find the distribution!

We search for a point inside the sphere at which the contributions to the potential
from the charges on both the ring and the sphere’s surface can be calculated easily,
i.e. without knowledge of the precise surface charge distribution. The centre of the
sphere is just such a point, because all parts of the spherical surface are the same
distance r from it.
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If the total charge induced on the sphere, is −q (the negative sign recognises that
the charge on the sphere must have the opposite sign to that on the ring), then the
potential due to the surface charges is

Vsphere = − 1

4πε0

q

r

at the centre of the sphere.
The centre of the sphere is at a distance

√
r2 + R2 from every point of the ring,

and so the contribution of the charged ring to the potential at the centre of the
sphere is

Vring = 1

4πε0

Q√
r2 + R2

.

As each point of the grounded metal sphere (including its centre) has zero potential,
it follows that

Vsphere + Vring = 0,

and, on substituting for the two terms, the induced charge on the sphere is
obtained as

−q = −4πε0V0
rR√

r2 + R2
.

S152 According to the principle of superposition, if charges are in equilibrium
in an arrangement, and the sizes of all the charges are increased proportionally
(say λ times), then the equilibrium is maintained in the new arrangement, with
the values of the electric fields and potentials λ times larger than in the original
arrangement. Moreover, it is also the case that superimposing two equilibrium
arrangements leads to a third one in which the net charge arrangement will again be
in equilibrium, and in which the field strengths and the potentials at any particular
point are the vector and scalar sums (respectively) of the original values.

Let us call the first charge arrangement (when only one sphere is charged) simply
1, and the second (when spheres A and B are charged) 2 (see figure). Rotate
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arrangement 2 by 120◦ around the line joining the centre of A to the centre of
the tetrahedron, and denote the resulting configuration by 3. Similarly produce
arrangement 4 by rotating 2 by −120◦.

If we are to achieve our aim of making the potential at A equal to V using
three equally charged spheres, say those in the plane originally occupied by A,
B and D, then clearly we do not need any contribution from 4. Equally clearly, the
contributions from 2 and 3 must be equal. Moreover, the total charge on A must be
made the same as the (equal) charges on the other two spheres in the plane. Finally,
we must ensure that the superimposed potentials at A add up to the original value
of V .

With these considerations in mind, superimpose λ1 times state 1, and λ2 times
states 2 and 3. The required conditions on the charge on A, and the potential of A,
are satisfied if

20λ1 + 15λ2 + 15λ2 = 15λ2

and

λ1V + λ2V + λ2V = V .

The solution to these simultaneous equations is

λ1 = −3

5
and λ2 = 4

5
,

and, accordingly, each of the three superimposed charged spheres carries a charge
of 15 × (4/5) = 12 nC.

Similarly, with an appropriate superposition of arrangement 1, and states 2, 3
and 4, it can be arranged that all four spheres have the same charge, and that the
potential of sphere A is V . In this case, the charge on the spheres turns out to be
10 nC, but the detailed calculation of this is left as a task for the reader.

S153 For the sake of definiteness, let us suppose that the charge on the pearl is
positive. Of course, with suitable sign changes, our results will also be valid for a
negatively charged pearl.

a) As a result of the point charge +Q placed outside the sphere, at a distance
d (d > R) from its centre, an inhomogeneous charge distribution is induced on
the outer surface of the spherical shell. Outside the sphere, the electric field is that
produced by the combined effect of the induced surface charges and the charge on
the pearl. Inside the shell (including its wall) there is no electric field (the Faraday
cage effect).

According to the method of spherical image charges (see hint), the effects of the
surface charges on the shell can be replaced by those due to a single point charge
−q, provided its magnitude and position are chosen appropriately. One condition
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that must be satisfied is that the substitute charge must not be placed in the same
region of space as the real charges present.

Fig. 1

We use the notation of Fig. 1, and let the distance between the image charge −q,
which must be positioned inside the shell, and the centre of the spherical shell be
x. As the sphere is grounded, the value of the potential at any point on its surface,
and in particular at points A and B, is zero. So, we must have

ke
Q

d − R
− ke

q

R − x
= 0 and ke

Q

d + R
− ke

q

R + x
= 0.

From these equations, we get the following expressions for the magnitude of the
image charge, and the distance x:

−q = −R

d
Q and x = R2

d
.

As the force acting on the pearl does not depend upon whether the electric field,
at the position of the pearl, is produced by the surface charges on the spherical
shell, or by the imaginary image charge, that force is given by

Fa = −ke
Qq

(d − x)2
= −keQ

2 Rd

(d2 − R2)2
.

The force is always attractive, and it approaches infinity if d → R. The electric
field lines outside the sphere are illustrated in Fig. 2.

b) If the spherical shell is uncharged and not grounded, then its potential is not
zero, but it is still an equipotential surface. What needs to be done is to modify our
answer to part a) in such a way that the sphere remains an equipotential surface,
but the net charge it encloses becomes zero. The obvious way to do this is to add
a second image charge, of magnitude +q, at the centre of the sphere (an allowed
region for an image charge). In this way both conditions – being an equipotential
and being uncharged – are satisfied.
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Fig. 2

The electric field inside the sphere is still zero, but outside, the field is the same
as if it were produced by three point charges: the pearl carrying charge +Q, an
image charge −q positioned as in part a), and an image charge +q at the sphere’s
centre. The force acting on the pearl can be found by adding to the force calculated
in part a) the repulsive force due to the notional charge +q at the centre of the
sphere:

Fb = Fa + ke
Qq

d2
= −keQ

2 R

d3

[
d4

(d2 − R2)2
− 1

]
= −keQ

2

(
R

d

)3 2d2 − R2

(d2 − R2)2
.

This expression is always negative, since d > R, so this force is always attractive,
as it was in the case of the earthed sphere in part a).

c) When the sphere carries (on its surface) a real charge Q′, the force on the
pearl can be found using an almost identical approach to that used in case b) (see
Fig. 3); we have to imagine a charge of Q′ +q at the centre of the sphere! Inside the
sphere the electric field is still zero, but outside, the field is the same as if it were
produced by three point charges: the pearl carrying charge +Q, an image charge
−q positioned as in part a), and an image charge Q′ + q at the sphere’s centre.

Now the force acting on the pearl is

Fc = Fb + ke
QQ′

d2
= −keQ

2 R

d3

[
d4

(d2 − R2)2
− 1 − Q′

Q

d

R

]
.

It is interesting to note that, even if Q and Q′ have the same signs, Fc can still be
negative – and the interaction attractive – provided d/R is not too large, i.e. if the
pearl is sufficiently close to the surface of the sphere.

It still remains to investigate how our results in parts a), b) and c) change if the
pearl is not outside, but inside, the spherical shell. With the pearl inside the sphere,
the image charge is outside, but its magnitude and position are still described by
the same formulae (though now d < R):
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Fig. 3

−q′ = −R

d
Q and x = R2

d
.

If the metal shell is grounded, then, inside it, the electric field is just the same
as the combined field produced by the pearl and the image charge of −q′ (which
is now outside the shell). The electric field lines, originating from the point charge
+Q carried by the pearl, terminate on charge −Q situated on the inner surface of
the spherical shell; this is the only way that the electric field can be zero inside
the shell wall. Outside the sphere there is no electric field, the charges on the inner
surface of the shell totally shield the field due to the pearl (if this were not the
case, the potential of the spherical shell could not be zero). The electric field of the
grounded shell (case a)) is illustrated on the left-hand side of Fig. 4.

Fig. 4

The charge distribution formed on the inner surface of the spherical shell is
independent of whether or not the spherical shell is grounded, and so inside the
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shell the electric field is the same for the ungrounded uncharged case as it is for
the grounded one – even charging the sphere does not alter this. So the force is
identical in all three cases, and given by

F = −ke
Qq′

(x − d)2
= −keQ

2 Rd

(R2 − d2)2
.

But the electric field outside the spherical shell is different in all three cases.
If the metal shell is uncharged and ungrounded (case b)), then a charge of +Q
appears on its outer surface, uniformly distributed. The explanation for this is that
the charges on the outer surface do not feel the effect of the charged pearl inside
the sphere, because the charges on the inner surface completely shield it. In this
case of an uncharged sphere, the outer electric field is as if it were produced by a
point charge +Q placed at the centre of the sphere.

When the spherical shell has a net charge of Q′ (case c)), then the amount of
charge on its outer surface is Q′ + Q, distributed evenly, and the field outside the
sphere is identical to the electric field of a point charge Q′ + Q, as is shown on the
right-hand side of Fig. 4.

Note. The electric charge distribution on the inner and outer surfaces of the spher-
ical metal shell can be calculated using Gauss’s law. The magnitude of the real
surface charge density is proportional to the real electric field strength (σ = ε0E)
obtained by superimposing the fields of the real and image charges.

S154 In the solution on page 373, among other things, the interaction of an
uncharged spherical metal shell and a point charge is described. As, inside metal
bodies, there is no electric field, the results from that solution are also valid for
solid metal spheres.

a) Instead of the metal sphere placed in a homogeneous electric field, consider
first the situation in which a point charge +Q is a distance d (d > R) from the centre
C of an uncharged metal sphere. Outside the sphere the electric field is the same
as if it were produced by the point charge +Q, and two image charges positioned
within the sphere. The image charges have opposite signs, with magnitudes

±q = ±R

d
Q. (1)

The positive image charge is at C, and the negative one is at a distance x = R2/d
from it. If the metal sphere were not present, then the charge +Q would produce
an electric field of strength

E0 = 1

4πε0

Q

d2
(2)

at the position of the centre of the sphere (see Fig. 1).
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Fig. 1

Let us notionally move the real point charge away from the metal sphere, but in
such a way that the electric field it produces at C remains constant, with strength
E0. To bring this about, it is necessary to increase the amount of charge Q with the
distance d according to the following prescription (derived from equation (2)):

Q(d) = 4πε0E0d2.

As the distance d is increased, the structure of the electric field, produced at C by
the real point charge, becomes more and more like a homogeneous electric field.

During the distancing of the charge, the absolute value of the two image charges
increases in accord with equation (1):

q(d) = 4πε0E0Rd, (3)

while their separation x decreases inversely with d. However, their product qx (the
electric dipole moment of the two image charges) remains constant at

p = q(d)x = 4πε0E0R3. (4)

In the limiting case, in which d → ∞, the electric field outside the sphere can be
found by superimposing on a homogeneous field E0 the field of an electric dipole
of moment p placed at C. Of course, inside the sphere the electric field is still zero,
showing that the surface charges on the metal sphere produce an electric field of
−E0 inside the sphere (see Fig. 2).

b) We have to find a surface charge distribution that produces the electric field
shown in the first sketch of Fig. 2: that of a dipole field outside the sphere, and a
homogeneous field of constant strength E0 inside.
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Fig. 2

Let us go back to the case in which the uncharged metal sphere is placed, not
in a homogeneous field, but in the vicinity of a point charge +Q. Up until now,
the external effect of the sphere’s surface charges has been described using two
point-like image charges with magnitudes +q and −q, which are imagined to be
inside the sphere (see Fig. 1). This method also works if the image charges are
imagined, not as point-like objects, but as two extended spheres, each carrying a
homogeneous volume charge distribution, and total charges +q and −q. Moreover,
there is no additional problem if the two image spheres overlap.

So, for the two point image charges, we substitute two spheres of radius R with
their centres a distance x apart and carrying total charges of +q and −q, uniformly
distributed throughout their volumes. The charge density of each is

� = q

(4π/3)R3
= 3ε0E0d

R2
= 3ε0E0

x
, (5)

where we have used equation (3) and the fact that xd = R2.
The field of the ‘dilated’ charge spheres must be the same in the region outside

the spheres as the field produced by the point charges. But what about in the region
where the charged spheres overlap? Here the net charge density is zero, but, even
so, there is a homogeneous non-zero electric field (as we might have guessed from
Solution 1 that appears on page 143). To prove this, consider Fig. 3.

Fig. 3
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If only the sphere with charge density +� were present, then the field strength
at a point inside it, displaced by r from its centre, can be calculated using Gauss’s
law:

4πr2E+ = 1

ε0

4πr3

3
�

r
r

,

from which

E+ = �

3ε0
r.

Similarly, if only a negatively charged sphere were present, then, inside it, the field
strength would be

E− = − �

3ε0
r′,

where r′ is the position vector from the centre of that sphere to the given point. As
both spheres are present, the field in the overlapping region is

E+ + E− = �

3ε0
(r − r′) = E0

d

R2
(r − r′) = −E0,

where (5) and the fact that |r − r′| = x = R2/d have been used.
So, in the overlapping region, the electric field is in fact homogeneous, and its

strength is just E0.

Fig. 4

When the charge +Q is moved away from the sphere – in the way described in
part a) – the situation approaches that of a metal sphere placed in a homogeneous
field. At the same time, the distance between the centres of the ‘dilated’ charged
spheres gets smaller, and their charge densities increase according to equation (5)
(and approach infinity), whereas the thickness of their charge layers decreases (and
approaches zero). In the limiting case, the volume charge distribution turns into a
surface charge distribution. The amount of charge per unit area can be calculated as
the product of the volume charge density and the thickness t of the non-overlapping
parts of the spheres (see Fig. 4).
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So, in the limiting case of the metal sphere placed in a homogeneous field, the
charge density on a part of the surface whose ‘polar’ direction with respect to the
external electric field is ϕ is

σ(ϕ) = �t(ϕ) = �x cos ϕ = 3ε0E0 cos ϕ.

Notes. 1. The surface charge density may also be found from the formula
σ = ε0E, where E is the signed magnitude of the electric field just outside
the metal sphere.

2. Using similar methods to those employed here, it is also possible to find
the electric field and charge distribution of a long, neutral, metal cylinder placed
perpendicularly to a homogeneous electric field.

S155 We first note that, in either case, the work done increases the magnetic
interaction energy.

Consider the following thought experiment: the right-hand magnet is removed
very far from the left one along the straight line connecting the magnets; the work
done against the attraction between the two magnets is, say, one unit. This is the
work needed to perform task b).

Next, the distant right-hand magnet is rotated through 180◦; no work is needed
for this because now the interaction between the magnets is negligible. Finally,
the rotated magnet is brought back to its original place; on symmetry grounds, the
work done against the mutual repulsion while doing this is again one unit. This
completes task a), and all told the work that was required was two units.

The magnetostatic field is conservative, i.e. any change in the magnetic inter-
action energy of a system depends only on its initial and final states, and does not
depend on the process by which the final situation was reached. It follows from this
that two units of energy are needed for the rotation of the right-hand bar magnet
through 180◦, if this is done at its original position.

In summary, task a) takes twice as much work to accomplish as does task b).

S156 a) According to the Biot–Savart law, the magnetic field contribution at
position r produced by a differential element of the wire – characterised by vector
�� in the direction of the conventional current I – is

�B = μ0I

4π
�� × r

|r|3 ,

where r is defined relative to the position of the wire element. The magnetic field
of a complete circuit can be found in simple (symmetrical) cases by summing these
�B elementary field contributions, or, in more general cases, by evaluating a line
integral of such terms.

At the point P1, which lies on the loop’s vertical axis of symmetry and at a
distance L from its centre, symmetry considerations dictate that the net magnetic
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field vector is directed along that axis (parallel to the dipole moment m of the
current loop). Consequently, it is sufficient to calculate the axial components of
the �B contributions, and then sum them (see Fig. 1).

Fig. 1

Using the notation of the figure:

B‖ =
∑ μ0I

4π
��

r2

R

r
= μ0

4π
IR

r3

∑
�� = μ0

4π
2

r3
(πR2I)︸ ︷︷ ︸

|m|
.

The factor R/r in the second expression represents the cosine of the angle between
�B and the symmetry axis that arises when the former is resolved in the direction
of the latter. The final part of the last term in the parentheses is just the magnitude
of the magnetic dipole moment m of the current loop. So the value of the magnetic
field strength at point P1 is

B‖ = μ0

4π
2m(

R2 + L2
)3/2 ≈ μ0

2π
m
L3

,

and using |m| = πR2I, its magnitude is

B‖ = μ0IR2

2L3
.

b) It is a more difficult task to determine the magnetic field vector B⊥ in the plane
of the circular current loop.68 To do this, we replace the circular loop with a circular
ring sector of the same surface area (and dipole moment), as shown in Fig. 2, and

68 The ⊥ subscript indicates that the magnetic field being investigated is in a direction perpendicular to the
direction of the magnetic dipole moment m – not that the field is necessarily perpendicular to m.
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calculate its magnetic field at the centre P2 of the sector. In this substitute wire-
frame loop, current I flows along arcs with radii L and L + �L (�L � L), and
along straight-line segments with a small angle ε between them.

Fig. 2

As the angle ε is very small, the surface area of the wire frame is, to a good
approximation, Lε�L, and so its magnetic dipole moment is

|m| = ILε�L.

The magnetic field vector at the centre P2 of the wire-frame arcs is perpendicular
to the plane of the current loop, and its direction is opposite to that of the dipole
moment m. Only the currents flowing in the curved arcs produce contributions to it:

B⊥ = μ0

4π
IεL

L2
− μ0

4π
Iε(L + �L)

(L + �L)2
≈ μ0

4π
1

L3
(ILε�L)︸ ︷︷ ︸

|m|
.

The last expression (in parentheses) is precisely that for the magnitude of the
magnetic dipole moment, which must be the same for the original circular current
loop and the substitute ring sector loop. So the value of the magnetic field at P2

(taking into account its directions) is

B⊥ = −μ0

4π
m
L3

,

which can be expressed in terms of the data of the given circular current loop as

B⊥ = μ0IR2

4L3
.

The points P1 and P2 are known, respectively, as the Gaussian first and second
principal positions; the field at the first position is exactly twice that at the second
position.

Note. By utilising the results for the magnetic field vectors in the two Gaussian
principal positions, the magnetic field due to a current loop (or, more generally,
to any magnetic dipole) can be found at an arbitrary place. For example, if we
are seeking the magnetic field strength vector B at the point P, at a distance L
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from the dipole, and in a direction making an angle ϑ with the dipole axis, then
it is convenient to resolve vector m into two components as shown in Fig. 3 with
magnitudes m1 = m cos ϑ and m2 = m sin ϑ .

Fig. 3

Point P is then at the first principal position of m1 and at the second principal
position of m2, and so the ‘radial’ and ‘tangential’ components of the magnetic
field there are

Br = μ0

2π
m

cos ϑ

L3 and Bϑ = μ0

4π
m

sin ϑ

L3 .

S157 Solution 1. Because of the symmetry of the given arrangement, points
C and D are equivalent, and are therefore at the same potential; consequently no
current flows between them. The resistances of the circuit elements ACB and ADB
are twice that of element AB, and so the currents flowing in the individual edges of
the tetrahedron are

IAC = ICB = IAD = IDB = 1
4 I, IAB = 1

2 I.

According to the Biot–Savart law, the contribution to the magnetic field of a
straight piece of wire of finite length is proportional to the current in the wire, and
the direction of the field at some point P is perpendicular to the plane containing
both the wire and the point. For example, in this problem, the contribution of edge
AC to the magnetic field at the centre O of the tetrahedron can be written as

BAC = kIAC · −→
BD,

where k is a positive number, whose value depends upon, among other things, the
size of the tetrahedron, but not upon which edge is under consideration. Here we
have used the facts that the edges of a regular tetrahedron are all equal in length
and in distance from its centre, and that opposite edges are perpendicular to each
other. The vector

−→
BD therefore has just the right direction for expressing both the

Biot–Savart law and the right-hand rule. The contributions of the other edges can
be calculated similarly, and the total magnetic field at point O is given by

B = 1
4 kI

(−→
BD + −→

AD + −→
CB + −→

CA + 2
−→
DC

)
.
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We note that the incoming and outgoing long, straight currents make no contribu-
tion to the magnetic field at the centre O. The right-hand side of the above equation
has zero value because

−→
AD + −→

DC = −→
AC = −−→

CA and
−→
BD + −→

DC = −→
BC = −−→

CB.

We conclude that the magnetic field at the centre of the tetrahedron is zero.

Solution 2. It can be shown that, for any regular polyhedron (not only for a
tetrahedron, but also for a cube, octahedron, dodecahedron or icosahedron), the
following statement is true: the magnetic field at the polyhedron’s centre is zero
if ‘centrally directed’ incoming and outgoing currents are connected to any two
vertices of the polyhedron.

To see this, consider a polyhedral arrangement of conducting wires that dis-
tributes electricity in a way reminiscent of the way a ‘cut diamond’ distributes
light, with a single input but multiple outputs. Current I is conducted into one
vertex (say, A) through a long, straight wire directed towards the centre O of the
polyhedron, while from all the other (N, say) vertices identical currents (of I/N) are
conducted away through similarly directed straight wires. Consider also a further
physically identical arrangement, but one in which a current I is conducted away
from vertex B through a long, straight, also ‘centrally directed’ wire, while identical
currents, adding up to I, are fed into all the other N vertices. In both cases, the sum
of incoming and outgoing currents is zero.

Fig. 1

The superposition of these two arrangements gives the result described pictori-
ally in Fig. 1 for a current I′ (equal to [(N + 1)/N]I, i.e. 6

5 I in the case illustrated)
flowing through the circuit using just two wires. It follows that proving that the
magnetic field at O is zero in one of the ‘cut-diamond’ arrangements implies that
the same result holds for the original problem with two conducting wires.

In view of the above result, we examine the fields involved in a ‘cut-diamond’
arrangement of wires. Suppose that when current I is fed into vertex A (and con-
ducted away equally through all the other vertices), a magnetic field B is generated
at the centre O of the polyhedron. This vector B must be directed parallel to
AO; there cannot be a net component of it perpendicular to the axis AO because
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every polyhedron has an n-fold rotational symmetry (for some n) around that axis.
For example, if, in Fig. 1, the octahedron (n = 4) were rotated through 90◦, an
identical arrangement to the original one would be obtained and the magnetic field
would necessarily be the same as the original one. This is impossible unless the
component of the field perpendicular to the axis is zero.

As a final step, let us imagine that a charged particle is moving near to O in a cir-
cular orbit around axis AO. By choosing appropriate values for the angular velocity
and rotational direction of the particle, the magnetic field (parallel to the axis) can
be made to provide the required centripetal force for uniform circular motion.

Fig. 2

Let us further imagine that we view the whole arrangement (the distributed
currents, the resulting magnetic field and the circulating particle) in a mirror (see
Fig. 2). The image of the polyhedron is the same as the original, the current distri-
bution is also unaltered, but the direction of the particle’s rotation is reversed. To
maintain this reversed rotation would require a reversed magnetic field. However,
the direction of a finite magnetic field cannot change; the only vector that is equal
(−1) times itself is the zero vector. So the magnetic field at the polyhedron’s centre
O has both its perpendicular and parallel components equal to zero.

In summary, the magnetic field at the centre of a single ‘cut-diamond’ arrange-
ment of a conducting wire polyhedron can only be zero, and, as shown earlier,
linear superposition then means that the same is true for the ‘two-wire case’.

S158 Solution 1. Let the unit vector e represent the direction of the current
in the wire, and R be the position vector of P relative to the junction of the wire
and plate (see Fig. 1). The magnetic field vector must be determined by these two
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vectors (and the given current magnitude I) as a single-valued function B(e, R), i.e.
the magnetic field is a vector function of two vector variables.

Fig. 1

To find the direction of the magnetic field, the ‘right-hand (corkscrew) rule’ must
play a central role, and this fact greatly constrains the form of the function B(e, R).
Using just these two vectors, the only formulation for a magnetic field vector that
is in accord with the right-hand rule is their vector product. For this reason, the
magnetic field vector must be proportional to e × R, and the proportionality factor
must be a scalar function that does not depend upon the (arbitrary) sign convention
in the right-hand rule:

B(e, R) = (e × R) f (e · R, R2, I).

The variables in the function f that involve e and R must be scalar quantities
constructed from them. They could be scalar products with each other or with
themselves (but not e2, since this equals unity, and is not a variable). For given r
and h, these scalars have fixed values:

R2 = r2 + h2 and e · R = −h.

Consequently, so does the function f , independent of the azimuthal position of P.
Thus, the magnetic field vector at point P is perpendicular to the plane containing

e and R, and it follows that the direction of the magnetic field is tangential to the
circle shown in Fig. 1. The magnitude of the magnetic field is given by applying
Ampère’s law to a circuit defined by that circle:

B(r) × 2πr = μ0I −→ B(r) = μ0
I

2πr
.

This means that the magnetic field (above the plate) is the same as the field due to
an infinitely long, current-carrying, straight wire.

There is no magnetic field anywhere below the plate because, there, the current
passing through any surface ‘bounded’ by any circle is zero; hence, by Ampère’s
law, so is the field.



Solutions 387

Solution 2. The magnetic field – even though it is conventionally symbolised
by the vector notation B – is not a directed line segment, i.e. it is not an arrow
pointing from an initial point to a terminal point (as does the position vector or an
electric field vector), but it can be represented by a directed circular contour and a
magnitude (in a similar way to that in which an angular velocity or a torque can be
represented). Such quantities are called axial vectors. The directed circular contour
associated with the magnetic field at a given point is provided by consideration of
a charged particle moving (with a suitable speed) in a stable circular orbit in the
vicinity of the point. The normal to the plane in which the orbit lies and the direc-
tion of circulation of the particle provide the necessary directional characterisation.

For the wire-and-plate problem, consider the situation that would result from
(hypothetically) reflecting the whole arrangement in the plane S defined by the
straight wire and the given point P. After reflection, the current distribution would
remain exactly the same as originally, and so the magnetic field must do the same.
We will now use this idea to put limits on the configurations the magnetic field
might take.

Consider first a possible ‘radial’ component of B, which would be represented
by a circular contour in a plane perpendicular to the shortest radial line joining
the wire to the given point P, as shown in Fig. 2a). On reflection of the system
in S, the direction of rotation of the particle would be reversed, implying that this
component would change sign. But we have already established that it will remain
unchanged; this can only be so if the component has zero value.

Fig. 2

The same reasoning can be applied to any ‘longitudinal’ component of the mag-
netic field, which, as shown in Fig. 2b), can be represented by a circular contour
with a plane perpendicular to the straight wire. Under the reflection process, it too
would both change sign and remain unchanged; again this implies a zero value.

The same reasoning cannot be applied to the third, ‘azimuthal’ component of
the magnetic field. Its representative circular orbit lies in the reflection plane S and
remains unaltered by the reflection (see Fig. 2c)). Hence it is not possible to deduce
anything about the value of this component, which could be zero or non-zero.
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The considerations above apply for any arbitrary point P, and so throughout
the whole space only an ‘azimuthal’ magnetic field can be present. The field lines
must be concentric circles, with the wire as their common centre. The strength of
the field can be found, as in Solution 1, using Ampère’s law:

B(r) = μ0
I

2πr

above the plate, and zero below it.

S159 We first calculate the magnetic field of an arrangement in which a single
straight input wire provides a current that is subsequently led away (to infinity)
radially and uniformly in all directions, i.e. in a spherically symmetric pattern.69

For a single straight current-carrying wire, the magnetic field has cylindrical
symmetry, with the wire as its ‘axis’ (see solution on page 385).

Fig. 1

The magnitude of the magnetic field at any particular point can be investigated
using Ampère’s circuit law. Inside the sphere, no current passes through any imagi-
nary closed loop, and so here (r < R) there is no magnetic field. Outside the sphere
(r > R), the circuit law can be written as follows (see Fig. 1):

2πr sin ϑ B(r, ϑ) = μ0

(
I − 1 − cos ϑ

2
I

)
.

Here we have used the geometrical result that the surface area of a spherical cap,
taken from a sphere of radius r, and subtending an angle of 2ϑ at the sphere’s
centre, is 2πr2(1−cos ϑ). Since the surface area of the corresponding whole sphere
is 4πr2, the fraction of the current I that flows out through the cap is (1 − cos ϑ)/2.
The circular base of the cap, which has radius d = r sin ϑ , is shown by the dashed
line in Fig. 1.

69 This current distribution can be closely simulated in practice if a sphere with very good surface conductivity
is placed in an ‘infinitely’ large medium with some electrical conductivity, and a potential difference between
the sphere and the medium’s boundary is provided.
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Rearranging the previous equation gives the magnitude of the magnetic field
strength as

B(r, ϑ) = μ0I

4π
1 + cos ϑ

r sin ϑ
= μ0I

4π
cot(ϑ/2)

r
.

Near the current-carrying wire (ϑ ≈ 0), for which the approximations sin ϑ ≈ ϑ

and cot(ϑ/2) ≈ 2/ϑ are valid, we recover the expression μ0I/(2πd) for the mag-
netic field around a very long, straight wire; diametrically opposite to the incoming
current, as ϑ → π, the magnetic field gradually diminishes to zero.

Let us now apply the same calculation to the wire that carries the current away
from the globe (and is fed by spherically symmetric incoming currents), and then
superimpose the magnetic fields of the two arrangements as shown in Fig. 2.
Clearly, the first calculated field has to be rotated by 90◦, to obtain the second
one, before combining them. In the superposition, the two symmetric current dis-
tributions cancel each other, and only the currents in the wires are left – matching
the given physical situation.

Fig. 2

Inside the sphere, the magnetic field remains zero everywhere. At the specific
point P given in the question (marginally outside the globe), the two contributions
reinforce (rather than oppose) each other, and the relevant angle ϑ is π/4 for each:

BP = 2B(R, π/4) = μ0I

2πR
cot(π/8) = μ0I

2πR
(
√

2 + 1).

Note. On the surface of the sphere, the currents flow from the input junction to
the output one along stationary current-streamlines. It can be shown that these
streamlines (running on the curved surface) are plane curves, namely parts of cir-
cles, one of which is a great circle. These circles can be found as the intersections
of the sphere with an array (sheaf) of planes that has the line joining the input and
output junctions as its axis.
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S160 The two current-carrying wires produce a stationary, planar magnetic
field.70 Analogous planar fields occur in electrostatics when a charge density does
not depend upon one of the space coordinates. An example in which this is the case
is that of one or more ‘infinitely’ long, parallel, insulating rods that are uniformly
charged.

Magnetostatic vector fields are divergence-free (i.e. solenoidal) and rotation-
free (implying that a potential can be defined) in those regions of space where
there are no electric currents. Electrostatic vector fields have the same properties
if there are no charges in the region concerned. For both kinds of (planar) vector
fields, we can assume that there are field lines and equipotential lines (the planar
equivalent of equipotential surfaces) that form arrays of mutually perpendicular
curves.

In what follows, we show that, subject only to the relevant region being charge-
and current-free, planar steady-state electrical and magnetic vector fields can be
related to each other in a one-to-one correspondence. In this so-called dual con-
nection, the equipotential lines of one of the vector fields correspond to the field
lines of the other, and vice versa.

Vector fields are not determined unequivocally just by being divergence- and
rotation-free – they become unequivocal as the result of imposed boundary con-
ditions. Electric field lines start at charges (sources) situated on the boundaries of
the region, or (depending on the sign of the charge) they terminate there, when the
charges are known as sinks. Magnetic field lines are always closed loops encircling
the electric currents that produce them.

Fig. 1

70 A vector field F is said to be planar if, when expressed in a system of orthogonal coordinates ui (say,
Cartesian), one of its components Fu3 (say, Fz) is zero everywhere, and the other two components do not
depend upon the value of u3 (i.e. Fx and Fy are independent of z).
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Let E(r) be a planar, electrostatic vector field with corresponding electrostatic
potential V(r), as illustrated in Fig. 1. The equipotential lines (V = constant) are
denoted by dashed lines, and the field lines by continuous lines with arrowheads;
by convention, the direction of the electric field is that of decreasing potential.
These lines form two arrays of curves, which everywhere intersect each other
orthogonally.

Since the field lines do not cross each other, for each field line, the total flux
that passes through between it and an arbitrarily chosen reference field line can
be found. This is done by calculating at each point the product of the length of a
small line segment and the strength of the field component perpendicular to it, and
summing or integrating as necessary along a line that joins two points, one on the
particular field line and the other on the reference line.

Note. For three-dimensional vector fields, the flux is defined as the product of a
small surface area and the strength of the field component perpendicular to that
area. In planar (two-dimensional) vector fields, the flux can be defined as the
product of the length of a small line segment and the strength of the field compo-
nent perpendicular to it. The consistency between the two definitions is obvious,
if the three-dimensional flux of a two-dimensional vector field is calculated for a
‘rectangular area’ that has equal small sides in two x–y planes and unit height in
the z direction.

Let the total flux passing between the field line at position r and a reference field
line be denoted by V∗(r). The function V∗(r) thus associates a scalar quantity with
each point of the field, and the equation specifying an individual field line is of the
form V∗(r) = constant. Two such field lines are marked in Fig. 1.

Fig. 2

Now consider two field lines (close to each other), and two equipotential lines
(also close to each other) that cross them. These lines define a small region in the
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plane of the vector field (shaded in Fig. 1) that, to a good approximation, can be
considered rectangular. The magnitude of the field strength can be related in two
different ways to the lengths of the rectangle’s sides. On the one hand, from the
definition of a potential, we have

�V = −|E| ��,

where the negative sign reflects the fact that the field conventionally points in
the direction of decreasing potential. But, on the other hand, we can express a
connection between the flux and the magnitude of the field strength by

�V∗ = |E| ��∗.

Eliminating the magnitude of the field strength, we get the following relationship:

�V

��
+ �V∗

��∗ = 0. (1)

The all-too-obvious symmetry of this relationship presents an opportunity to
relate the vector field E(r) to another ‘dual’ vector field, one with changed roles
for the vector field and scalar potential. If the function V∗(r) is considered as the
potential function of a vector field E∗(r), and V(r) is considered as the quantity
giving the flux for this field, then relation (1) will also hold for this new field (see
Fig. 2); i.e. it is both divergence- and rotation-free. We also note that, in the dual
field, because of their changed roles, we have to interchange �� and ��∗.

These observations can be illustrated by a well-known example. If the poten-
tial is

V(r) = −K ln

(
r

r0

)
, (2)

where K and r0 are constants, and r is the (radial) distance of a general point from
the origin O of the plane, then the equipotential curves are concentric circles. The
corresponding field has strength

E(r) = −�V

�r
≈ −dV

dr
= K

r
,

and its direction can be represented by the straight line connecting the origin to the
particular point (see left-hand side of Fig. 3).

Further, the flux can be calculated from the magnitude of the field strength. The
flux passing through an arc of radius r that covers a sector with opening angle ϕ,
relative to an arbitrary direction, is

V∗ = K

r
rϕ = Kϕ.

This field is the same as the electrostatic field associated with an ‘infinitely’ long
rod carrying a uniform linear charge density of λ = 2πε0K.
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Fig. 3

Starting from a field whose equipotential lines (two-dimensional surfaces) are
given by V = −K ln(r/r0) = constant, the field lines of the dual field E∗ are con-
centric circles. The magnitude of that field can be calculated from the requirement
that, if we move a little along an arbitrary field line, we must have

E∗ · r�ϕ = −�V∗ = −K�ϕ,

from which we get |E∗| = −K/r. If the value of the constant K is chosen to be
μ0I/(2π), then the dual vector field represents the magnetic field of a long straight
wire carrying an electric current I (see right-hand side of Fig. 3).

Notes. 1. The magnetic field of a long straight current-carrying wire is locally
rotation-free (as it can be derived from a potential function), but it is not conser-
vative: its integral around a closed loop is not necessarily zero. This peculiarity
is reflected mathematically in the fact that the potential function V∗, which is
proportional to the angle ϕ, is a multi-valued function. When the point O (i.e. the
current-carrying wire) is encircled by the loop, the value of the potential will not
return to its initial value, even though the loop is closed. This situation cannot hap-
pen with electrostatic potentials, because, if it did, it would be possible to create
perpetuum mobile. The ‘magnetic potential’ has no direct physical meaning, and
is only a convenient mathematical device – no possibility of perpetuum mobile
exists, alas!

2. A possible physical interpretation for the dual field associated with a planar
electrostatic field can be given only with knowledge of the imposed boundary
conditions. It is not true that the dual field of an electrostatic field always repre-
sents some magnetic field. The dual field of the homogeneous electrostatic field of
a parallel-plate capacitor is also a homogeneous field, which could, for example,
be the electrostatic field of another parallel-plate capacitor, one rotated by 90◦.
The dual field of a two-dimensional (planar) ideal electric dipole can also be
interpreted as an electrostatic field, that of another dipole rotated by 90◦ with
respect to the original (see Fig. 4).

Now, let us return to the original problem, the description of the magnetic
field of two parallel current-carrying wires with oppositely directed currents.
This arrangement is the dual companion of two very long, parallel, uniformly
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Fig. 4

charged, insulating rods with opposite charges. On the left-hand side of Fig. 5,
the (planar) magnetic field, produced by the currents, is illustrated. The magnetic
field lines are denoted by continuous lines, and the ‘contour lines’ of the magnetic
potential are drawn using dashed lines. Because of the equal currents, the field is
symmetrical with respect to the perpendicular bisector of the line joining the two
wires.

Fig. 5

The dual arrangement, shown on the right-hand side of Fig. 5, represents an
electric field in which the roles have been reversed. There, the equipotential lines,
denoted by dashed lines, encircle the infinitely long rods, and the array of curves,
marked by continuous lines and perpendicular to the dashed ones, represent the
system of electric field lines. The correspondence is a symmetrical one, provided
the electric field is produced by two, very long, parallel, insulating rods carrying
uniform linear charge densities +λ and −λ.

The electrostatic field of a single, long, insulating rod with uniform, linear
charge density λ has a potential given by expression (2), providing the substitution
K = λ/(2πε0) is made. The potential function for two ‘infinitely’ long rods, with
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linear charge densities of identical magnitude, but opposite signs, can be found by
superposing those of two single rods:

V(r) = λ

2πε0
ln

r1

r0
− λ

2πε0
ln

r2

r0
= λ

2πε0
ln

r1

r2
,

where r1 and r2 are the distances between the particular point r and the rods.
Equipotential curves in the electrostatic configuration are characterised by the

requirement that V = constant, i.e. the quotient r1/r2 is constant; the same con-
dition provides the equations of the magnetic field lines in the dual problem. In
a plane, the locus of all points whose distances from two fixed points are in a
constant ratio is an Apollonian circle. Consequently, in the dual magnetic field, the
field lines are circles.

Note. It can be further proved that, for two parallel current-carrying wires, the
equipotential curves associated with the magnetic field (and therefore, at the same
time, the field lines in the electrostatic problem) are also circles. Both of them
are determined by the condition V∗ = constant, and, using the ‘flux function’
for a single long rod found earlier, this is equivalent to the requirement that ϕ =
ϕ2−ϕ1 = constant. Here ϕ is the angle subtended by points A and B, the positions
of the two wires, at an arbitrary point on the corresponding electric field line,
as shown in Fig. 6. Since the locus of points at which the two end-points of a
given line segment subtend a constant angle is a circle, the electric field lines
of parallel rods with opposite charges must be circles or arcs of circles. This
result was obtained earlier – using other, more elementary, considerations – in the
solution on page 338.

Fig. 6

S161 If all the squares on the chessboard were made from a homogeneous
metal plate with conductivity σ1, then the magnitudes of the electric field strength
and current density would be E = V/L and j1 = σ1E, respectively, and the total
current flowing through the board would be

I1 = j1Lt = σ1ELt = Vσ1t.
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Similarly, in another homogeneous metal plate with conductivity σ2, under the
same voltage V , the total current I2 would be Vσ2t. We note in passing that the
current does not depend on the length L of the board.

In the (somewhat lengthy) development that follows, we prove that the current
flowing through the inhomogeneous chessboard is the geometric mean of I1 and I2,
that is

I = Vt
√

σ1σ2. (1)

This statement (about the geometric mean giving the required current) is
valid for any set of square plates of constant thickness that satisfy the following
requirement:

That, for a pair of points, A and B, which can be transformed into each other
by rotating the square through 90◦, the product of the conductivities at those
two points must have a value that is independent of how the point pair is
chosen.

It is clear that, in our case, this condition will be satisfied, because a rotation by 90◦

will always transform a point on a light square into one on a dark square, and vice
versa; i.e. points A and B will always be on different coloured squares and σAσB

will always have the value σ1σ2.
In the following (for the sake of simplicity and clarity), instead of a normal

chessboard, a 2 × 2 version will be illustrated in our not-to-scale sketch figures.
We consider first the electric field formed in the board, and the currents that

flow through the squares of the plate. A conservative electric field can be fully
characterised by the electric potential, denoted by �, and represented graphically
by equipotentials, drawn with dashed lines in Fig. 1. The ‘bottom’ edge of the
square plate is chosen as zero potential, and so the potential of the ‘top’ of it is
equal to the voltage V of the battery.

Fig. 1
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The electric field, and consequently the current density vector, which is propor-
tional to it, are both perpendicular to the equipotential curves. It follows that the
current-streamlines, drawn in the figure with continuous lines, are also perpendicu-
lar to the same lines. Let us associate with each current-streamline a number � that
is equal to the total current that flows between it and the left-hand edge of the plate.
It is obvious that the left-hand edge of the plate is a streamline, and corresponds
to � = 0, and that the right-hand edge is � = I. From here on, let us call � the
voltage-potential and � the current-potential.

If, in the vicinity of an arbitrary point A of the plate, a distance �� between two
equipotential lines corresponds to a small potential difference �� between them,
then the magnitude of the electric field at A is

EA = ��

��
,

and the local electric current density is

jA = σAEA = σA
��

��
.

Here, σA denotes the conductivity around point A, which could be σ1 or σ2, depend-
ing on the ‘colour’ of the particular square in which A is located.

Now, from the definition of the current-potential, the current element jAt�s that
flows through a cross-sectional area t�s of the plate must be equal to the change
�� in the current-potential over the small distance �s:

jAt�s = σA
��

��
t�s = ��,

from which we get

tσA
��

��
= ��

�s
. (2)

Next, consider rotating Fig. 1 anticlockwise by 90◦ in the plane of the plate, and
obtaining the arrangement shown in Fig. 2.

Fig. 2
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The question now arises whether this arrangement, after interchanging the roles
of the voltage- and current-potentials, and multiplying them by appropriately cho-
sen factors, is a suitable description of the currents flowing through the original
plate.

Let the renaming and scaling be

� ′ = I

V
� and �′ = V

I
�,

and denote the separations of the neighbouring pairs of curves by

��′ = �s and �s′ = ��.

The scaling factors are chosen so that the maximal value for �′ (the new voltage-
potential) is V , and that for � ′ (the new current-potential) is I. If these new
(primed) variables are used to label the original (unrotated) plate, then we get the
arrangement shown in Fig. 3. Point B, shown in Fig. 3, is the place to which point
A has been moved by the rotation. As noted earlier, B is bound to be on a different
coloured square than A was, and the product of the corresponding conductivities is

σAσB = σ1σ2. (3)

This always has the same value, wherever A, and hence B, are situated on the
chessboard.

Fig. 3

Ohm’s law will be obeyed (as it needs to be) by the new voltage- and current-
potentials, if an equation corresponding to (2) is satisfied, that is, if

tσB
��′

��′ = �� ′

�s′ .
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Using the connections between the primed and unprimed quantities and equation
(2), this requirement can be written in the form:

tσB
V

I

��

�s
= tσB

V

I
· tσA

��

��
= I

V

��

��
.

This can be simplified and, using (3), put in the form

I = Vt
√

σAσB = Vt
√

σ1σ2,

i.e. as stated in equation (1) .

Notes. 1. All of the arguments used in the solution are valid not only for the 2 × 2
board but also for the normal 8 × 8 chessboard. More generally, it can be stated
that the final result is true for all boards with n × n squares if n is even, but not
true if n is an odd number. In the latter case, a rotation by 90◦ does not change the
‘colour’ of the square on which any particular point is located, and further, since
the numbers of light and dark squares are different, the result cannot be symmetric
in σ1 and σ2.

2. Using numerical methods, the current-streamlines and the equipotential
lines for any particular chessboard can be found and plotted. Such a computer-
generated map, for a 2 × 2 ‘chessboard’, is shown in Fig. 4; in it, the conductivity
σ2 of the dark squares is twice that, σ1, of the light ones. Because of the
boundary conditions, both the current-streamlines and the equipotential lines
change direction at the interfaces – in much the same way that light is refracted
at the boundary between two different media.

Fig. 4
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S162 Solution 1. Applying the principle of superposition, it can be shown that
the magnetic flux crossing the end of a long solenoid is exactly one-half of the
flux passing through a single turn deep inside the solenoid.71 Accordingly, in the
arrangement described in the problem, the magnitude of the magnetic flux leaving
the first of the solenoids, and penetrating into the second, is

� = 1

2
μ0I1nA.

Virtually all of this flux leaves that coil through its lateral surface, because, if the
solenoids are sufficiently long, the part of it that escapes through the ‘far end’ of
the second coil is negligibly small.

We now investigate the force produced by the magnetic field of one of the
solenoids (say, 1) on the wire carrying the current in the other coil (2). The axial
component of the magnetic field vector exerts no net force on the near-circular wire
turns, as the magnetic forces it produces act radially. So we only need to deal with
the magnetic field components that are perpendicular to the axis.

Denote the radial component of the magnetic field vector produced by solenoid
1, at the position of the ith turn from the end of coil 2, by Bi. Then the magnitude of
the force, exerted by solenoid 1 on the turns of coil 2, each of radius R and length
2πR = 2π

√
A/π = 2

√
πA, is Fi = 2

√
πA I2Bi, and the force acting on the whole of

coil 2 is

F =
∑

i

Fi = 2
√

πA I2

∑
i

Bi. (1)

However, we also know how much flux from solenoid 1 ‘escapes’ through the
lateral surface of coil 2. Since there are n turns per unit length, we may take the
width of one turn as 1/n, and its (small) area on the lateral surface as 2πR/n =
2
√

πA/n. Consequently, we have

1

2
μ0I1nA = � =

∑
i

(
2
√

πA

n
Bi

)
. (2)

Comparison of equations (1) and (2) makes it clear that the force in question has
magnitude

F = 1

2
μ0I1I2n2A.

If the solenoids are wound in the same sense, and the current directions are the
same, then the force is attractive; if either of these conditions is reversed, but not
both, then it is repulsive.

71 The proof of this statement can be found in, for instance, the predecessor of this book: see ‘Problem 120’ in
P. Gnädig, G. Honyek & K. F. Riley, 200 Puzzling Physics Problems (Cambridge University Press, 2001).
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Solution 2. The force between the coils is proportional to both I1 and I2, since
the magnetic field B, proportional to one of the currents, exerts a Lorentz force on
the other coil, and this force is proportional to the current in that coil (as well as to
B). So the ‘wanted’ force can be written in the form F = KI1I2, where K depends
only on the specification of the solenoids, and is independent of the currents. If
the force is calculated for the special case I1 = I2 = I, thus determining K, the
required solution for arbitrary currents follows.

The magnitude of the force depends only on the magnitudes of the electric
currents, but not on the details of how those currents are produced. If, for instance,
with suitable cooling, the current-carrying coils are transformed into superconduc-
tors (with zero electrical resistance), and their terminals are connected so as to
produce one double-length solenoid, then the current in it will be I everywhere. As
the solenoid coil is superconducting, the current persists, even without any power
supply. Inside the new solenoid the magnetic field strength is B = μ0nI, and the
stored magnetic energy is

Wmagn = 1

2μ0
B2V ,

where V = �A is the volume of the double solenoid, which has cross-sectional area
A and total length �. For the effects of fringing fields, see Note 1.

What happens if the solenoids are moved apart by a small distance �x (� �)?
The magnetic fields inside them cannot change, as that would induce voltages,
which would, because of the zero resistance of the wires, generate ‘infinitely large’
currents. But the energy of the magnetic field does change; the field in the gap
is essentially the same as (the unchanged field) in the solenoids, but the volume
‘filled’ with magnetic flux has increased by �V = A�x. The corresponding energy
change is

�Wmagn = 1

2μ0
B2�V = 1

2
μ0I2n2A�x.

This change must be equal to the work done by F during the coil separation, W =
F�x, from which it can be seen that

F = 1

2
μ0I2n2A = KI2, that is K = 1

2
μ0n2A.

From this, the attractive or repulsive force can be found, even when the electric
currents are not the same:

F = KI1I2 = 1

2
μ0I1I2n2A.
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Notes. 1. The effects of fringing fields do not change the result, because, when the
coils are moved apart a little, they ‘carry’ the fringing fields at the far ends of the
coils with them. Consequently, the fringing effect does not appear in the energy
change.

2. The same result can be found without resorting to the ‘superconducting
trick’. Connect the two coils at their adjacent ends, and provide a constant com-
mon electric current I with the help of an independent current source. If the two
coils, connected in this way, are moved apart a little, then – despite the constant
value of the current supplied – the magnetic field, as well as the magnetic flux,
decrease a little, because the act of separating the two parts generates a current
opposing the original, and consequently reduces the magnetic field.

It can be shown that the stored magnetic energy of the coils decreases, despite
positive work having been done on them. This strange situation is explained by the
induced voltage caused by the change in magnetic flux. The induced electromotive
force and the current from the source together mean that electrical energy is
transferred into the source; the amount involved is equal to exactly twice the
energy decrease in the coils. So, overall, there is an increase in the energy of
the coils plus current source, and the force F, calculated from this, is the same as
the value found earlier.

S163 a) The wire is thin, and the field is strong, and so any effects due to
gravity can be neglected; in particular, we do not need to know the orientation of
the line P1P2. The wire takes up a shape that lies in a plane that is perpendicular
to the magnetic induction. As the force acting on any small piece of the wire
is everywhere perpendicular to that piece, the tension in the wire is the same
throughout its length. The tension force in a small piece of the wire with radius
of curvature r is F = IBr, as can be proved by investigating the forces acting on it
(see Fig. 1).

Fig. 1

The condition for equilibrium of a small piece of wire that has length �� = 2ϕr,
and subtends an angle 2ϕ at the centre of the osculating circle, is

2F sin ϕ = IB��.
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Because the angles involved are (vanishingly) small, sin ϕ ≈ ϕ, which immediately
yields the stated result, F = IBr.

It follows from the above that the shape of the wire is a planar curve with
constant radius of curvature, and so it must be a circular arc.72

Fig. 2

The length of the circular arc and the distance between points P1 and P2 are both
given, and so the following relations have to be satisfied by the arc radius r and the
angle α shown in Fig. 2:

2r sin α = �/2, 2r(π − α) = �.

From these, we get the transcendental equation 2 sin α = π − α, whose numerical
solution is

α ≈ 1.246 rad = 71.40◦.

Inserting this back into the equations above, we find that the radius of the circle is
r ≈ 0.264�, and that the tension in the wire is F ≈ 0.264IB�.

b) There can be no magnetic force acting on any piece of the wire that is parallel
to the magnetic field, and so, even in this case, the component of the tension in
the wire that is parallel to B is constant throughout the wire. It is also true that the
force exerted by the magnetic field on any small piece of the wire is everywhere
perpendicular to that piece; this is why the magnitude (but not the direction) of the
force is the same at each point of the wire.

From these two facts, it follows that the component of the tension in the wire,
perpendicular to the magnetic field, must be constant, i.e. if we look at the wire
along the direction of the magnetic field, then we see a circle. In three dimensions,
the shape of the wire is a one-turn helix with an axis parallel to the magnetic field,
and uniform pitch (see Fig. 3). In principle, a multi-turn helix is also a possible
equilibrium state, but, as in part a), that kind of shape is unstable.

72 In principle, a ‘circular coil’ with at least one complete turn would also be in equilibrium, but its state would
be unstable. Such a configuration would not be formed, for much the same reason that a pencil cannot stand
on its point.
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Fig. 3

The angle ϑ of the pitch of the helix (that is, the angle between the tangent to
the helix at a particular point, and the plane perpendicular to the magnetic field B
that goes through that same point) can be calculated from the given arc length �:

sin ϑ = �/2

�
and from this ϑ = 30◦.

The radius R of the imaginary cylinder that fits inside the helix is

R = � cos ϑ

2π
=

√
3 �

4π
≈ 0.138�.

Finally, we come to calculating the force acting on P1 (or P2). Looking along
the axis of the helix, we see a whole circle of radius R, which the magnetic Lorentz
force is trying to enlarge. Opposing this force is the component of the tension in
the wire that is perpendicular to the magnetic field, namely F cos ϑ :

IBR = F cos ϑ .

Using our previous expression for R, we get the tension force in the wire as

F = IB�

2π
≈ 0.159IB�.

It seems that the tension in the wire is independent of the distance d between the
points P1 and P2 (0 < d < �).

S164 The electron’s trajectory is confined to the mid-plane (plane of symmetry)
between the circular current loops; and the magnitude of its velocity (its speed) is
always v0, as the magnetic field cannot do any work on it.

The direction of its velocity is much harder to determine, since it is continually
changing because of the effect of the Lorentz force. The magnitude of the magnetic
field strength (and consequently that of the Lorentz force) depends quite sophisti-
catedly on the electron’s position, but, in spite of this, we can deduce something
specific about the direction of its final velocity.
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When the electron is at a distance r from point O, its angular momentum about
that point is given by mrvt, where vt is the tangential component of its velocity.
The angular momentum changes continuously as a result of the torque generated
by the Lorentz force, but only the radial component vr of the electron’s velocity
contributes to that force:

d(mrvt)

dt
= evrB(r)r = e

dr

dt
B(r)r, (1)

where m is the mass of the electron and e is the elementary charge; in the figure in
the problem, the positive direction has been chosen to be vertically upwards.

It follows that the change in the electron’s angular momentum, as it increases its
radial distance by a small amount �r, is

�(mrvt) = eB(r)r�r = e

2π
��, (2)

where �� = B(r)2πr�r is the flux from the axially symmetric magnetic field that
crosses a centrally placed annulus of average radius r and width �r.

According to equation (2), the change in the angular momentum of the electron,
as its distance from point O increases from r1 to r2, is proportional to the total
magnetic flux that crosses a centred annulus that has inner and outer radii r1 and
r2, respectively. As the initial angular momentum of the electron is zero, at r1 = 0,
the angular momentum of the electron at any time is proportional to the total flux
�(r) crossing a centred disc whose radius is equal to the current value of r.

After the electron has moved ‘sufficiently far’ from the circular current loops
(r → ∞):

�total → �(∞) = 0.

The final equality follows because the magnetic field is divergence-free, and the
electron’s trajectory plane, taken as a whole, is pierced by just as many magnetic
field lines directed from top to bottom, as from bottom to top. The figure shows
the structure of the magnetic field in a plane section that contains point O, and
is perpendicular to the planes of the current loops; the horizontal line (with no
arrowheads) is a section of the plane containing the electron’s trajectory.
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So, the angular momentum of the electron, when it is very far from the current
loops, becomes zero again, and this implies that vt has also returned to zero.
Accordingly, the electron must ultimately be moving away from point O in a radial
direction, with its unchanged speed of v0.

S165 We first write the differential equation of motion for the charged particle
in terms of its position and velocity vectors r and v. In the presence of both the
magnetic field B and the braking force (∝ v) we have

m
dv

dt
= Q

dr
dt

× B − k
dr
dt

. (∗)

The quantities m and Q (the mass and charge of the particle), B and k (the drag
coefficient) are all constants, and so, in any small time interval �t, the small
changes in r and v satisfy

m�v = Q�r × B − k�r.

This equation can be summed over the whole motion:

m
∑

�v = Q
(∑

�r
)

× B − k
∑

�r. (1)

On the left-hand side of this equation, the sum of the velocity changes is just (−1)

times the initial velocity of the particle, and each sum on the right-hand side is the
total displacement vector of the particle (from the entry point to the final stopping
place): ∑

�v = −v0,
∑

�r = s.

Using this notation, equation (1) can be written in the form:73

mv0 = −Qs × B + ks. (2)

In the absence of any magnetic field, the particle stops after covering a path of
length |s1| = s1 = 10 cm, and so, from (2), we have

mv0 = ks1. (3)

If the particle, starting with the same initial velocity, moves in a magnetic field
of strength |B| = B, then the displacement vector of its final stopping place is s2,
with |s2| = s2 = 6 cm.

We note that s and s × B are perpendicular to each other for any s. Then, either

a) by further noticing that, consequently, the terms on the right-hand side of
equation (2) are vectors that form a right-angled triangle, or

73 The same result could have been obtained more directly, but perhaps less instructively, by straightforward
integration of the original differential equation (∗).
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b) from taking the squared modulus of both sides of (2), and using the orthog-
onality of s and s × B,

(mv0)
2 = Q2[(s2 × B)2] + [Q(s2 × B) · s2] + (ks2)

2 = (Qs2B)2 + (ks2)
2,

we find that

(mv0)
2 = (Qs2B)2 + (ks2)

2. (4)

Finally, in the doubled magnetic field of strength 2B, the magnitude of the
particle’s total displacement s3 is given by

(mv0)
2 = (2Qs3B)2 + (ks3)

2. (5)

By eliminating all the constant physical quantities from equations (3), (4) and
(5), we get the required distance as

s3 = s1s2√
4s2

1 − 3s2
2

= 30√
73

cm = 3.51 cm.

S166 The ball, at position r relative to its rest position, and moving with veloc-
ity v, is acted upon by the tension force in the string, the gravitational force and
the Lorentz force caused by the magnetic field. Using the usual approximations for
small-amplitude motions of pendulums, the horizontal projection of the tension in
the string is −mω2r, where ω (= √

g/�) is the angular frequency of the pendulum
without any magnetic field. The ball’s equation of motion, in the presence of the
magnetic field, is

mv̇ = qv × B − mrω2. (1)

This quite sophisticated (vector) differential equation can be solved without using
calculus, if we notice that it is very similar to the equation of motion of a simple
pendulum in a rotating frame of reference (a Foucault pendulum at the North Pole).

To describe the small-amplitude swinging of a planar pendulum with angular
frequency ω0, in a frame of reference rotating with angular velocity � relative to
the inertial reference frame (� is a vertical vector), we need an equation of motion
that contains the Coriolis force as well as the centrifugal one:

mv̇ = 2mv × � − mrω2
0 + mr�2. (2)

The solution to this equation is well known. Since the oscillation plane is fixed in
the inertial frame of reference, in a reference frame rotating with angular velocity
�, the plane rotates with angular velocity −�; the period of a whole revolution is
T = 2π/�.
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Comparing equations (1) and (2), it can be seen that the observed rotation rate
is � = qB/(2m), and that the angular velocity vector of the rotating plane has
a direction opposed to that of B (see figure). The actual angular frequency ω0 of
the pendulum can be expressed entirely in terms of the other parameters of the
problem:

ω0 =
√

g

�
+

(
qB

2m

)2

,

but this has no bearing on the rotation rate of the plane of oscillation.

So, the time needed for the plane containing the pendulum’s motion to complete
one revolution is

T = 4π
m

qB
.

Notes. 1. It is interesting that the rotational period of the pendulum’s plane
depends only on the strength of the magnetic field and the data associated with
the small ball, and that it does not depend on the natural period of the pendulum
(i.e. it is independent of � and g).

2. The quantity qB/m is called the cyclotron angular frequency associated with
the given magnetic field; it is the angular velocity of a particle, with charge-to-
mass ratio q/m, that will orbit in a homogeneous magnetic field of strength B.
The plane of the pendulum in the problem rotates with one-half of the cyclotron
angular frequency.
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S167 a) For the distance between them not to change, the two electrons need
to move on the same trajectory, around a circle of radius d/2; they need to be
diametrically opposite each other, and move with the same speed (see Fig. 1). Each
electron, moving in the magnetic field, needs to experience a Lorentz force that
both compensates for the mutually repulsive electrostatic force and provides the
centripetal force required for uniform circular motion.

Fig. 1

We write the equation of motion for one of the electrons. The Lorentz force,
acting on a particle with charge −e, mass m and speed v, has magnitude

FL = evB,

and the Coulomb force is

FCb = ke
e2

d2
,

where ke is the constant in Coulomb’s law, ke = 1/(4πε0). The Coulomb force
is always repulsive, but the use of Fleming’s left-hand rule – remember that the
electron is negatively charged – shows that the Lorentz force is always directed
towards the other electron.

Note. In principle, we should have taken into consideration the force effects aris-
ing from the magnetic field produced by the moving electrons (and calculated
from the Biot–Savart law):

Fmagn = ev
μ0

4π
ev

d2
= v2

c2
FCb,

where c is the speed of light. But, for the motion of classical (non-relativistic)
charged particles, v � c, and this force is negligible compared to the Coulomb
force. We have therefore ignored it.

The equation of motion of the electrons, taking account of the relevant direc-
tions, is

evB − ke
e2

d2
= m

v2

d/2
.
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This is a quadratic equation for the required speed v, and its roots are

v = edB

4m
±

√(
edB

4m

)2

− kee2

2md
.

The situation described in the problem can be realised if the value of v is real (and
positive), i.e. the discriminant of the above equation is non-negative. So, we find
that the condition on d is

d ≥ 2 3

√
kem

B2
= dcrit.

If the electrons are closer to each other than the critical distance, then the problem
has no solution; if their distance is just the critical one, then there is one solution;
and if the distance between the electrons is larger than the critical value, then we
can find two solutions with different values for v.

b) If only one of the electrons is initially given a velocity, then the motion
becomes more complex, even in the special case in which their separation – as
in the given problem – remains constant.

We can get closer to the solution if we first seek the answer to an auxiliary
question: ‘What is the trajectory of the system’s centre of mass (CM) in this case?’
Write the (vector) equations for the electrons’ motions using the usual notation:

ma1 = ke
e2

|r1 − r2|3 (r1 − r2) − ev1 × B, (1)

ma2 = ke
e2

|r1 − r2|3 (r2 − r1) − ev2 × B. (2)

For two particles with identical masses, we can write

rCM = r1 + r2

2
, vCM = v1 + v2

2
, aCM = a1 + a2

2
.

These quantities appear in our formulae if the equations of motion of the two
electrons are added,

m(a1 + a2) = 0 − e(v1 + v2) × B,

from which it follows that

maCM = −evCM × B.

As would be expected, the (internal) Coulomb interaction has been eliminated from
the equation of motion for the centre of mass.

This last equation enables us to state the important result that the centre of mass
of a system consisting of two electrons moves in the same way in a magnetic
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field as would a single electron. If the field is homogeneous, and the motion is
perpendicular to the magnetic field lines, the centre of mass moves in uniform
circular motion!

We conclude that the centre of mass moves uniformly along a circular track,
while the two electrons ‘wobble’ around it. The angular velocity of the centre of
mass is

ωCM = aCM

vCM
= e

m
B = ωc,

which is just the cyclotron angular frequency of the electron (see Note 2 on page
408). In a given magnetic field – e.g. inside a cyclotron particle accelerator – the
particles orbit with this angular velocity ωc. The radius of the circular trajectory of
the centre of mass is

RCM = vCM

ωCM
= vCM

ωc
.

How do the electrons move around the centre of mass? It is obvious that the
answer to this question leads to the solution of the final part of this problem. Write
the position vector of electron 1 in the form r1 = rCM + R. It is clear that the
position vector of electron 2 is then rCM − R. Using the definition of centre of
mass, it follows that

R = r1 − rCM = r1 − r1 + r2

2
= r1 − r2

2
.

An equation giving the rate of change of this vector can be found if we take the
difference between equations (1) and (2):

m(a1 − a2) = 2ke
e2

|r1 − r2|3 (r1 − r2) − e[(v1 − v2) × B]. (3)

The difference between the position vectors is just twice the vector R given above;
so the difference between the velocity vectors is just twice the vector V, which
gives the rate of change of R; and similar relations hold for the accelerations:

r1 − r2 = 2R, v1 − v2 = 2V, a1 − a2 = 2A.

Using this notation, equation (3) can be transformed into

mA = ke
e2

|2R|3 2R − e(V × B). (4)

This equation is intrinsically the same as the equation of motion in part a) (in
which the centre of mass remains at rest), and so – given suitable initial velocities –
this equation can also have a solution describing uniform circular motion.



412 200 More Puzzling Physics Problems

Assuming this form of solution, if the magnitude of vector R(t) is constant in
time with value R, and its direction rotates with angular velocity ω, then according
to the well-known formulae of uniform circular motion, we have A = −ω2R and
V×B = RωB. Then, from equation (4), we obtain the following quadratic equation
for the angular velocity ω of the electron pair, as they orbit around the centre of
mass:

ω2 − e

m
Bω + ke

m

e2

4R3
= 0. (5)

A real root for ω exists only if the discriminant is non-negative, i.e. if

R ≥ 3

√
kem

B2
.

The minimal electron separation for such a motion to exist is

dmin = 2Rmin = 2 3

√
kem

B2
= dcrit.

Our analysis is also valid when the centre of mass is at rest, so it is not surprising
that this result for dcrit is the same as that obtained in part a).

Let us try to sketch the trajectory of the particle in the special case in which
d = dmin, that is,

R = Rmin = 3

√
kem

B2
.

Inserting this value into (5), the angular velocity of the electrons as they orbit
around the centre of mass is

ω = 1

2

e

m
B = 1

2
ωc,

that is, just one-half of the angular velocity of the centre of mass.
Start the system, as prescribed in part b), so that only one of the electrons is given

an initial velocity v0. This has to be in a direction perpendicular to the line segment
connecting the two particles, because, if it were not, the electron separation would
change ‘before the second electron could do anything about it’.

Initially, that second electron is at rest, and so the centre of mass starts off with
velocity v0/2, and each electron has a velocity relative to the centre of mass of the
same magnitude (but oppositely directed).

For circular motion around the centre of mass, we must have

v0

2
= Rω = R

ωc

2
.
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Simultaneously, for the circular motion of the centre of mass, we need

v0

2
= RCMωc, that is RCM = R

2
.

Accordingly, the centre of mass orbits around a circular trajectory that has half
the radius of the circle in which the electrons orbit the centre of mass; further,
the period of the centre of mass’s motion is one-half that of the electrons that go
round it.

A sketch of the particle trajectories is shown in Fig. 2. To make things a little
clearer, the trajectory of the centre of mass is also included (drawn with a dashed
line). While the ‘catapulted’ electron’s radius arm (of length R) rotates through
an angle θ around the centre of mass, that of the centre of mass itself has moved
through 2θ around its own circular trajectory, which has radius R/2.

Fig. 2

During a period T = 2π/ωc, the centre of mass completes a whole circle, but the
two electrons have each covered only a semicircle; they have just swapped places
with each other. At that instant, the position and velocity of the centre of mass in
space is exactly as it was at the start (v0/2), the initially stationary electron has a
velocity v0, and the ‘catapulted’ one is at rest. It therefore first stops after a time

T = 2π
m

eB
.

Notes. 1. The trajectory curve of the two electrons (called a cardioid or ‘heart
curve’, because of its shape) is simple and clear-cut only if their initial separation
has the minimal (critical) value in the given magnetic field. If the constant distance
is larger than the minimal one, then the trajectories and motions of the particles
are more complicated, and generally the trajectories are not closed.

2. The situation is even more complicated if the initial velocity does not meet
the conditions for a constant separation. But, even then, it can be shown that
the particles cannot approach each other too closely, nor can they move very far
apart – their separation always remains between two limiting values and oscillates
between them.
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S168 Instead of the original � circuit, we consider a � configuration (as shown
in Fig. 1). The following simple equations can be written for the latter:

Y + Z = 1, X + Z = 2, X + Y = 3.

Their solution is X = 2 �, Y = 1 � and Z = 0 �.

Fig. 1 Fig. 2

The connections between these values and those in the actual circuit take the
form X = yz/(x + y + z), and cyclically. In particular, Z = xy/(x + y + z) and,
since none of the measured values was zero, none of x, y and z can be zero. The
only possible conclusion is that z is infinite, and that between terminals C and A
there is an open-circuit (see Fig. 2). Further, X = 2 � then implies that y = 2 �,
and similarly Y = 1 � implies that x = 1 �.

Notes. 1. Infinity is not a number, and the usual rules of algebra are not valid
for it; for this reason, our formal calculation has produced a contradiction. If the
value of z is considered not infinitely large, but much larger (by many orders of
magnitude) than 1 � (in physics, the meaning of ‘infinite’ is always of this kind),
then the equations can be satisfied in a self-consistent way (and in accord with the
accuracy of the given data). This procedure is equivalent to letting 1/(z + w), for
any w, tend to zero; if this is done initially (with either foresight or hindsight!),
then equations (1), (2) and (3) have a straightforward (and correct) solution.

2. The question can also be phrased in terms of the usual (non-transparent)
black box containing a few ohmic resistors. In this case the solution (finding the
minimal number and the values of the resistors inside the black box) could be
‘heuristic’.

S169 Let every resistor of the actual chain have unit resistance. The one
directly connected between points A and B can be notionally replaced by two
resistors, one at each end of the strip, and each having 2 units of resistance. When
the end-points of the chain are connected pairwise, these two resistors will be
connected in parallel, with an equivalent resistance equal to the original 1 unit.
This equivalent (for our purposes) circuit has symmetry properties that can be
exploited.
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If a given voltage V is connected across one end of this transformed chain, and,
at the same time, a voltage ±V (i.e. with the same magnitude and the same or
opposite polarity) is connected across the other, then we can dispense with the need
to pairwise connect the two ends of the chain. The electric current distribution pro-
duced – as well as the equivalent resistance calculated from the currents – must be
the same as when the chain is made into a closed strip, with case a) being simulated
by the same polarity (+V) connection, and case b) by the −V arrangement.

The potential and current distributions in the (ordinary) strip connected to
sources with the same polarity have reflectional symmetry about the mid-
perpendicular (ST in Fig. 1), while in the Möbius strip connection (with sources of
opposite polarity) the potential distribution has two-fold rotational symmetry with
respect to the centre O of the chain. Points at the same potential can be connected
together without affecting anything, and if we then find two 1 unit resistors are
connected in parallel, they can be replaced by a single 1

2 unit resistor. In the
following figures, for both cases a) and b), 1 unit resistors are denoted by empty
rectangles, and resistors with 1

2 unit of resistance by light grey rectangles.

Fig. 1

If N is even, then Fig. 1 shows the two possible configurations, with points at
the same potential denoted by the same letter; C and D have been replaced by A
and B, as appropriate. These two circuits can be transformed into their half-length
equivalents, as shown in Fig. 2.

Because of the rotational symmetry in case b), the potentials of points S and T
are the same, and so the resistor between them, through which no current flows, can
be replaced by a short-circuit. As the two networks differ only in the final loop on
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Fig. 2

the right-hand side, and that loop has a smaller resistance in case b), the equivalent
resistance between points A and B is larger in case a) than it is for the Möbius
strip.

Fig. 3 shows the corresponding pair of circuits for odd N.

Fig. 3

The transformed networks, after equipotential points have been connected and
parallel resistors have been substituted, can be seen in Fig. 4. Again, the equivalent
resistance between points A and B is smaller in case b), as the two networks differ
only in the last loop on the right-hand side, and its resistance is smaller in the case
of the Möbius strip network.
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Fig. 4

S170 Solution 1(a). Imagine that any wire of the circuit (say, the segment AB
in Fig. 1) is cut with scissors, and a tunable voltage generator is connected between
the two loose ends. The circuit then undergoes a forced oscillation with the angular
frequency ω of the generator.

Fig. 1

When the latter approaches one of the natural frequencies of the system, the
current strength between points A and B rises sharply because of the resonance. In
this situation, the current flowing in the circuit is very large, even for a very small
driving voltage, and, for ideal components, the system would oscillate without any
voltage generator at all.

So, at the resonance frequency, the impedance ZAB between points A and B
approaches zero. Using complex impedances:

ZAB = iLω + 1

iCω
+ iLω × 1/(iCω)

iLω + 1/(iCω)
= 0.
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After some algebraic manipulation, we get the following equation:(
ω

ω0

)4

− 3

(
ω

ω0

)2

+ 1 = 0,

where the notation ω0 = 1/
√

LC has been introduced. So the natural (angular)
frequencies of this ‘2L2C’ circuit are

ω1,2 = ω0

√
3 ± √

5

2
=

√
5 ± 1

2
ω0.

The final simplification can be obtained by noting that

3 ± √
5

2
= 6 ± 2

√
5

4
= (

√
5)2 + (1)2 ± 2

√
5

4
=

(√
5 ± 1

2

)2

.

Solution 1(b). Choose two end-points of any circuit element, say points A′ and
B′ in Fig. 2, and notionally connect a tunable a.c. current generator across them.

Fig. 2

If the angular frequency of the current generator is changed and it approaches
one of the natural frequencies of the circuit, then the voltage between the arbitrarily
chosen points rises sharply. At resonance, a very small input current produces a
great voltage, i.e. the impedance ZA′B′ between the points A′ and B′ approaches
infinity:

ZA′B′ =
(

1

iLω
+ iCω + 1

iLω + 1/(iCω)

)−1

−→ ∞.

This happens if the value of the expression in parentheses is zero. From this, we
get the same equation as in Solution 1(a), and, of course, the same final result.

Solution 2. Denote the charges on the two capacitors at a given moment by Q1

and Q2, and the current intensities flowing through them by I1 and I2 (see Fig. 3).
Then the currents through the two inductors are I1 and (according to the junction
law) I1 − I2.
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Fig. 3

Write Kirchhoff’s second rule for the two clockwise loops shown in Fig. 3:

Q1

C
+ Q2

C
− Lİ1 = 0,

−Q2

C
− L(İ1 − İ2) = 0.

Using the physical relationships I1 = −Q̇1 and I2 = −Q̇2, and the notation
ω0 = 1/

√
LC, we find the following equations:

Q̈1 = −ω2
0Q1 − ω2

0Q2, (1)

Q̈2 = −ω2
0Q1 − 2ω2

0Q2. (2)

This system of (second-order) differential equations describes how the charges on
the capacitors change with time. From the theory of coupled mechanical oscil-
lations, we know that, in such a system, the quantities Q1(t) and Q2(t) can be
written, quite generally, as the sum of two harmonic terms with different angular
frequencies. But we can also find a linear combination of Q1(t) and Q2(t) that is a
pure sinusoidal function of time. Let it be

q(t) = Q1(t) + αQ2(t).

To find the constant α, add equation (1) to α times equation (2):

Q̈1 + αQ̈2 = −ω2
0[(1 + α)Q1 + (1 + 2α)Q2].

Factorise out the coefficient of Q1 from the square brackets (so that its contents
have the same form as that assumed for q(t)):

q̈(t)︷ ︸︸ ︷
Q̈1 + αQ̈2 = −ω2

0(1 + α)︸ ︷︷ ︸
ω2

[ q(t)︷ ︸︸ ︷
Q1 + 1 + 2α

1 + α︸ ︷︷ ︸
α

Q2

]
. (3)
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It can be seen that the linear combination q(t) varies harmonically according to the
equation q̈ = −ω2q, provided

α = 1 + 2α

1 + α
, that is α1,2 = 1 ± √

5

2
.

So, we have found two appropriate linear combinations:

q1(t) = Q1(t) + α1Q2(t), q1(t) = q0,1 sin(ω1t + ϕ1), (4)

q2(t) = Q1(t) + α2Q2(t), q2(t) = q0,2 sin(ω2t + ϕ2), (5)

and the corresponding natural frequencies, according to equation (3), are

ω1,2 = ω0

√
1 + α1,2 = ω0

√
3 ± √

5

2
=

√
5 ± 1

2
ω0.

The amplitudes q0,1 and q0,2 in equations (4) and (5), and the initial phase angles
ϕ1 and ϕ2, can be determined from the initial conditions, that is, from the initial
charges on the capacitors, and the initial currents in the inductors, so the functions
q1(t) and q2(t) are known.

With arbitrary initial conditions, the charges on the capacitors can be expressed
as functions of time using equations (4) and (5):

Q1(t) = α2

α2 − α1
q1(t) − α1

α2 − α1
q2(t)

Q2(t) = 1

α1 − α2
q1(t) − 1

α1 − α2
q2(t).

These expressions show that the charges on the capacitors (as functions of time)
are each superpositions of two sinusoidal oscillations. By choosing proper initial
conditions, it can be arranged that one of q1(t) and q2(t) is zero, and so produce
one of the two natural frequencies, either ω1 or ω2, of the circuit.

S171 The connection between the voltage across the terminals of a capacitor
with capacitance C and the alternating current (with angular frequency ω) flowing
through it is74

VC

IC
= 1

ωC
,

and so the electrical impedance (reactance) of the capacitor is 1/(ωC); furthermore,
the phase of the sinusoidal alternating current leads that of the capacitor voltage
by 90◦. For a coil, the same ratio is

74 Here VC and IC can denote either peak values or r.m.s. values of the current and voltage.
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VL

IL
= ωL,

i.e. the electrical impedance (reactance) of a coil with inductance L is ωL, and the
current flowing through it lags the coil voltage by 90◦.

As the phase shift between voltage and current in an inductor has the opposite
sign to that in a capacitor, a coil can be considered as a capacitor with negative
capacitance CL (< 0):

ωL = − 1

ωCL
, that is CL = − 1

ω2L
.

Being able to make such a substitution will allow us to work with an equivalent
network consisting entirely of capacitors.

In what follows, it will be convenient to use the following notation:

k2 = 1

ω2LC
=

(ω0

ω

)2
.

The dimensionless number k shows how many times larger than the applied fre-
quency ω is the natural (resonance) frequency ω0 of a simple LC oscillator, con-
sisting of only one coil with inductance L and one capacitor with capacitance C.
Using this notation, the ‘effective capacitance’ of each coil in the chain can be
written in the form CL = −k2C.

In a physics problem, the term ‘infinite chain’ means that the chain is ‘very
long’ – the number of its elements is very large, but it is finite. Consider, first, a
chain of length n (consisting of n coils and n capacitors). As the chain does not
have any ohmic resistors, the phase shift between the current flowing through it
and the voltage is either +90◦ or −90◦. In one of these cases, the chain can be
replaced by a capacitor with a particular capacitance Cn, and in the other by a coil
that has a suitable inductance. We will suppose that the first situation holds, and
determine the value of Cn for the first few n. If it turns out that Cn is negative, then
the chain behaves as a coil.

In the case of n = 1, we have to determine the equivalent impedance of a
capacitor with capacitance C and a coil with inductance L (treated as another
capacitor with capacitance CL) connected in series:

1

C1
= 1

C
+ 1

CL
,

from which

C1 = CCL

C + CL
= C × (−k2C)

C + (−k2C)
= k2

k2 − 1
C.

For n = 2, a capacitor with capacitance C is connected in series with the parallel
resultant of a coil and C1:
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1

C2
= 1

C
+ 1

C1 + (−k2C)
.

In general,

1

Cn+1
= 1

C
+ 1

Cn − k2C
,

from which

Cn+1 = C(Cn − k2C)

Cn + (1 − k2)C
.

It is convenient to express all of the capacitances in the form Cn = xnC (i.e.
all capacitances are measured in units of C), because then the recursion formula
assumes a clearer form:

xn+1 = xn − k2

xn + 1 − k2
. (1)

Question. Does the sequence Cn tend to a limit as n → ∞? May we say that
‘if n � 1, then xn ≈ xn+1’? If so, by equating the approximately equal numerical
values xn to a common value x, the recursive relationship (1) can be transformed
into a quadratic equation. Let us try it:

x = x − k2

x + 1 − k2
, that is x2 − k2x + k2 = 0.

In the case of k > 2 (corresponding to low input frequencies), this equation has
two real roots:

x± = k2

2
± k

2

√
k2 − 4. (2)

Which one is the ‘correct’ root? Or perhaps both of them have physical meanings!
You might suspect that, of the roots in expression (2), the smaller one x− is the
‘right’ one. This is because, if coils for which L is very small were used (i.e.
ω0 � ω), then they would behave as virtual short-circuits, and the reactance
between points A and B would be approximately the same as that of a single
capacitor of capacitance C, i.e. x ≈ 1. Now, as can be easily verified, it is the
case that, if k � 1, then x− ≈ 1, corresponding to the impedance between points
A and B being the expected 1/ωC. By contrast, for large values of k, x+ ≈ k2 � 1,
which is not in line with the physical situation. The conclusion is that the intuitive
choice is the correct one.

These considerations show that the equivalent impedance of the ‘infinite chain’,
at an angular frequency ω < 1/(2

√
LC) – independently of the termination at its
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far end, i.e. independently of the numerical value of x1 – can be only one well-
defined value:

Zchain = 1

ωx−C
= 1

ωC

2

k(k − √
k2 − 4)

= 1 + √
1 − 4ω2LC

2ωC
.

But what about the case of k < 2, i.e.

ω >
1

2
√

LC
= ω0

2
?

Then expression (2) is complex, with both its real and imaginary parts non-zero,
showing that the impedance of the chain is not a real multiple of C. In other
words, the recurrence relation, although correctly calculating xn for each n, does
not produces a sequence that tends to a limit. Interpreted physically, this means
that the equivalent impedance of the long (but not infinitely long!) chain really
does depend on the actual size of the chain – it depends on how long ‘very long’
actually is. This (higher) range of frequencies is discussed more quantitatively in
the Note that follows.

Note. The problem can also be tackled using complex impedances: iωL for an
inductance; 1/(iωC) for a capacitance. If Z is the impedance of the ‘infinite’
chain, then it is also the impedance of the same chain with an additional capacitor–
inductor unit attached to its front end, i.e. a capacitor in series with a parallel
arrangement consisting of an inductor and the chain:

Z = 1

iωC
+ iωL Z

iωL + Z
.

Using the previous notation, this can be rearranged as

2Z

√
C

L
= −ik ±

√
4 − k2

This shows that, if k > 2, then Z is purely imaginary, and since the second term is
always less than the first in magnitude, Z has a negative imaginary value, i.e. it is
capacitive in nature. The resolution of the ± dichotomy is as previously discussed.

For k < 2 (i.e. ω > 1/(2
√

LC)), the second term is real and the equivalent
impedance of the infinite chain contains an ohmic part. This is surprising, because
an arbitrarily long chain, but one necessarily containing a finite number of (ideal)
coils and capacitors in practice, cannot have any ohmic resistance, it must have a
purely capacitive or inductive equivalent impedance.

The appearance of an ohmic resistance for the ‘infinite’ (in reality finite, but
very long) chain when ω > ω0/2 is connected with the propagation of a wave
along the chain. This wave transports energy from the power supply along the
chain, and in the case of a very long chain this energy reflects back after a very
long time. If the chain is really ‘infinitely long’, the wave never comes back, and
so the inductor–capacitor chain behaves like a circuit containing ohmic elements
as well.
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S172 Positive charges accumulate on the surface of one of the wires, and
negative ones on the surface of the other; denote the corresponding surface charge
densities by +σ and −σ . The electric fields created by these charges will be calcu-
lated separately for each conductor, and then the two fields will be superimposed.

If we had only a single charged wire, then its electric field would have axial
symmetry, and the magnitude of the electric field strength, calculated at a distance
r from the axis of the cylindrical conductor, would be75

E(r) = σd

2ε0

1

r
.

The electric field of the charge on a single wire must produce a potential dif-
ference between the conductors of V/2, because the net field of the two wires has
to give a p.d. of V , to match the e.m.f. of the battery. The connection between the
voltage and the electric field is the following:

V

2
=

∫ D−(d/2)

r=d/2
E(r) dr ≈ σd

2ε0

∫ D

r=d/2

1

r
dr = σd

2ε0
ln

2D

d
,

from which it follows that the surface charge density on the wires is

σ = ε0 V

d ln 100
.

The attractive electric force between the wires can be found as the product of the
(average) electric field produced by one of the wires at the location of the other,
and the electric charge on the latter:

Felectric = E(r = D)Q = σd

2ε0

1

D
σπdL = ε0πLV2

2D(ln 100)2
.

The repulsive magnetic force is the Lorentz force produced by the magnetic
field associated with one of the currents I as it acts upon the other. The magnetic
induction B, calculated from Ampère’s rule, has magnitude μ0I/(2πr) at a radial
distance r from the wire. So, the magnetic force is

Fmagnetic = BIL = μ0I

2πD
IL = μ0

2π
L

D

V2

R2
.

In the final step, Ohm’s law, I = V/R, has been used.
To attain the given condition, Felectric = Fmagnetic , we must have

ε0πLV2

2D(ln 100)2
= μ0

2π
L

D

V2

R2
,

75 If not already known, this can be proved by applying Gauss’s law to a cylinder, of radius r and length L, that
is coaxial with the wire: E · 2πrL = (1/ε0)πdLσ . From this the expression for E(r) follows immediately.
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from which

R = 1

π

√
μ0

ε0
ln 100 = 553 �.

With this load resistor, the attractive electric force between the unlike charges just
balances the repulsive magnetic force between the opposing currents.

Note. It is interesting to note that the resistance R does not depend on the length of
the wires, nor on the battery voltage – even the (large) ratio D/d (treated as � 1)
appears only in a logarithmic way (i.e. only as the argument of a slowly changing
function). The order of magnitude of R is effectively determined by the universal
quantity

√
μ0/ε0 ≈ 377 �, which is called the wave impedance of free space.

S173 Consider first a single ring, and concentrate on a small part of it, intro-
ducing a reference frame K in which that part is at rest. As the ring is moving with
constant angular acceleration α, this reference system is not an inertial one and a
certain linear acceleration is generated within it.

As the ring is very thin, the radial component of this acceleration produces no
significant effects. This is not the case, however, for the tangential component of
the acceleration, which acts along the part of the ring under consideration and has
magnitude rα. In K the positive ions forming the metal crystal lattice are at rest,
but a certain inertial force acts on the electrons, which have (effective) mass m.
This inertial force has magnitude mrα and its direction is opposite to that of the
tangential acceleration.

The interaction between the electrons and the crystal lattice prevents the former
from increasing their speed indefinitely; according to Ohm’s law, the interaction
increases as the velocity of the electrons, relative to the crystal lattice, increases.
After some time, equilibrium between the inertial force and the lattice-induced
braking force is reached. Consequently, the positive ions and the negative electrons
move (tangentially) with different speeds, and as measured in K an electric current
flows.

The magnitude of the inertial force is the same everywhere, and, since it acts
tangentially at all points on the ring, it has the same effect as that of a fictitious
electric field similarly directed. The magnitude of this fictitious electric field can
be found by equating the force due to it to the inertial force:

eE = mrα and so E = mrα

e
.

In a single ring of resistance R (at rest), the above electric field generates a
current:

I = 2πrE

R
= 2πmr2α

eR
.
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The field E is a fictitious electric field, but the interaction between this field and
the electrons is real, and so is the electric current!

The system described in the problem can be considered as a very long solenoid
with n loops per unit length, in which a current I is flowing. It is well known that
the magnetic field B inside a long solenoid (well away from its ends) is homoge-
neous and has magnitude B = μ0nI, where μ0 is the permeability of free space.
Since the points along the axis are not rotating, but are at rest in both K and the
laboratory frame, the axial magnetic field at the centre of the cylinder, measured in
the laboratory frame, is

B = 2πμ0nmr2α

eR
.

Notes. 1. The Stewart–Tolman effect is very instructive, because, despite the fact
that the rings are electrically neutral, in this system – because of the finite inertial
mass of the charge carriers – there is, perhaps unexpectedly, a current flowing and
a magnetic field produced.

2. Experimentally, it is easier to demonstrate the Stewart–Tolman effect in
electrolytes than in metals because the effect is directly proportional to the mass
of the charge carriers. A similar phenomenon – also related to the inertia of the
charge carriers – can be observed during the linear acceleration along its axis of a
metal rod; in this case, charge separation occurs.

3. Of the three fictitious forces appearing in rotating frames (the centrifugal
force, Coriolis force and Euler force), the first two, which act radially, result in
a finite but negligible charge separation in the thin rings, and only the third one
(−mα × r) gives a tangential force relevant to the solution.

4. The Stewart–Tolman effect can also be interpreted in an inertial reference
frame. The free, or quasi-free, conduction electrons in the metal must be accel-
erated by something (they can hardly stand still in the laboratory frame), and
this something cannot be anything else other than the interaction between the
conduction electrons and the crystal lattice of positive ions; this interaction might
even be called an electromotive force.

5. If the rings are constantly accelerated, say, in the positive sense (anticlock-
wise), then the electrons always lag a little bit behind the crystal lattice. Conse-
quently, the current of positive ions is larger than that of the electrons, and the
net current is also anticlockwise. The resulting magnetic field vector (determined
using the right-hand rule for solenoids) points in the same direction as the positive
axis for the cylinder’s rotation (to the left in the figure in the problem).

S174 Our overall aim is to find the connection between the voltage V of
the voltmeter and the current I flowing into and out of the plate. If we knew
the (position-dependent) current density j(r) of the two-dimensional current
distribution, then, using the continuum form of Ohm’s law E(r) = � j(r), we
could calculate the electric field inside the plate. From that, the voltage difference
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between points C and D could be found by using the integral calculus. This is a
rather daunting mathematical task – but, fortunately, there is a much easier way.

At an edge of the plate, the current density vector j(r) must have no component
perpendicular to that edge. This unusual boundary condition can be managed rel-
atively easily if we follow a method similar to that of image charges, as used in
electrostatics (see figure).

Denote by A′ and B′ the mirror image points of, respectively, A in side edge BD
and B in AC. The current distribution in the actual finite plate is exactly the same
as it would be in one quarter of an infinite metal plate, into which currents 2I were
injected at both A and A′, and currents 2I left it at each of points B and B′. Note
that, although the current entering at A is 2I, that flowing through the actual plate
is only I.

Now consider a situation in which current enters/leaves the infinite metal plate
at a single electrode and leaves/enters it at infinity. If a current 2I enters the plate,
then the magnitude of the current density at a distance r from the input terminal
would be

j(r) = 2I

2πrt
.

The corresponding electric field is

E(r) = �I

πrt
,

and the potential (relative to an arbitrarily chosen point that is a distance r0 from
the electrode) is given by
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V(r) = −
∫ r

r0

E(r) dr = �I

πt
ln

r0

r
.

In the following, in order to find the potentials at C and D, we will superimpose
four partial potentials. Although, the results cannot depend on the arbitrary position
of the zero of potential, the calculation is much shorter if it is chosen as the centre
O of the square ABA′B′; then we have AO = BO = A′O = B′O = r0.

With this choice, the potential at point C can be calculated by superimposing
the effects of the real and ‘image’ electrodes, taking account of whether each is a
source or a sink:

VC = �I

πt

(
ln

r0

d
+ ln

r0

3d
− ln

r0√
5d

− ln
r0√
5d

)
,

which simplifies to

VC = �I

πt
ln

5

3
.

Either by an exactly parallel calculation, or on symmetry grounds, the potential at
point D is given by VD = −VC. So the voltage between C and D is 2VC, and this
will be the reading V on the voltmeter. From this and our expression for VC, the
resistivity � of the metal plate material can be expressed as

� = πt

2 ln(5/3)

V

I
.

It is interesting to note that the result does not depend on the choice of d, providing
it is much smaller than the length of a plate edge, but, at the same time, much larger
than the plate thickness.

S175 If a capacitor of capacitance C and initial charge Q0 discharges through
an ohmic resistor R, then the charge Q(t) on the capacitor decreases with time
according to

Q(t) = Q0 e−t/(RC),

and it reaches the value of Q0/2 in a time76

T1/2 = RC ln 2. (1)

In the analogous situation given in the problem, C is the capacitance of the
‘isolated’ metal sphere, and R is the ‘effective resistance’ of the poorly conducting
air. The sphere’s capacitance is straightforward to determine. The potential, relative

76 This time interval is similar to the parameter used to describe radioactive decays, and can also be called a
half-life.
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to a reference point at infinity, of a sphere of radius r0 and carrying a charge Q is
Q/(4πε0r0), and so its capacitance is

C = 4πε0r0. (2)

The determination of the effective resistance of the air around the sphere is a
somewhat more sophisticated task. The air, with resistivity 1/σ , can be notionally
divided into thin spherical shells concentric with the sphere. Let the thickness of a
shell at radius r be �r. Its surface area is 4πr2, and so its electrical resistance (for
radial currents) is

�R = 1

σ

�r

4πr2
,

and the net resistance of all of the spherical shells, connected in series, is

R =
∑

�R = 1

4πσ

∑ �r

r2
. (3)

This sum can be evaluated (without approximation) by letting �r → 0, yielding
the integral:

R = 1

4πσ

∫ ∞

r0

dr

r2
= 1

4πσ r0
. (4)

The same result can also be found without integration, by using the fact that the
potential of a point charge, relative to a reference point at infinity, can be calculated
from its electric field strength; this procedure produces a very similar sum to that
in (3).

Substituting results (2) and (4) into expression (1), we get that the half-life of
the charge on the metal sphere is

T1/2 = RC ln 2 = 1

4πσ r0
4πε0r0 ln 2 = ε0

σ
ln 2.

It is interesting to note that the half-life does not depend upon the size of the
metal sphere. It is determined solely by the conductivity of air and a universal
physical constant.

S176 Let us, hypothetically, enclose the figure within a closed convex surface.
Now, as shown in the figure, we consider the surface to be divided into small
segments and denote the area of the ith segment by �Ai, the electric field produced
by the aluminium-clad Santa Claus at the position of this segment by Ei, and the
current density there by ji.
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The total electric current passing through the closed surface gives the rate of
decrease at time t of Santa Claus’s charge, which is denoted by Q(t):

dQ(t)

dt
= −

∑
i

ji · ni �Ai,

where ni is the outward normal of the ith area segment. According to Ohm’s law,
the current density ji is proportional to the electric field Ei, and the proportionality
factor is the conductivity of air, σ , thus ji = σEi.

Using this to eliminate the current, the rate of decrease of Santa Claus’s charge
is given by

dQ(t)

dt
= −σ

∑
i

Ei · ni �Ai.

However, the sum on the right-hand side of this equation is the total flux of the
figure’s electric field out of the closed surface, and according to Gauss’s law this
is the product of ε−1

0 and the total charge inside the closed surface:

dQ(t)

dt
= − σ

ε0
Q(t).

The solution to this differential equation, which is analogous to that describing the
decay of radioactive nuclei, is

Q(t) = Q(0) exp

(
− σ

ε0
t

)
.
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It follows that Santa’s charge is halved in a time T1/2 given by

1

2
= exp

(
− σ

ε0
T1/2

)
−→ T1/2 = ε0 ln 2

σ
.

We have obtained a rather surprising result – that the half-life is independent of
both the size and shape of the chocolate figure, and depends only on the conduc-
tivity of air. But given this, it is not so surprising that the result is exactly the same
as that for a charged sphere (see page 428).

S177 At a time t, let the rod be a distance x(t) from A. At that moment, the
area of the triangle formed by the rod and the arms of the V-shaped wire is

T(x) = x2 tan
α

2
,

and so the magnetic flux it encloses is

�(t) = BT(x).

The magnitude of the induced electromotive force (voltage) is given by the rate of
change of this flux:

V = d�

dt
= B

dT

dt
.

The area T depends on time because it contains the function x(t).
The instantaneous resistance of the (triangular) circuit is R = r�, where �(x) =

2x tan(α/2) is the distance between the points at which the rod and the wire make
contact. Because of the induced voltage, a current flows in the closed circuit, and
has magnitude

I = V

R
= B

r�

dT

dt
,

and so the Lorentz force acting on the rod is

F = IB� = B2

r

dT

dt
.

This force decreases the speed of the rod, whatever the direction of the vertical
field; if the field were reversed, then the induced e.m.f. and the current direction
would also be reversed, but the Lorentz force would not be.

In accord with Newton’s second law,

m
dv

dt
= F = −B2

r

dT

dt
,



432 200 More Puzzling Physics Problems

from which the following ‘conservation law’ follows:

B2

r
T(x) + mv = constant,

that is, independent of time. Using the formula for T(x), and the initial conditions,
we can write

B2

r
x2

0 tan
α

2
+ mv0 = B2

r
x2 tan

α

2
+ mv.

It can be seen that, as x increases, v decreases, and, at the position

x = xmax =
√

x2
0 + mv0r

B2 tan(α/2)
,

the rod stops.
The time interval until the rod stops is, in principle, infinitely long, although in

reality, because of some unavoidable friction and air drag, it is only ‘very long’.
The time dependence of the velocity, and the position function x(t), can be deter-
mined using integral calculus or numerical methods.

S178 Almost immediately after release, following a short transient process,
the magnet moves uniformly, with its weight compensated by the magnetic forces
produced by the eddy currents induced in the wall(s) of the non-ferromagnetic
tube(s); it covers the distance between the markers at a constant speed.

We can assume that the magnetic dipole moment of the strong cylindrical mag-
net is vertical, and that the eddy currents form horizontal loops in the neigh-
bourhood of the magnet, with those above and below it having opposite senses
of rotation. Note that there are no eddy currents in the walls of the tubes in the
horizontal plane containing the midpoint of the magnet. This is because, in this
plane, the magnetic field lines are vertical, and so, in its vicinity, the field does not
change during the slow motion of the magnet. The magnetic field lines are mirror-
symmetric about this mid-plane, and have opposite slopes above and below it. This
is the very reason why the eddy currents have opposite senses of rotation above and
below the magnet.

The magnetic braking force is proportional to the ‘average’ magnitude of the
eddy currents, which is proportional to the induced electromotive force (voltage),
which, in turn, is proportional to the speed of the magnet (Faraday’s law). Conse-
quently, we can write for the two cases in which the magnet falls through a single
tube:

mg = A1v1 = A1
�

t1
and mg = A2v2 = A2

�

t2
.
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Here m is the mass of the magnet, v1 and v2 are the terminal speeds of the magnet in
the two different tubes, and � is the distance between the markers. The proportion-
ality factors A1 and A2 are constants that depend on the physical and geometrical
properties of the tubes.

Because of the special geometry of the arrangement, with the two thin-walled
tubes fitting tightly into each other with negligible mutual inductance, we assume
that in the double-tube case we can use the same proportionality factors:

mg = (A1 + A2)v = (A1 + A2)
�

t
.

Here v is the terminal speed of the magnet in the double tube, and t is the unknown
time to be determined. This procedure is equivalent to assuming that the eddy
currents produced in the two tubes by the moving magnet are independent of each
other.

After substituting for A1 and A2 and some simple algebraic manipulation, we
find that the transit time through the double tube is t = t1 + t2.

Note. The final result is so simple that it hardly seems believable. However, quite
surprisingly, measurements we have made agree with the simplified theory used
in the solution, within an error margin of 10 %.

S179 The induced voltage is determined by the mutual inductance of the small
circular wire loop with respect to the larger one. It is not easy to calculate this
quantity, as the magnetic field of the small loop is strongly inhomogeneous inside
the larger circular loop, changing significantly (but continuously, of course) from
point to point.

It is much easier to determine the mutual inductance of the large circular wire
loop with respect to the smaller one. This is because a current I flowing in the
larger loop produces a magnetic field at the position of the smaller one that can, to
a good approximation, be considered homogeneous, and its magnitude is simple to
calculate:

B ≈ μ0I

2R
.

The magnetic flux of this field through the small circular loop of area πr2 is

�(t) = μ0πr2

2R
I(t),

and so, from Faraday’s law, the induced voltage is

V∗(t) = −d�(t)

dt
= −μ0πr2

2R

dI(t)

dt
. (1)
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According to the definition of the mutual inductance, we have

V∗(t) = −M
dI(t)

dt
,

and comparing this with expression (1), the mutual inductance of the large circular
wire loop, relative to the smaller one, can be found:

M = μ0πr2

2R
. (2)

Because of the symmetry property of mutual inductance, formula (2) also rep-
resents the mutual inductance of the small circular wire loop relative to the larger
one. It follows that the magnitude of the induced voltage in the large circular loop is

V∗ = μ0πr2

2R

dI1

dt
= μ0πr2

2R

I0

t0
,

with its polarity determined by Lenz’s law, i.e. in the figure in the problem, it would
cause a current to flow anticlockwise.

S180 The magnetic flux through the circular loop, produced by the small bar
magnet, changes as the latter falls, and so an induced voltage V∗ appears in the
loop, in accordance with Faraday’s law:

V∗ = −d�

dt
. (∗)

During the motion of the magnet, the polarity of the induced voltage can be of
either sign, depending on the momentary sign of the flux change; accordingly, the
diode either blocks the current (behaves like an open-circuit), or it conducts the
current (becomes a short-circuit with no resistance).

The magnitude of the magnetic flux through the loop, starting from an almost-
zero value, increases as the magnet approaches the loop (see figure); later, with the
magnet at the centre of the loop, it reaches its maximal value �max; finally, as the
magnet leaves the loop, the flux decreases. Applying Lenz’s law, it can be seen that,
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in the first part of the motion, the current ‘would like’ to flow through the diode in
the conducting direction (forward bias), and, because nothing prevents this, some
charge flows through the diode. As the magnet moves away from the centre of the
loop, the polarity of the induced voltage reverses and the diode no longer conducts
(reverse bias); no current flows during this part of the magnet’s motion.

For the forward-biased diode, the charge flow rate (the current) through it is
given by Ohm’s law:

d�

dt
= R

dQ

dt
.

The negative sign in (∗) has been dropped, because it refers only to the direction
of the charge flow. From this, we get

d(� − RQ)

dt
= 0 −→ �(t) − RQ(t) = constant.

Initially, the magnetic flux through the loop is negligible, and the charge flowing
through the loop is zero, so the value of the constant is 0. All the charge that is
allowed to flow has done so by the time the flux reaches its maximum – there is no
more after that. So, the total amount of charge that flows through the diode is

Q = �max

R
.

Our only remaining task is the determination of the magnetic flux through the
loop at the moment when the bar magnet is at the centre of it. To do this, we
notionally replace the magnet with a small circular current loop of radius r0 that
carries a current I0, with r0 chosen to make the loop’s magnetic moment equal to
m, i.e. such that

|m| = πr2
0I0.

In the solution on page 433, it was proved that the mutual inductance of two
concentric circular wire loops, in the same plane, and with radii r and r0 � r, is

M = μ0πr2
0

2r
.

It follows that the maximum flux through the circular loop, produced when the
small bar magnet bar is at its centre, is given by

�max = MI0 = μ0πr2
0

2r
I0 = μ0|m|

2r
.

Finally, the total amount of charge flowing through the diode is therefore

Q = μ0|m|
2rR

.
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S181 Number the wire loops by size, i.e. let the smallest one be 1, and the
largest be 3. Further, denote the mutual inductance of the ith loop with respect to
the jth loop by Mij, noting that, perfectly generally, Mij = Mji.

If the rate of change of the current in the middle loop is dI/dt, then in the other
two loops the induced voltages are

V1 = M21
dI

dt
and V3 = M23

dI

dt
.

At the precise moment that V1 = V0, the induced voltage between the terminals of
the largest loop is

V3 = M23

M21
V0 = M32

M21
V0.

Although the individual determinations of the coefficients M21 and M32 need
sophisticated calculations, their quotient can be found quite easily. We note that the
system consisting of loops 2 and 3 is simply that consisting of loops 1 and 2, scaled
up by a factor of 2. A two-fold magnification of the smaller loops has two effects:
(i) it reduces the magnitude of the magnetic field that is produced by the larger loop
and passes through the smaller one by a factor of 1

2 ; (ii) it increases the surface
area through which the linking flux passes by a factor of 4. Taking both effects into
account, we see that the mutual inductance will be doubled: M32 = 2M21.

Accordingly, the answer to the question in the problem is that voltage V3 = 2V0.
As this result holds for any V0, we conclude, more generally, that, at any moment,
the induced voltage in the largest loop is twice that in the smallest one.

S182 The rings are identical, and so their self-inductances are the same (equal
to L, say). Denote the (necessarily) common mutual inductance by M. This value
is not fixed, as it depends on the relative orientation, and the distance apart, of the
rings. When they are very far from each other, M = 0, but as they get closer, M
increases.

In each of the two superconducting rings (which have zero resistance), the value
of the magnetic flux cannot change; if it could, the induced voltage would produce
an infinitely large current. Denoting the currents by IA and IB, the magnetic fluxes
through the individual rings, and their constant values, are described by the equa-
tions below. Each contribution to a flux can be expressed as the product of a current
and the appropriate inductance:

�A = LIA + MIB = LI0, (1)

�B = MIA + LIB = 0. (2)

Eliminating M, we get

I2
A − I0IA − I2

B = 0, (3)
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and its solution for IA (when IB = I1) is

IA =
I0 ±

√
I2
0 + 4I2

1

2
.

Of the two roots, the physically correct one is that with a positive sign in front
of the square root, because we must have IA = I0 when I1 = 0. In summary, the
current in ring A, under the conditions stated in the question, is

IA =
I0 +

√
I2
0 + 4I2

1

2
.

Note. Of the two roots of the quadratic equation, the physically correct one can
be determined in a different way. We rewrite (3) as an equation for the ratio of the
currents, i.e. for x = IB/IA:

x2 + ax − 1 = 0,

where a = I0/IA. The product of the two roots of this equation is −1, so the
absolute value of one of the roots must be greater than 1. However, this cannot be
the physically correct root, because according to (2)

|x| =
∣∣∣∣ IB

IA

∣∣∣∣ =
∣∣∣∣M

L

∣∣∣∣ , (∗)

and this ratio cannot be greater 1 because of the physical inequality
M ≤ √

L1L2 = L.
So, the correct root for x is the one with a modulus less than unity; as the

choices are 1
2 (−a ± √

a2 + 4), this is the one with the plus sign before the square
root. This root lies in the range 0 ≤ x ≤ 1, showing that |IB| ≤ |IA|, in agreement
with (∗).

S183 If a current I flows in the wire forming the square in Fig. 1a), then its
magnetic field produces a magnetic flux �itself = IL1 through the square face.
Taking the positive directions as pointing outwards from the cube, this flux is
positive. But the current also produces some (negative) magnetic flux �neighbour

through each of the neighbouring faces of the cube.

Fig. 1
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We can find a connection between this flux and the self-inductance measured
in the arrangement in Fig. 1b). As noted in the hint and illustrated in Fig. 1, the
arrangement in Fig. 1b) is equivalent to squares on two neighbouring faces of the
cube (with the opposing currents in the two sides that are thereby superimposed
cancelling each other). Since each square has the other square as a neighbour, the
total flux through the configured wire circuit is related to L2 by

IL2 = �(b) = 2�itself + 2�neighbour = 2IL1 + 2�neighbour.

This can be rearranged to give

�neighbour = I( 1
2 L2 − L1).

As shown in Fig. 1c), the third wire arrangement can be replaced by three
squares. Each of the three squares has two neighbouring squares, and, with current
I flowing in each, the total magnetic flux is

�(c) = 3�itself + 3 × 2�neighbour.

This must be equal to IL3 and so

IL3 = 3�itself + 6�neighbour = 3IL1 + 6I( 1
2 L2 − L1) = 3I(L2 − L1).

So, finally, the coefficient of self-inductance in the arrangement in Fig. 1c) is

L3 = 3(L2 − L1).

S184 We use the numbering shown in the figure of the problem. As the coils
are identical, their self-inductances L are all equal, and, because of their symmet-
rical arrangement around the toroid’s circumference, their mutual inductances are
also all equal. We denote the common value by M.

Before the switch is closed, I2 = 0 and I3 ≈ 0, because the internal resistance
of the voltmeter is very large; consequently, only the changing current I1 produces
induced voltages. The induced voltages in coils 1 and 3 are

V1 = L
dI1

dt
and V3 = M

dI1

dt
,

respectively. However, we are told that V3 = V1/2, implying that M = L/2.
After the switch is closed, current also flows in coil 2. Now the induced voltages

in the individual coils can be written as

V1 = L
dI1

dt
+ M

dI2

dt
,

V2 = M
dI1

dt
+ L

dI2

dt
,

V3 = M
dI1

dt
+ M

dI2

dt
.
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Because the second coil is short-circuited, we must have that V2 = 0, and
from this we can find a simple connection between the rates of change of the two
currents:

dI2

dt
= −M

L

dI1

dt
.

From this and our previous result that M = L/2, we can find the ratio V3/V1:

V3

V1
= M − (M2/L)

L − (M2/L)
= 1

3
.

So, after the switch is closed, the reading on the voltmeter is one-third of the r.m.s.
voltage of the source.

Notes. 1. We used the constancy of the magnetic permeability of the iron core
when we assumed that the self- and mutual inductances were unchanged when
the switch was closed, and, for example, that M = L/2 was still the case.

2. It is quite unusual, in very transformer-like problems, that voltage ratios
are markedly different from the ratios of the numbers of turns in the coils. The
well-known formula Vprimary/Vsecondary = Nprimary/Nsecondary is valid only for
ideal transformers, and real transformers only approximately obey this formula.
In practice, some flux always follows a path that takes it outside the windings,
though normally this ‘fringing field’ is not very significant. The unusual feature
of this problem, in which the coils are described as ‘wide’ and the iron core as
‘narrow’, is the strong spreading of the magnetic field away from the coils, with
the result that, despite the presence of the iron core, a significant part of the flux
through any one coil does not pass through the others.

S185 The induced voltage V2 in coil 2 produced by the changing current in
coil 1 is given in terms of their mutual inductance M by

V2(t) = M
dI1

dt
.

Since, as a result of the voltmeter’s ‘infinite’ internal resistance, the current in coil
2 is zero, we can write the loop rule for the coil 1 circuit in the form:

V1(t) = L1
dI1

dt
,

where L1 is the self-inductance of coil 1. From these two expressions, we have
directly that, at any time,

V2(t) = M

L1
V1(t). (1)

A similar connection holds between the r.m.s. values of the voltages. So basically
our task comes down to finding the mutual inductance of the two coils.
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The alternating current I1(t) flowing in coil 1 produces a time-varying magnetic
field inside it, whose magnitude is given by Ampère’s circuit law as

B1(t) = μ0N1

�
I1(t),

where � is the circumference of (either of) the axial circles of the toroids. If the coils
have cross-sectional areas A, this magnetic field produces, through the windings of
coil 1, a total magnetic flux of �1(t) = N1B1(t)A. It follows that the self-inductance
of the toroidal coil 1 is

L1 = �1(t)

I1(t)
= μ0N2

1 A

�
.

Coil 2 encircles the magnetic field formed inside coil 1 only once (and even
then, in a very ‘devious’ way). For this reason, we might ‘at first sight’ think that
the (time-dependent) magnetic flux through coil 2 produced by the magnetic field
of coil 1 is simply77

�I
12(t) = B1(t)A = μ0N1A

�
I1(t).

If this were the case, then the mutual inductance of coil 1, with respect to coil 2,
would be

M = �I
12(t)

I1(t)
= μ0N1A

�
.

But this is not symmetrical with respect to interchanging N1 and N2 – and it should
be! It can be proved that, if the mutual inductance were not symmetric, the law of
conservation of energy would be broken. Clearly, something important has been
left out of our considerations.

To resolve this dilemma, we have to notice that coil 1 produces a magnetic field
not only inside its windings (this part of the field is denoted ‘I’ in the figure), but
also outside the coil (denoted ‘II’). Usually, for toroidal coils, this weak outside
magnetic field (equivalent to that of a single circular current loop) is neglected,
but here the magnetic field lines outside the windings of coil 1 flow through all N2

windings of coil 2, and so they can produce a significant flux!
At the position of the ith turn of coil 2, denote the component of the local

magnetic field that is perpendicular to that turn by Bi(t); the field in question is
the one in region II of coil 1. As the average distance between the windings of
coil 2 is �/N2, this is the element of path length, parallel to Bi (and the same size
for all i), needed to make an Ampère’s circuit law calculation. We can now write the

77 The reason for the presence of the superscript ‘I’ will become clear later.
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calculation for a path taken around the second coil enclosing, as noted above, the
equivalent of a single circular current loop carrying a current I1:∑

i

Bi(t)
�

N2
= μ0I1(t).

Multiplying through by N2A/�, on the left-hand side we get just the magnetic
flux �II

12 that is produced by the outside magnetic field of coil 1 and passes through
the windings of coil 2:

�II
12(t) =

∑
i

Bi(t)A = μ0N2A

�
I1(t).

The total magnetic flux through coil 2 produced by the magnetic field of coil 1 is
the sum of �I

12 and �II
12, and so we have

�12(t) = �I
12(t) + �II

12(t) = μ0(N1 + N2)A

�
I1(t),

and the corresponding implied mutual inductance of

M = �12(t)

I1(t)
= μ0(N1 + N2)A

�
.

Happily, this M is symmetrical with respect to N1 and N2!
Finally, the voltmeter reading Vvoltmeter can be found from equation (1), and our

expressions for L1 and M:

Vvoltmeter = M

L1
V0 = N1 + N2

N2
1

V0.
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Notes. 1. We can also find a much shorter, but quite heuristic, solution. Because of
the necessary symmetry of the mutual inductance, we can write it in two different
ways:

μ0N1A1

�1
+ f (2) = M = μ0N2A2

�2
+ f (1).

In both expressions, the first terms correspond to the contributions from fluxes
due to magnetic fields I, and the second terms arise from the flux contributions of
fringing fields II. Rearranging the equation, we obtain

μ0N1A1

�1
− f (1) = μ0N2A2

�2
− f (2).

Now, since we have a free choice for all coil parameters, the two sides can only
be equal if both sides of this equation are zero; this determines both f (1) and f (2)

– and also the mutual inductance:

M = μ0N1A1

�1
+ μ0N2A2

�2
= μ0(N1 + N2)A

�
.

2. Our result can also be demonstrated experimentally. But if the experiment is
carried out at room temperature with air-core coils, then their ohmic resistances
are negligible compared to the inductive impedances only if a high-frequency
power supply is used. The results of the experiments are very convincing.

3. When summing the fluxes �I
12 and �II

12, we assumed – tacitly – that the
turns of both coils were wound in the same sense (as the toroidal coils were said
to differ only in their numbers of turns). If, accidentally, this is not the case (i.e.
one of the coils is wound clockwise, and the other anticlockwise), then we have
to take the difference of the two flux contributions. In this case, the reading on the
voltmeter is

Vvoltmeter = |N1 − N2|
N2

1

V0.

S186 Inside the long solenoid, which has radius R, say, a homogeneous, time-
dependent magnetic field B(t) is formed. The changing magnetic field induces an
axially symmetric azimuthal electric field around the solenoid. This field, in turn,
causes the charged pearl to accelerate along a tangential field line – so our first
result is that it does not stay still!

The strength E of the induced electric field, at a distance r from P, can be
determined if we write Faraday’s law for a circle with centre P and radius r (r > R),
whose plane is perpendicular to the solenoid’s axis:

−d�

dt
= E · 2πr.
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Here �(t) = B(t)πR2 is the magnetic flux through the circle. From this, the
magnitude of the electric field, as a function of distance r, measured from the
centre of the solenoid, is

E(r) = −R2

2r

dB

dt
.

The electric force QE that acts on the pearl carrying a charge Q has a non-zero
torque about point P, and this must be equal to the rate of change of the pearl’s
angular momentum, J, relative to P:

dJ

dt
= rQE.

Using the expression for the electric field given earlier, we get78

dJ

dt
+ QR2

2

dB

dt
= 0.

When the sum of the rates of change of two quantities is zero, then the sum of these
quantities is constant in time, and so

J + QR2

2
B = constant.

With the help of this ‘modified’ conservation law, which is similar to the law
of conservation of angular momentum, we can find the answer to the question in
the problem. Initially, the pearl is at rest, and the electric current in the solenoid is
zero, so the value of the constant on the right-hand side of our ‘conservation law’
is zero. At the end of the process, the magnetic field strength is again zero, and so
the angular momentum of the pearl must also be zero. This can happen only if the
pearl is finally moving either directly towards, or directly away from, point P.

Which of the two possibilities actually happens can be determined as follows.
The pearl always accelerates in a direction perpendicular to its position vector
relative to point P, and so its acceleration never has any non-zero component
directed towards P. For this reason, the pearl moves continuously away from P
and continues to do so at the end of the process.

S187 According to Faraday’s law of induction, the induced voltage around an
arbitrary closed loop (which could be described as its ‘electric rotation’) is∑

E(r)�r = −d�

dt
. (1)

Ampère’s circuit law produces a similarly structured statement for the magnetic
rotation (which, in turn, could be described as the ‘magnetic loop voltage’):

78 It can be checked that, whatever the sign of Q and the direction of the current, the signs in this equation are in
agreement with the left-hand rule specifying the direction of the induced electric field.
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B(r)�r = μ0I. (2)

These two equations, together with Gauss’s law for a charge- and dielectric-free
region, and Maxwell’s equation expressing the non-existence of free magnetic
monopoles,79 uniquely determine the electromagnetic field produced by given elec-
tric currents and magnetic flux changes.

Formally, equations (1) and (2) are similar, and they can be transformed into
each other if the following interchanges are made:

−d�

dt
←→ μ0I,

E ←→ B.
(3)

Using this symmetry feature, if we know the solution to some particular problem
involving one of the two phenomena, then we ‘automatically’ have the solution to
the geometrically ‘analogous’ situation in the context of the other.

In our case, the (uniformly) changing magnetic flux in the thin toroidal coil
produces an induced electric field E with just the same geometrical structure as
that of the magnetic field B around a circular loop carrying a steady current I0

(compare the two situations shown in the figure).
From the Biot–Savart law, we know that the magnetic field at the centre of a

circular wire loop of radius r that has an electric current I flowing through it has
magnitude

B0 = 1

2r
(μ0I),

and is perpendicular to the plane of the loop. From this and relationships (3), it
follows that the changing magnetic flux in the toroidal coil induces an electric field
at the centre of the toroid of magnitude

79 More mathematically, both the electric and magnetic fields have zero divergence: ∇ · E = 0 and ∇ · B = 0.
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E0 = − 1

2r

d�

dt
.

The negative sign reflects the fact that the direction of E0, relative to the direction
of the magnetic field inside the toroidal coil, follows the left-hand rule.

We know that, inside an air-core toroidal coil with N turns, major radius r and
with an electric current I(t) flowing through it, the magnitude of the magnetic
field is

B = μ0NI

2πr
,

and, consequently, the varying magnetic flux due to this field induces an electric
field with magnitude

E0 = μ0

4π
NAc

r2

dI

dt
= 10−7 V s

A m
× 200 × 2 × 10−4 m2

(0.1 m)2 × 10
A

s

= 4 × 10−6 V m−1,

where Ac is the cross-sectional area of the coil. This electric field causes a proton,
which carries an elementary charge e and has mass mp, to have an initial accelera-
tion of

a0 = eE0

mp
≈ 380 m s−2.

S188 The capacitance of the capacitor can be calculated (in the approximation
of d � R) in the same way as for a parallel-plate capacitor:

C = ε0
2πR�

d
,

and so the magnitude of the electric charge on each of its plates is

Q = CV = ε0
2πR�V

d
. (1)

a) If the cylinders forming the capacitor become electrically connected, then
a rapidly changing current I(t) is formed in the wire. The magnetic field exerts a
Lorentz force IBd on the wire, and that means a torque IBd×R acts on the capacitor
as a whole (see Fig. 1). This torque causes rotation of the system, which has
moment of inertia MR2. We note that the Lorentz force would, if it could, also cause
the capacitor to swing as a pendulum, but, in the given problem, this is not possible.

In accord with the dynamical equation of rotation, we can write

MR2 dω

dt
= IBRd = BRd

dQ

dt
.
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Fig. 1

It follows that, during any short time interval �t, the charge transferred between
the plates and the corresponding increase in the capacitor’s angular velocity are
related by

MR2�ω = BRd �Q. (2)

We now sum both sides of (2) for the whole discharge process. As the initial
angular velocity is zero, and the sum of the ‘charge quanta’ �Q flowing through the
wire is just the initial charge Q on the capacitor, given by (1), the final (maximal)
angular velocity of the rotating capacitor is given by

ωmax =
∑

�ω = BRd

MR2

∑
�Q = BdQ

MR
= 2πε0

VB�

M
.

It is interesting that the value of the maximal angular velocity does not depend on
the lengths R and d, and, furthermore, it is independent of the time dependence of
the discharge current.

b) When the magnetic field is switched off, an electric field that has a non-zero
azimuthal component is induced; this exerts a force on the capacitor’s charge and a
torque on the capacitor. As a general rule, the induced electric field does not have
axial symmetry, and its accurate values can be found only with knowledge of the
whole magnetic field.

However, the loop voltage (characterising the azimuthal component) can be
calculated for any closed loop. Consider, for instance, the closed loop shown in
Fig. 2, a loop that includes the cross-section of the capacitor’s inner cylinder, and
for which the loop voltage, according to Faraday’s law of induction, is∑

E‖�s = −d�

dt
= −2πRd

dB

dt
, (3)

where � denotes the magnetic flux through the darker area in Fig. 2, �s is the
length of a small piece of the curve, and E‖ denotes the component of the induced
electric field that is parallel to it.
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Fig. 2

The amount of charge on a strip of the cylinder’s lateral area that has width �s
is �Q = Q�s/(2πR), and the induced electric field exerts a torque �Q × E‖ ×
R = QRE‖�s/(2πR) on it. Accordingly, the sum on the left-hand side of (3),80

multiplied by Q/(2π), is just the torque acting on the whole capacitor.
The dynamical equation of rotation can be written as

MR2 dω

dt
= Q

2π

∑
E‖�s = − Q

2π
d�

dt
= − Q

2π
2πRd

dB

dt
.

That is, the connection between small changes in B and ω is

�ω = − Qd

MR
�B.

Carrying out a summation for the whole process, and also using (1), we get the
final angular velocity of the capacitor:

ωmax =
∑

�ω = − Qd

MR

∑
�B = BQd

MR
= 2πε0

VB�

M
,

which is (perhaps surprisingly) just the same as in case a).

Note. The calculations show that the final angular velocity of the charged cylin-
drical capacitor, located in the magnetic field, will be the same, whether it is the
electric field or the magnetic field that is ‘disconnected’. We may wonder whether
there is any deeper physical reason for this.

The cylindrical capacitor itself does not form a closed system, but together
with the electromagnetic field around it, it does – and angular momentum must
be conserved in this closed system. It is a plausible interpretation that somehow
the electromagnetic field has angular momentum. It would not be related to a
geometrical point, but ‘smeared’ out in space, in much the same way that energy
and linear momentum are ‘smeared’ in an electromagnetic field.

The angular momentum of the electromagnetic field can be written in terms of
the Poynting vector:

80 We can neglect the contributions of the two small radial segments, which, in any case, cancel each other as
the gap between them becomes arbitrarily small.
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S = 1

μ0
E × B.

This vector is an expression for the density of energy flow, i.e. it gives the energy
that passes through unit area, perpendicular to the direction of energy propagation,
in unit time. If the Poynting vector is divided by the speed of light, we obtain the
linear-momentum flow density. We can get the ‘angular-momentum flow density’,
at any particular point, if we take the vector product (cross-product) of the position
vector of that point and the linear-momentum flow density.

The special geometry of the arrangement in the problem greatly eases this
calculation, as, in the cylindrical capacitor, the energy of the electromagnetic field
only propagates between and ‘parallel to’ the walls of the two cylinders. Further,
at all points in this volume, the electric and magnetic field vectors are perpendicu-
lar to each other.81 The ‘angular-momentum flow density’ of the system, relative
to its symmetry axis, is thus

S

c
R = EBR

μ0c
.

If this is multiplied by the cross-sectional area of the volume, �d, and the time
the flow takes to travel the length of the volume, 2πR/c, then we get the total
angular momentum (circulating in the cylindrical capacitor) of the (stationary)
electromagnetic field:

|J| = 2πEBR2�d

μ0c2 .

Since E = V/d, and the speed of light is given by 1/c2 = ε0μ0, we can express
the angular momentum of the electromagnetic field as

|J| = 2πε0VB�R2,

which is in line with the mechanical angular momentum MR2ωmax, calculated in
the solution.

In the problem, this fixed amount of electromagnetic angular momentum is
transformed into mechanical angular momentum, in a) because the electric field
disappears, and in b) because the magnetic field is switched off. In view of this, we
can hardly be surprised that the final mechanical angular momentum (or velocity)
of the capacitor is the same in both cases.

What is the origin of the initial electromagnetic angular momentum of the
system? It is found experimentally that some torque acts on the capacitor, either
if the capacitor is charged in the presence of a homogeneous magnetic field,
or if the magnetic field is built up around a previously charged capacitor. This
torque rotates the initially stationary capacitor, and the rotation needs to be
stopped (by hand) in order to establish the starting conditions given in the
problem.

81 When this phenomenon is first met, it might be difficult to understand that, in a stationary combined
electrostatic and magnetostatic field, the energy is moving around with the speed of light!
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S189 Let a moving observer inside a charged parallel-plate capacitor have a
speed v0 parallel to its rectangular plates. For simplicity, we assume that the space
between the plates is evacuated.

Let us denote the lengths of the sides of the plates by a and b, and the plate
separation by d. If d � a, b, the charges will be nearly uniformly distributed
over the inner surfaces of the plates and produce a homogeneous electric field
E0 between them. The total charge Q on one plate is given numerically by Gauss’s
law as

Q = ε0E0ab.

The moving observer would ‘see’ that the charged plates are moving with veloc-
ity −v0 parallel, let us say, to the edge of length a. The full length of the plates
would pass by the observer in a time T = a/v0 and so be equivalent to currents

I = ±Q

T
= ±Qv0

a
.

This pair of currents produce magnetic fields, which reinforce each other inside
the capacitor, and give a net magnetic field, assumed homogeneous, inside the
plates, and a negligible field outside. This line of reasoning is similar to that used
in the determination of the electric field inside a parallel-plate capacitor or the
magnetic one inside a long solenoid: it involves consideration of symmetry and the
application of integral laws.

The magnetic field vector B0 is parallel to the side of length b, and so is perpen-
dicular to both v0 and E0. Its magnitude is determined by applying Ampère’s rule
to a circuit surrounding one of the plates: B0 · b + 0 · b = μ0I. Thus

B0 = μ0I

b
= μ0Qv0

ab
= μ0ε0v0E0 = 1

c2
v0E0.

Taking into account the directions of the vectors and the right-hand rule govern-
ing a vector product, the observed magnetic field can be written as

B0 = − 1

c2
v0 × E0.

Our conclusion is: ‘Yes, the observer does experience a magnetic field.’

Note. According to special relativity, the transformation formulae for the electric
and magnetic fields perpendicular to the direction of motion are

B ′⊥ = B⊥ − c−2(v0 × E0)√
1 − v2

0/c2
,
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E ′⊥ = E⊥ + v0 × B0√
1 − v2

0/c2
,

while the components parallel to the velocity remain unchanged.
For the case of non-relativistic motions (v0 � c), these formulae reproduce the

results of our more elementary considerations.

S190 The magnetic field in the region of the compass can be found with the
help of the Biot–Savart law. This law is an equation describing the magnetic field
generated by a real electric current, and relates the magnetic field to the magnitude,
direction, length and proximity of the current. The law is valid in the magnetostatic
approximation, and is consistent with both Ampère’s circuit law and Gauss’s law
for magnetism.

In the Biot–Savart law we have to take into consideration the contributions from
real currents, but not those from displacement currents. This is because, if you
do consider the contributions of the displacement currents in any (quasi-)steady
circuit, their net magnetic effect at all points will turn out to be zero. Given this, it
is perhaps surprising that, generally, the contributions of displacement currents to
Ampère’s circuit law are not zero.

Therefore, considering only real currents, when determining the magnetic field
at the position of the compass (using the Biot–Savart law), we have three con-
tributions to consider: first, that from the essentially vertically upward current in
the left-hand plate; second, the contribution of the horizontal current from left to
right through the rod; and finally, the effect of the essentially vertically downward
current in the right-hand plate. Using the right-hand rule, we can say that, between
the plates and below the rod, all three reinforce each other and produce an approx-
imately horizontal magnetic induction, parallel to the plates of the capacitor, and
pointing backwards in the figure of the problem. This would cause the compass to
rotate clockwise, which is the opposite direction to that in the ‘official solution’,
which is therefore wrong!

Note. Through the conducting rod, the electric discharge current is homogeneous
(assuming that the conductivity of the rod is not too large), but the discharge
currents in the plates are not. The metal plates can be considered to be equipoten-
tial surfaces, and so, in practical terms, the charge densities on them are always
homogeneous, though decreasing with time. This means that the currents at the
lower edges of the plates are zero, and that they vary linearly with height along
any particular plate, with the absolute value of the current reaching that in the
rod only at the tops of the plates. This means that, near the compass, the weak
current elements cannot make strong contributions to the magnetic field, and
where the current elements are larger, the distances to the compass are greater.
As a summary, we can say that the effect on the compass of the discharge of the
capacitor is much smaller than might be expected.
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S191 Around Santa’s charged figure there is an electrostatic field, which acts
on the charged particles in the air and so causes electric currents to flow to ‘infin-
ity’ (or, more precisely, to distant grounded conductors). We need to investigate
whether or not these ‘current-streamlines’ produce a magnetic field around the
figure.

We first note that any magnetic field lines associated with the chocolate figure
must form closed loops; this follows from the fact that the magnetic field con-
tains no sources (stated more mathematically, its divergence is zero – or, more
prosaically, magnetic monopoles do not exist).

Now consider an arbitrary magnetic field-line loop L in the space surrounding
Santa and a surface area bounded by it (say, the grey area shown in the figure).
Consider, further, a line integral

∮
B d� taken around the closed loop (taking the

positive direction to be in the direction of B). Since the angle between the direction
of the magnetic field and the tangent to L is always zero, this integral cannot give
a negative value. Further, the integral can only be zero if the value of the magnetic
field is zero at every point of the loop.

According to Ampère’s law, the value of the same integral is proportional to
the net current passing through any surface area bounded by L; this net current
is the sum of the conduction current due to moving charges and the displacement
current produced by the changing electric field. Although displacement currents
can never produce magnetic fields around any circuit, they do make contributions
to the current flowing through an area bounded by any closed curves in the context
of Ampère’s circuit law (see solution on page 450). The direct calculation of the
real and displacement currents through the grey area is practically hopeless, but its
value can be found with the help of a ‘cunning plan’.

Rather than the grey area, let us choose another, but more complicated, surface
S, one that bulges so that its ‘cap’ penetrates inside the chocolate figure. Outside
the aluminium foil, the surface S1 is defined as being bounded by those electric
current-streamlines that pass through L. Inside the foil, the cap, S2, can be any
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open surface whose boundary coincides with the closed loop defined by where
these streamlines meet the foil. The two parts, S1 and S2, of the new surface S
(= S1 ∪ S2) are indicated in the figure.

Inside the chocolate figure (with its aluminium coating), both the electric field
and the current density are zero. Outside it, because of the way the S1 part of the
new surface is defined, the conduction current can have no component perpendic-
ular to it; the same is true for the electric field vector, since the two are parallel.
Consequently, we can conclude that no current or electric field crosses any part of
S, and it follows that the integral

∮
B d� is zero for the loop L. As we have already

shown, this implies that the magnetic field is zero at all points on this arbitrarily
chosen loop.

In summary, there are no magnetic field lines in the vicinity of the chocolate
figure during the discharge process, and the value of the magnetic field is zero
throughout the space.

Note. An alternative approach to this problem is to use some of the results appear-
ing in the solution that starts on page 429. A general displacement current jd

in a changing electromagnetic field is equal to [1/(μ0 c2)] dE/dt = ε0 dE/dt.
Although we do not have an explicit expression for E, from that solution we know
that ji = σEi and

dQ(t)

dt
= −σ

∑
i

Ei · ni �Ai = −
∑

i

ji · ni �Ai.

If we differentiate both sides of the first equality with respect to time and, recalling
that Q(t) = Q(0) exp(−(σ/ε0)t), replace

d2Q

dt2
by − σ

ε0

dQ

dt
and

∂Ei

∂t
by

jdi
ε0

,

then we obtain

σ

ε0

∑
i

ji · ni �Ai = − σ

ε0

dQ(t)

dt
= −σ

∑
i

jdi
ε0

· ni �Ai.

Since this equality must hold however the surface elements �Ai are chosen, we
must have that jdi = −ji for all i, i.e. the displacement current at any point is equal
and opposite to the real current, and so, in Ampère’s law, their net contribution is
zero, and there is no magnetic field.

S192 a) The linear momentum of the electron parallel to the x-axis is con-
served, as no force acts on the particle in this direction:

mvx√
1 − v2/c2

= constant. (1)

Here m is the (rest) mass of the electron, v is its speed at any particular moment and
vx is the x component of that speed. The fact that the x-directed linear momentum
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is constant does not mean that vx also remains constant – in fact, according to (1),
vx must decrease as the total speed v increases!

It is convenient to compare all speeds to that of light, so let us use the notation
β0 = v0/c = 0.6 and β1 = v1/c, as is usual in relativity theory. Conservation
law (1) can now be applied to the electron as it enters, and later leaves, the electric
field, in the form

β0mc√
1 − β2

0

= β1mc√
1 − β2

1

cos 45◦,

from which

β1 = √
2

β0√
1 + β2

0

= 3√
17

≈ 0.728.

So, the electron leaves the electrostatic field with 72.8 % of the speed of light.
b) The work done on the electron by the electric field, while it is being displaced

sideways by a distance d in a direction opposed to that of the field, is eEd, where e
denotes the elementary charge. This work must equal the change in the electron’s
total energy:

eEd = mc2√
1 − β2

1

− mc2√
1 − β2

0

≈ 0.208mc2.

Noting that, by definition, 1 keV = e × 1 kV, the required distance d is

d = 0.208mc2

eE
= 0.208 × 510 keV

e × 510 kV m−1
= 0.208 m = 20.8 cm.

S193 The equation of motion of a particle with mass m and electric charge
±e moving along a circular trajectory of radius R in a homogeneous magnetic field
B is

dp
dt

= ±e v × B,

where p is the linear momentum of the particle and v is its velocity. This equation
also applies to particles moving with relativistic speeds.

Since, in the current problem, v and B are orthogonal, when we take the absolute
values on both sides of the equation we get∣∣∣∣dp

dt

∣∣∣∣ = evB. (1)

Mechanically, the magnitude of the required rate of change of a vector p that has
constant absolute value and rotates with angular velocity ω = v/R is p ω = pv/R.
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Inserting this into the equation of motion (1), we get the linear momentum of the
particle moving along a circular trajectory:

p = eBR.

Using the well-known value of the elementary charge, and the relevant data about
the Earth (equatorial radius, R = 6.378 × 106 m; average surface magnetic field
strength at the Equator, B ≈ 3.5 × 10−5 T, directed northwards), we find that the
required linear momentum of the proton (or electron) is p ≈ 3.6×10−17 kg m s−1.

If we calculated using the non-relativistic formula for momentum, p = mv, then
we would find that the ‘required speeds’ for the proton and electron need to be 71
times and 130 000 times greater than the speed of light, respectively. This is clearly
impossible, and a relativistic calculation is required.

We need the relativistic formula

p = mv√
1 − v2/c2

,

where m is the ‘rest’ mass of the relevant particle. It is convenient to define the
following dimensionless quantities:

β ≡ v

c
, K ≡ p

mc
= β√

1 − β2
= eBR

mc
.

Note that K essentially expresses how many times larger than the speed of light the
speed of the ‘classical’ particle has to be to give momentum p; it reproduces the
previously calculated values,

Kelectron = 1.3 × 105 and Kproton = 71.

a) With both values of K � 1, the second equality above shows that both
particles must move with practically the speed of light, β ≈ 1. The precise value
of the required speed is a little smaller for a proton – it is about 30 km s−1 less than
the speed of light. But for an electron this difference is only about 1 cm s−1. So the
electron needs to move at virtually the speed of light! Taking into consideration the
direction of the Lorentz force, in order to generate the required centripetal force,
the negative electrons must move to the east and the protons to the west.

b) The energy of one of the particles is

E = mc2√
1 − β2

= K

β
mc2 ≈ Kmc2 = eBRc = BRc [in eV] = 67 GeV.

It is interesting that this energy does not depend on the mass of the particle, and is
therefore the same for protons and electrons.

Note. Along the Earth’s magnetic equator, the magnetic field strength is approxi-
mately constant. But the magnetic equator is not a circle – it is not even a planar
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curve. Furthermore, a homogeneous magnetic field only provides for particle
trajectories around a circular orbit; it does not prevent the beam from diverging,
and so, for the realisation of around-the-Earth orbits, some focusing magnets (and
many other things!) are needed.

S194 A charged particle moving, without slowing down, in a plane perpendic-
ular to a homogeneous magnetic field performs uniform circular motion, on top of
which it may also have a uniform rectilinear motion parallel to the magnetic field.

The sketch in the figure of the problem (based on a photograph, which may or
may not exist) has been made looking along the direction of the magnetic field
(as the trajectories are circular arcs); any motion along the magnetic field – not
seen in the photo – can be ignored. We assume that the magnetic field direction is
perpendicularly outwards from the plane of the figure.

Number the trajectories of the particles from inside to outside, and denote the
radii of the trajectories by R1, R2 and R3. Accordingly, it can be seen in the figure
of the problem that

R1 < R2 < R3. (1)

Using the same order, denote the magnitudes of the linear momenta of the particles
by p1, p2 and p3, and the magnitudes of their electric charges by q1, q2 and q3. All
of the values of Ri, pi and qi (i = 1, 2, 3) are positive, as they denote the magnitudes
of the particular quantities. If the linear momentum or charge of one of the particles
were opposite to that of another, that would be allowed for by using negative signs
in the relevant formulae.

The (non-relativistic) equation of motion of a particle with mass m moving with
speed v along a circular trajectory of radius R in a homogeneous magnetic field
B is

mv2

R
= qvB, that is mv = qBR,

which can be expressed in terms of the linear momentum p = mv of the particle:

p = qBR. (2)

Note. As stated in the solution on page 453, equation (2) is obeyed even if the
motion of the particle is described by the laws of relativistic dynamics. So the
following arguments are valid also for particles that move relativistically.

In a particle decay, the total electric charge of the particles (written with the
correct signs) and the signed sum of their linear momenta are conserved – so these
quantities must remain unchanged by the process. The figure of the problem does
not tell us which of the three particles decays, and so we have to investigate all
three possibilities, separately.
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Fig. 1 Fig. 2 Fig. 3

(i) If particle 1 decays (see Fig. 1), then all of the three particles are ‘turning
to the right’, and so all of them have positive charge. According to the laws of
conservation of linear momentum and electric charge, we can write

p1 = p2 + p3 and q1 = q2 + q3,

from which, using (2), we get

R1 = q2R2 + q3R3

q2 + q3
. (3)

But this is impossible, because the arithmetic mean of R2 and R3, weighted by
positive factors, cannot be equal to a radius that is smaller than both of them.

(ii) If particle 2 decays (see Fig. 2), then only particle 3 has a positive charge,
the other two (‘turning to the left’) must be negatively charged. The equations for
the conservation of linear momentum and electric charge are now

p2 = p1 − p3 and −q2 = −q1 + q3,

from which, using (2), we again get the unacceptable expression (3).
(iii) Finally, if particle 3 decays (see Fig. 3), then only the charge of particle

2 is positive and the other two are negatively charged. Then, according to the
conservation laws:

p3 = p1 − p2 and − q3 = −q1 + q2,

which yet again yields the unphysical, and therefore unacceptable, expression (3).
In summary, we can state that the particle ‘trails’, shown in the figure of the prob-

lem, cannot have appeared in any cloud chamber photo of a real decay process!

S195 Chose a system of units in which the speed of light is unity, i.e. c = 1.
The vectorial form of the linear-momentum conservation law for the decay is

pπ = pe + pν.
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Taking its square, and using the fact that pe and pν are perpendicular to each other,
we get

p2
π = p2

e + p2
ν. (1)

In the chosen system of units, the connection between the total (relativistic) energy
of a particle with rest mass m and linear momentum p can be written in the follow-
ing form:

E =
√

p2 + m2, (2)

which is called the mass-shell condition.
In collisions and decays of subatomic particles, conservation of energy is valid

for the sum of the total energies; in the given case it can be written as

Eπ = Ee + Eν. (3)

Applying the mass-shell condition (2) to the squares of the total energies, we get

m2
π + p2

π = m2
e + p2

e + p2
ν + 2EνEe.

Using connection (1) between the linear momenta, this reduces to

EνEe = m2
π − m2

e

2
. (4)

That is, the product of the energies of the two decay products is constant (irrespec-
tive of the actual electron and neutrino directions, so long as they are orthogonal).

Our aim is to minimise the possible speed, and so the possible energy, of the
pion. This energy equals the sum of the energies of the two decay products, and we
are seeking its minimal value. Apply the general inequality between the arithmetic
and geometric means to the particular case of these two energies:√

EνEe ≤ Eν + Ee

2
.

Using equations (3) and (4), we get the possible minimal energy of the pion as

Eπ = Eν + Ee ≥ 2
√

EνEe =
√

2(m2
π − m2

e).

The total energy of the pion can be written in terms of its mass and speed as

mπ√
1 − v2

= Eπ ≥
√

2(m2
π − m2

e),

from which we get the following lower limit:

v ≥
√

1 − m2
π

2(m2
π − m2

e)
=

√
m2

π − 2m2
e

2m2
π − 2m2

e

= 0.707.
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Because of the system of units chosen, this means that the speed of the pion
must be at least 70.7 % of the speed of light.

S196 The linear momenta of an isolated system of particles are always
unchanged by collisions, and, if the collisions are elastic, so is its total energy.
When the particles are moving at close to the speed of light, these quantities must
be calculated according to the rules of relativistic mechanics. The (total) energy
and linear momentum of a particle with (rest) mass m and velocity v are

E = mc2√
1 − v2/c2

and p = mv√
1 − v2/c2

, (1)

and from these it follows that

p = E

c2
v.

In the ultra-relativistic limit (i.e. when |v| = v ≈ c), the connection between the
energy and linear momentum becomes very simple:

E ≈ pc.

Note. This formula can be found directly from the mass-shell condition, which
itself can be obtained by eliminating v from the two equations in (1),

E2 = (pc)2 + (mc2)2.

In the ultra-relativistic case, the rest-energy term (mc2)2 is neglected, and the
expression for the total energy becomes simply E = pc.

Denote the final linear momenta of the particles in our problem by q1 and q2.
Assuming that these are also ultra-relativistic linear momenta, the conservation
laws can be written in the form:

p1 + p2 = q1 + q2, (2)

and p1c + p2c = q1c + q2c, that is,

p1 + p2 = q1 + q2. (3)

These equations are illustrated graphically in Fig. 1. For the given linear
momenta p1 and p2 of the particles, the total linear momentum of the system
P can be constructed; this also has to be the sum of the linear momenta after
the collision. Using a point F1 as an arbitrary origin, the value of P = p1 + p2

determines a second point F2. If the vector q1 + q2 is similarly constructed, it
follows from equation (2) that it too must lead to F2.
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Fig. 1

If Q is the point that has vector position q1 relative to F1, then according to
formula (3) for the conservation of energy, the sum of the distances of the (as-yet)
unknown point Q to the end-points of vector P is fixed:

q1 + q2 = F1Q + F2Q = constant (= p1 + p2). (4)

Equation (4) shows that point Q lies on an ellipse with foci F1 and F2, and its major
axis is the given (and constructible) distance p1 + p2.

How can we find the point on this ellipse that yields the minimum value for
α, which is marked in Fig. 1, and gives the angle between the two final particle
directions? We will prove that α is minimal if Q is one of the end-points of the
ellipse’s minor axis, i.e. if q1 = q2.

Square both sides of equation (2) (or write the cosine rule for the triangles F1SF2

and F1QF2):

p2
1 + p2

2 + 2p1p2 cos ϕ = P2 = q2
1 + q2

2 + 2q1q2 cos α, (5)

Also take the square of both sides of equation (3):

p2
1 + p2

2 + 2p1p2 = q2
1 + q2

2 + 2q1q2. (6)

From the difference between equations (6) and (5), we get

2p1p2(1 − cos ϕ) = 2q1q2(1 − cos α),

from which the cosine of the angle in question can be expressed as

cos α = 1 − p1p2(1 − cos ϕ)

q1q2
.

It can be seen that the angle α is smallest when the product q1q2 is largest, as
the other factors are independent of the position of Q. From the general inequality
between arithmetic and geometric means, we can write

q1q2 ≤
(

q1 + q2

2

)2

=
(

p1 + p2

2

)2

,
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with equality only if q1 = q2. This completes the proof of when α is minimal. But,
further, we already know that q1 + q2 is equal to p1 + p2, and so the maximal value
of q1q2 is 1

4(p1 + p2)
2, a known quantity.

Using the above results, angle α can be constructed as follows:

1. With a parallel displacement of one of the vectors (as shown in Fig. 1),
construct P, the vector sum of p1 and p2.

2. Measure p1 and p2 and construct a straight line of length p1 + p2; (using
a pair of compasses) determine the midpoint of p1 + p2 by constructing a
perpendicular there, as shown in Fig. 2.

3. Draw two circles, each of radius (p1 +p2)/2, with their centres (F1 and F2)
at the end-points of vector P. The points of intersection of the circles deter-
mine the directions of q1 and q2, and the angle between those directions
gives the magnitude of the minimal separation angle (see Fig. 3).

Fig. 2 Fig. 3

What still remains to be proved is that, after the collision of the ultra-relativistic
particles, they were still moving with speeds near the speed of light, and that using
the ultra-relativistic energy formula in our solution was a justifiable approximation.

Assume the opposite, i.e. that one of the particles moves very slowly after the
collision – both of them cannot decelerate, since their total energy is much larger
than the rest energies of either. If that happened, then the equations for the conser-
vation of energy and momentum would read as

p1c + p2c ≈ q1c,

p1 + p2 ≈ q1,

because both the energy and the momentum of the ‘slow’ (second) particle are
negligible compared to the corresponding quantities for the ‘fast’ one. But this
is not possible, since the two equations contradict each other. According to the
triangle inequality

q1 = |p1 + p2| ≤ |p1| + |p2|,
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so

q1c ≤ p1c + p2c ≈ q1c.

Equality is possible, but only if p1 and p2 are parallel, and the figure in the problem
shows that this is not the case. So we have a contradiction, and it was wrong to
assume that one of the particles could move very slowly after the collision.

Notes. 1. In a solution that uses the ultra-relativistic approximation, the rest
masses of the particles do not appear in the formulae. For this reason, the solution
remains valid even for collisions in which the final state consists of a different
pair of particles from the original ones; they may have larger (or smaller) rest
masses than those in the initial state. Such processes can be observed in Nature.
One example of this is the following collision:

e+ + e− −→ μ+ + μ−.

Here μ denotes the elementary particle known as a muon, which has a mass about
207 times larger than that of an electron; e+ denotes the positron, the antiparticle
of the electron. The two muons involved, μ±, also form a particle–antiparticle
pair.

2. The largest value of the angle between the momenta of the final particles can
be as much as 180◦, and so they can even move in totally opposite directions.

S197 The magnitude of the magnetic induction at the centre of a circular
current loop of radius R that carries a steady current I is

B� = μ0I

2R
.

If the electron, with electric charge e, orbits with speed v, then the electric current is

I = ev

2πR
.

The electron, of mass m, is kept in its circular orbit by the Lorentz force provided
by the homogeneous magnetic induction field of strength B0, and so the electron’s
equation of motion can be written as

evB0 = mv2

R
.

Combining these equations, we get

B�
B0

= μ0

4π
e2

mR
,

which can be transformed, using the connection μ0ε0 = 1/c2, into

B�
B0

=
(

e2

4πε0

1

mc2

)
1

R
,



462 200 More Puzzling Physics Problems

where c is the speed of light in vacuum.
It can be seen that the magnitude of the magnetic field produced by the electron’s

uniform circular motion would be larger than the homogeneous magnetic field B0

if the radius of the motion, R, were smaller than the quantity in parentheses, which
is called the classical electron radius. The numerical value of the classical electron
radius is about 2.8×10−15 m, which is of the order of the size of an atomic nucleus;
it makes no sense to consider an electron orbiting around such a trajectory!

So far as the laws of classical mechanics and electrodynamics are concerned, it
would be possible to imagine the situation described in the problem, but in practice
it is unrealistic. So, the answer to the question is ‘no’, the electron cannot produce
a larger magnetic field than the homogeneous field that keeps it on a circular track.

Note. A formal ‘derivation’ of the classical electron radius is given by the follow-
ing ‘argument’. Equate the rest energy, mc2, of the electron to the total electro-
static energy it would have if it had total charge e and radius r0:

mc2 = 1

4πε0

e2

r0
.

From this we can express the radius r0 as

r0 = 1

4πε0

e2

mc2 .

By the laws of classical physics, the electron’s size cannot be smaller than r0,
because, if it were, its electrostatic energy would be larger than its total rest
energy. We might add that the laws of classical electrodynamics fail if we try
to apply them to events or processes involving lengths smaller than r0. Further,
and for different reasons (e.g. the wave nature of the electron), classical theory
cannot even be applied to systems with sizes considerably larger than r0.

S198 Solution 1. A particle of mass m enclosed in a ‘box’ of finite size cannot
be at rest because of quantum effects, and it must have linear momentum of some
average magnitude p. According to Heisenberg’s uncertainty relationship

�x�p ≥ h

4π
, (1)

where �x ≈ d is the uncertainty in the neutron’s position and �p ≈ p is the
uncertainty in its linear momentum.

Notes. 1. We might have written h, h/2 or some other similar expression on the
right-hand side of inequality (1), since we need only the order of magnitude of
the uncertainty. More precise values would make sense if the uncertainties in the
linear momentum and position were defined more exactly, but we are not seeking
this level of accuracy in an estimation.

2. It is obvious that the average value of the (vector) linear momentum must
be zero, because the neutron cannot leave the box. This is why the uncertainty
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(the mean deviation from the average value) of the linear momentum can be
estimated as being equal to its (scalar) magnitude.

Considering, for the sake of definiteness, the limiting case of (1) in which equal-
ity holds, the magnitude of the linear momentum of the neutron is

p ≈ ± h

4π
1

d
,

and its speed is

v ≈ ± h

4π
1

md
.

This result can be interpreted (following classical physics, for want of a better
principle) as the neutron bouncing back and forth between the opposite walls of
the box. So, at one of the walls, a change of linear momentum of 2mv occurs at
regular intervals of �t = 2d/v, and, as a result, the particle exerts a force of

F = 2mv

�t
= mv2

d
= h2

16π2m

1

d3

on the wall. The corresponding pressure is

P = F

d2
= h2

16π2m

1

d5
. (2)

Numerically, this pressure is (using SI units)

P ≈ 1.6 × 10−42 [N m3]
d5

,

which is a very low value (unless the dimension d of the box is really small).

Solution 2. According to quantum theory, the ground state of a particle enclosed
in a box with edges of length d is described by a wave whose half-wavelength is
equal to d (i.e. λ/2 = d). The de Broglie relations then give the components of the
particle’s linear momentum as

px = py = pz = h

λ
= h

2d
. (3)

The energy (all kinetic) of such a ‘quantum particle’ is

E = 1

2
m(v2

x + v2
y + v2

z ) = 1

2m
(p2

x + p2
y + p2

z ).

Using (3), this becomes

E(d) = 3h2

8m

1

d2
.
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Now suppose that the edges of the box are slowly reduced by an amount
�d � d; its volume consequently decreases by

�V = d3 − (d − �d)3 ≈ 3d2�d.

The work required to bring this about is

W = P�V ,

where P is the quantum pressure to be determined. The corresponding increase in
the particle’s energy is

�E = E(d − �d) − E(d).

The work–kinetic energy theorem states that W = �E, i.e.

P · 3d2�d = 3h2

8m
�

(
− 1

d2

)
≈ 3h2

8m

2

d3
�d = 3h2

4md3
�d. (4)

From equation (4) we see that the required pressure is

P = h2

4m

1

d5
, (5)

which is of the same order of magnitude as the expression given in formula (2) of
Solution 1. So the two solutions are compatible estimates of the pressure exerted
by the neutron.

Notes. 1. The energy levels of a particle restricted to a finite volume are discrete,
and the energy differences between successive levels increase as the size of the
volume decreases. If the environment surrounding the box has temperature T ,
thermal excitation, involving energy transfers that are of order kT in magnitude,
need to be considered. However, provided the length d is sufficiently small, the
energy transfers possible are not large enough to raise the neutron from its ground
state. In exceptional cases, where d is not very small, or T is relatively high,
contributions to the pressure from the neutron in excited states (corresponding to
smaller wavelengths) also need to be considered.

2. In the classical limit, when the average energy of particles, each of mass m,
is roughly 1

2 kT , and so the average square of their velocity is kT/m, the pressure
exerted on the walls can be calculated from

P = kT
1

d3 .

This pressure, for thermal motion at room temperature, and for a box with dimen-
sions of the order of, say, 1 nm, is approximately 100 times larger than the pres-
sure of quantum origin. However, if the neutron is enclosed in a box that is much
smaller than this, then the latter dominates.

3. A formula for quantum pressure can be found using dimensional analysis – it
gives the correct order of magnitude. If we assume that the pressure depends only
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on the size of the box, the mass of the particle and the Planck constant, the only
way of combining these quantities to produce an expression with the dimensions
of pressure is

P = constant × h2

md5 ,

where the constant is a dimensionless number with an expected magnitude of
order unity.

The method of dimensional analysis can only be applied with confidence if
there are strong arguments to say that the ‘target quantity’ in question does not
depend on some excluded variables. In our case, the pressure might, in principle,
have depended on Boltzmann’s constant, or the speed of light, or maybe Newton’s
universal gravitational constant; but, in fact, these constants have no part to play
in the determination of quantum pressure.

S199 The electron, with mass m and charge −e, and the positron, with the
same mass but opposite charge, both orbit with velocity v around the same circular
trajectory, of radius r and centred on their common centre of mass. Their common
equation of motion is

mv2

r
= ke

e2

(2r)2
,

where ke = 1/(4πε0) is the constant in Coulomb’s law, and the generalised Bohr’s
quantum condition states that

2mrv = nh̄ (n = 1, 2, . . .).

Using these two equations, the orbital radius, corresponding to the nth quantum
state, can be calculated as

rn =
(

h̄2

mkee2

)
n2,

and the speed in that quantum state is

vn =
(

kee2

2h̄

)
1

n
.

Finally, the total energy of the bound state is

En = 2 × mv2
n

2
− ke

e2

2rn
= −m(kee2)2

4h̄2

1

n2
= −6.8 eV

n2
.
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Notes. 1. If two particles with masses m and M orbit around their common centre
of mass, then their Bohr-model energy levels differ from those of Bohr’s original
model – with its ‘infinitely heavy’ attractive centre – only in that the mass of the
particle needs to be replaced by the so-called reduced mass μ = mM/(m + M).
This relationship is in line with the results of exact quantum-mechanical cal-
culations. In the hydrogen atom, the finite mass of the proton results in only a
very small correction of about 0.05 %, but in positronium μ = m/2, and so the
magnitudes of the energy levels are exactly one-half of the corresponding values
in the original Bohr formula.

2. For two-particle systems, the generalised Bohr condition is not the same as
requiring both of the particles to have angular momenta that are integral multiples
of h̄ = h/(2π). This is why, in these systems, the qualitative ‘explanation’ of the
quantisation of the angular momentum, namely that the perimeter of a particle’s
trajectory must be an integral multiple of the de Broglie wavelength, is no longer
tenable.

3. Another exotic ‘atom’, similar to positronium, is the muon–hydrogen atom,
which is the bound state of a negative muon and a proton. This observable system
(also, like positronium, very unstable) is, because of the relatively large mass of
the muon, about 200 times smaller in size than the hydrogen atom. For this reason,
the Coulomb field of the proton is largely shielded (screened) by the negatively
charged muon, and so (at least in principle) it is possible for another proton, with
relatively low energy, to get close to the nucleus of the muon–hydrogen atom. Ear-
lier, physicists were very optimistic about developing a so-called muon-catalysed
fusion reactor, which could be operated at significantly lower temperatures than
those required for the fusion of normal hydrogen. Unfortunately – because of
other difficulties – these expectations have not yet been realised.

S200 The SI unit of volume is metre cubed (m3) and the SI unit of distance is
metre (m). Accordingly, the conversion is as follows:

4 litre

100 km
= 4 × 10−3 m3

105 m
= 4 × 10−8 m2 = 0.04 mm2.

It will be noticed that the fuel consumption is expressed as an area.
The SI value for the consumption is a very small area, equal to that of a square

with sides of 0.2 mm – roughly the cross-sectional area of a fairly strong thread.
So, an imaginative interpretation of the fuel consumption could be as a long fuel
‘thread’ in the road that the car sucks up as it is driven. This kind of fuel thread,
with a cross-section of 0.04 mm2 and a length of 100 km, has a volume of just
4 litres. If the car is driven in hilly terrain, then the thread has to be thicker when
driving uphill and thinner when the car is on a downslope – or maybe occasionally
disappears altogether, when the electronics of the car switches off the fuel intake!
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Useful mathematical formulae
Vectors and vector operations

The magnitude of a vector a represented by the
Cartesian components (ax, ay, az):

a = |a| =
√

a2
x + a2

y + a2
z .

Addition:

a + b = b + a (commutative)

a + (b + c) = (a + b) + c (associative)

|a| + |b| ≥ |a + b|
Scalar multiplication:

λ(a + b) = λa + λb, (λ + μ)a = λa + μa, (λμ)a = λ(μa)

Scalar product (or dot product): The scalar product of the vectors a and b (denoted
by a · b or ab) returns a single number:

a · b = |a||b| cos θ = axbx + ayby + azbz,

where θ is the angle between a and b.

Vector product (or cross-product): The vector
product of the vectors a and b (denoted by a × b)
returns a vector that is perpendicular to both
and its magnitude is given by |a||b| sin θ . The
direction of the vector a × b can be determined
using the right-hand rule (see the figure).

The components of a × b can be expressed
with the components of a and b:

a × b =
⎛
⎝aybz − azby

azbx − axbz

axby − aybx

⎞
⎠ .

Scalar triple product (or mixed product): The scalar triple product of vectors a, b
and c returns a single number, which is the (signed) volume of the parallelepiped
defined by the three vectors given:

abc ≡ (a × b)c = a(b × c).

Vector triple product expansion (Lagrange’s formula):

a × (b × c) = b(ac) − c(ab)
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Conic sections, Apollonian circle

Conic sections (or conics) are planar curves obtained as the intersection of a right-
circular conical surface with a plane. If the plane that cuts the cone is parallel to
exactly one generating line of the cone, then the conic is called a parabola. If the
plane is parallel to exactly two generating lines, the conic is a hyperbola. In the
remaining case (if the cutting plane is not parallel to any of the generating lines),
the conic is an ellipse (or, in one special case, a circle).

Ellipse: The locus of points P in the plane such
that the sum of the distances from P to two
fixed points (F1 and F2, called foci) is constant
(2a). Canonical equation:

x2

a2
+ y2

b2
= 1.

Hyperbola: The locus of points P in the plane
such that the difference of the distances from
P to two fixed points (F1 and F2, called foci)
is constant (2a). Canonical equation:

x2

a2
− y2

b2
= 1.

Parabola: The locus of points in the plane
such that the distance to a fixed point
(F, called a focus) is equal to the distance
from a straight line (e, called the directrix).
Canonical equation:

x2 = 2py.

Apollonian circle: The locus of points P in the
plane such that the ratio of the distances from
P to two fixed points (A and B) is constant.
If the coordinates of the two fixed points are
(d/2, 0) and (−d/2, 0), and the ratio of the
distances is λ > 1, then the parameters of the
circle are:

x0 = d

2
+ d

λ2 − 1
, r = λ

λ2 − 1
d.
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Trigonometric identities

Pythagorean trigonometric identity:

sin2 α + cos2 α = 1

Addition formulae:

sin(α ± β) = sin α cos β ± cos α sin β tan(α ± β) = tan α ± tan β

1 ∓ tan α tan β

cos(α ± β) = cos α cos β ∓ sin α sin β cot(α ± β) = cot α cot β ∓ 1

cot β ± cot α

Double-angle and half-angle formulae:

sin 2α = 2 sin α cos α sin2 α

2
= 1 − cos α

2

cos 2α = cos2 α − sin2 α cos2 α

2
= 1 + cos α

2

tan 2α = 2 tan α

1 − tan2 α
tan

α

2
= 1 − cos α

sin α

Sum-to-product identities:

sin α + sin β = 2 sin
α + β

2
cos

α − β

2

sin α − sin β = 2 sin
α − β

2
cos

α + β

2

cos α + cos β = 2 cos
α + β

2
cos

α − β

2

cos α − cos β = −2 sin
α + β

2
sin

α − β

2

Approximation formulae (|x| � 1)

(1 + x)n ≈ 1 + nx
1

1 + x
≈ 1 − x

√
1 + x ≈ 1 + x

2
tan x ≈ x + x3

3

sin x ≈ x − x3

6
cos x ≈ 1 − x2

2

ln(1 + x) = x − x2

2
+ . . . , ex = 1 + x + x2

2
+ . . .
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Small differences

If the quantity x changes by a small amount �x, then the small change in the
quantity f (x) (dependent on x) is

�f ≡ f (x + �x) − f (x) ≈ f ′(x)�x.

In some common cases:

�(x2) ≈ 2x�x �

(
1

x

)
≈ −�x

x2

�(xn) ≈ nxn−1�x �(ab) ≈ a�b + b�a

�(
√

x) ≈ 1

2

�x√
x

�
(a

b

)
≈ b�a − a�b

b2

�(sin x) ≈ �x cos x �(cos x) ≈ −�x sin x

Some useful limits

lim
x→0

sin x

x
= 1 lim

n→∞

(
1 + x

n

)n = ex

Some important sums

Sum of arithmetic sequence:
n∑

k=1

k = n(n + 1)

2

Sum of geometric sequence:
n∑

k=0

qk = qn − 1

q − 1
(q = 1)

Sum of squares of consecutive integers:
n∑

k=1

k2 = n(n + 1)(2n + 1)

6

Definition of the Riemann zeta function:

ζ(s) =
∞∑

n=1

1

ns
(s > 1),

and its values for selected points: ζ(2) = π2/6, ζ(3) ≈ 1.2021, ζ(4) = π4/90.
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Differentiation rules, derivatives of elementary functions

f (x) f ′(x) f (x) f ′(x)

a · f (x) + b · g(x) a · f ′ + b · g′ ln x
1

x

f (x) · g(x) g · f ′ + f · g′ sin x cos x
f (x)

g(x)

f ′ · g − f · g′

g2 cos x − sin x

f (k · x) k · f ′(k · x) tan x
1

cos2 x

xn n · xn−1 ex ex

Integration rules, some important indefinite integrals

f (x)
∫

f (x) dx f (x)
∫

f (x) dx

xn (n = −1)
xn+1

n + 1
x

x2

2

x2 x3

3

1

x
ln |x|

1

x2 −1

x

√
x 2

3

√
x3

sin x − cos x cos x sin x

tan x − ln | cos x| ex ex

Fundamental theorem of calculus (Newton–Leibniz formula):

∫ b

a
f (x) dx = F(b) − F(a), where F′(x) = f (x)

Integration by parts:

∫ b

a
f ′(x)g(x) dx =

[
f (x)g(x)

]b

a
−

∫ b

a
f (x)g′(x) dx

Important definite integrals:

∫ π/2

0
sin x dx =

∫ π/2

0
cos x dx = 1,

∫ π/2

0
sin2 x dx =

∫ π/2

0
cos2 x dx = π

4
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Some differential equations (with solutions) appearing in the book

y′(x) = 0 −→ y(x) = arbitrary constant

y′(x) = a −→ y(x) = ax + b

y′′(x) = a −→ y(x) = a
x2

2
+ bx + c

y′′(x) = −k2y(x) −→ y(x) = A1 cos(kx) + A2 sin(kx)

y′(x) = ky(x) −→ y(x) = y0 ekx

(where b, c, A1, A2, y0 are constants determined by the boundary conditions.)

Surface area (A) and volume (V) of some objects

sphere: A = 4R2π

V = 4
3 R3π

right-circular cone: A = πr(r + a)

V = π
3 r2h

spherical cap: A = 2πRh + r2π

V = π
3 h2(3R − h)

cylindrical segment: V = 1
2 hr2(α − sin α)
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Position of the centre of mass of uniform bodies

triangular plate: s = h

3

arc of a circle: s = r
sin α

α

circle sector: s = 2

3
r

sin α

α

solid spherical cap: s = R2 − hR + (h2/4)

R − (h/3)

cap of spherical shell: s = h

2

cone, pyramid: s = h

4
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Moments of inertia of uniform bodies

thin rod:
1

12
mL2

thin ring: mR2

disc, cylinder:
1

2
mR2

solid sphere:
2

5
mR2

thin spherical shell: 2
3 mR2

parallel axis theorem: �t = �CM + md2
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Physics reference tables

Fundamental physical constants

notation value units

gravitational constant G 6.673 × 10−11 N m2 kg−2

speed of light in vacuum c 2.998 × 108 m s−1

universal gas constant R 8.314 J mol−1 K−1

Avogadro constant NA 6.022 × 1023 mol−1

Boltzmann constant k 1.381 × 10−23 J K−1

vacuum permittivity ε0 8.854 × 10−12 A s V−1 m−1

vacuum permeability μ0 4π × 10−7 V s A−1 m−1

Coulomb’s constant k 8.988 × 109 N m2 C−2

Stefan–Boltzmann constant σ 5.670 × 10−8 W m−2 K−4

elementary charge e 1.602 × 10−19 C

Planck constant h 6.626 × 10−34 J s

Astronomical data of the Earth

mean radius 6 371 km

radius at the Equator 6 378 km

radius at the poles 6 357 km

mass 5.973 × 1024 kg

average density 5 514 kg m−3

moment of inertia (about the axis of rotation) 8.04 × 1037 kg m2

average distance from the Sun (= 1 AU) 1.496 × 1011 m

smallest distance from the Sun 1.471 × 1011 m

largest distance from the Sun 1.521 × 1011 m

mean orbital speed around the Sun 29.78 km s−1

largest orbital speed 30.29 km s−1

smallest orbital speed 29.29 km s−1

equatorial speed 465 m s−1

gravitational acceleration in London 9.81 m s−2
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Data of the Sun and the Moon

the Sun

mean angular diameter 31′ 59′′

diameter 1.392 × 109 m

mass 1.989 × 1030 kg

surface temperature 5 780 K

core temperature ca. 1.5 × 107 K

the Moon

mean angular diameter 31′ 5′′

mean radius 1 737 km

mass 7.347 × 1022 kg

average density 3 340 kg m−3

moment of inertia (about the axis of rotation) 8.04 × 1037 kg m2

mean distance from Earth 3.844 × 108 m

orbital period around the Earth 27.32 days

gravitational acceleration on its surface 1.62 m s−2

surface temperature at daytime ca. 130 ◦C

surface temperature at night ca. −150 ◦C

Planets and their average
distance from the Sun

AU 106 km

Mercury 0.387 57.9

Venus 0.723 108.2

Earth 1.000 149.6

Mars 1.524 227.9

Jupiter 5.203 778.3

Saturn 9.555 1 429

Uranus 19.22 2 875

Neptune 30.11 4 504

(Pluto) (39.55) (5 916)

The (rest) mass of
some particles

MeV/c2 10−30 kg

photon 0 (< 10−24)

neutrino ≤ 2 × 10−6

electron 0.511 0.9109

muon 105.6

pion(charged) 139.6

pion(neutral) 135.0

proton 938.3 1 672.6

neutron 939.6 1 674.9

Higgs boson 1.26 × 105
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Densities of some materials, in normal state (kg m−3)

hydrogen 0.089 wood (pine) 480–620

helium 0.178 aluminium 2 700

air 1.293 silicon carbide (SiC) 3 210

water (at 4 ◦C) 1 000 titanium 4 510

ice (at 0 ◦C) 920 iron 7 860

ethanol 790 copper 8 960

dry sand 1 300–1 600 mercury 13 550

porcelain 2 200–2 500 tungsten 19 250

quartz 2 650 platinum 21 450

Thermodynamical properties of some materials

specific latent heat of fusion of ice 334 kJ kg−1

heat of vaporisation of water 2 256 kJ kg−1

molar heat of vaporisation of water 40.6 kJ mol−1

specific heat of water 4 180 J kg−1 K−1

specific heat of ice (at 0 ◦C) 2 090 J kg−1 K−1

thermal conductivity of ice 2.3 W m−1 K−1

thermal conductivity of water 0.56 W m−1 K−1

boiling point of ether (at normal pressure) 34.6 ◦C

boiling point of oxygen (at normal pressure) 90.2 K

boiling point of nitrogen (at normal pressure) 77.4 K

specific latent heat of fusion of iron 272 kJ kg−1

specific latent heat of fusion of nickel 292 kJ kg−1

specific latent heat of fusion of aluminium 361 kJ kg−1

specific heat of porcelain 800–900 J kg−1 K−1

specific heat of quartz glass 700 J kg−1 K−1

specific heat of quartz sand 830 J kg−1 K−1

specific heat of steel 470 J kg−1 K−1

linear thermal expansion coefficient of iron 1.18 × 10−5 K−1

linear thermal expansion coefficient of steel 1.1–1.7 × 10−5 K−1
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Density and pressure of saturated water vapour and density of water
in vapour–liquid equilibrium as a function of temperature

T pvap �vap �water T pvap �vap �water

(◦C) (kPa) (kg m−3) (◦C) (kPa) (kg m−3)

0.01 0.612 0.005 999.8 125 232 1.30 939.1

5 0.873 0.0068 999.9 150 476 2.55 917.1

10 1.23 0.0094 999.7 175 892 4.61 892.3

20 2.34 0.0173 998.2 200 1 554 7.86 864.7

30 4.24 0.0304 995.6 225 2 548 12.7 833.9

40 7.38 0.0511 992.2 250 3 974 20.0 799.1

50 12.3 0.0831 988.0 275 5 943 30.5 759.2

60 19.9 0.130 983.2 300 8 584 46.1 712.4

70 31.2 0.198 977.8 325 12 050 70.5 654.6

80 47.4 0.293 971.8 350 16 520 113.5 574.7

90 70.1 0.423 965.3 370 21 030 200.3 453.1

100 101.3 0.597 958.4 374.2∗ 22 060 326.2 326.2

∗T = 374.2 ◦C is the critical temperature of water; the corresponding pressure and density

are the critical pressure and critical density, respectively.

Ultimate tensile strength of
some materials (MPa)

aluminium alloy 300–700

silicon carbide (SiC) 3 440

titanium alloy 540–1 300

iron 200

steel 400–1 800

copper 210–240

tungsten 400–1 200

platinum 120–220

glass fibres 3 100–4 800

Fe80B20 glassy metal 3600

spider silk ca. 1 000

Surface tensions
(in air environment)

surface tensions (N m−1)

water (at 20 ◦C) 0.073

mercury 0.472

ethanol 0.227

glycerol 0.064

contact angles

water–(clean) glass 0◦

water–silver 90◦

mercury–glass 140◦

water–teflon 110◦
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