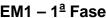
4ª Olimpíada de Química do Rio de Janeiro 2009 EM1 – 1ª Fase

MODALIDADE EM1


Leia atentamente as instruções abaixo:

- Esta prova destina-se exclusivamente aos alunos da 9^a série do ensino fundamental e da 1^a série do ensino médio.
- A prova contém dez questões objetivas, cada uma com cinco alternativas, das quais apenas uma é correta. Assinale na folha de respostas a alternativa que julgar correta.
- A prova deve ter um total de SEIS páginas, sendo a primeira folha a página de instruções e a sexta a folha de respostas.
- Cada questão tem o valor de um ponto.
- A duração da prova é de 1 hora e 30 minutos.
- O uso de calculadoras comuns ou científicas é permitido.
- Fica proibida a consulta de qualquer material.

Rio de Janeiro, 05 de setembro de 2009.

$4^{\underline{a}}$ Olimpíada de Química do Rio de Janeiro 2009 EM1 – $1^{\underline{a}}$ Fase

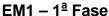
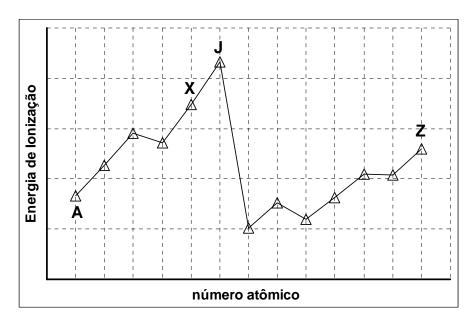
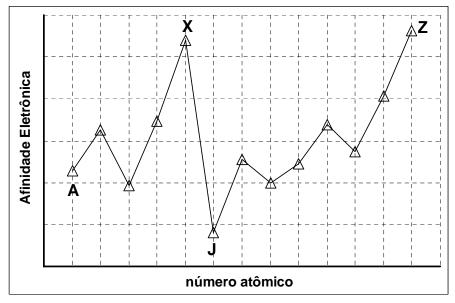


TABELA PERIÓDICA DOS ELEMENTOS

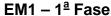
1																	18
1]																2
H 1,0	2											13	14	15	16	17	He
		1					_				i						4,0
3	4 D					n° atômi						5 D	6	7	8	9	10
Li 6,9	Be 9.0					SÍMBO massa atô						B 10.8	C	N	0	F 19.0	Ne 20,2
	- ,-	1				massa ato	nica					- , -	12,0	14,0	16,0		
Na	12 M ~											13 A ℓ	14 Si	15 P	16 S	17 C l	18
1Na 23,0	Mg 24.3	3	4	5	6	7	8	9	10	11	12	Α ι 27,0	28,1	31,0	32,0	35,5	Ar 39.9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35,3	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,0	40,0	45,0	47,9	v 50.9	52,0	55,0	55,8	58,9	58,7	63,5	65,4	69,7	72,6	74,9	79,0	79,9	83,8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85,5	87,6	88,9	91,2	92,9	95,9	98	101,1	102,9	106,4	107,9	112,4	114,8	118,7	121,8	127,6	127,0	131,3
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	57 – 71	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Τℓ	Pb	Bi	Po	At	Rn
132,9	137,3		178,5	181,0	183,8	186,2	190,2	192,2	195,1	197,0	200,6	204,4	207,2	209,0	209	210	222
87	88		104	105	106	107	108	109									
Fr	Ra	89 –103	Rf	Db	Sg	Bh	Hs	Mt									
223	226		261	262	263	262	265	266									
	e dos	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
Lanta	nídeos	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
_		138,9	140,1	140,9	144,2	145	150,4	152,0	157,3	159,0	162,5	164,9	167,3	168,9	173,0	174,97	ļ
	e dos	89	90 TU	91 D	92	93 N	94 D	95	96	97 D1	98 CG	99	100	101	102	103	
Actin	iídeos	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		227	232,0	231,0	238,0	237	244	243	247	247	251	252	257	258	259	262	


4ª Olimpíada de Química do Rio de Janeiro 2009



QUESTÕES:

1 — Os gráficos abaixo mostram duas propriedades periódicas para alguns elementos: a energia de ionização e a afinidade eletrônica. Sabe-se que esses treze elementos pertencem ao segundo e terceiro período da tabela periódica e estão organizados em função do número atômico.

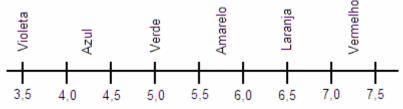


Baseado nos gráficos é correto afirmar que:

- a) J é um metal do grupo I, pois perde elétrons com facilidade como mostra sua afinidade eletrônica.
- b) A energia de ionização de \mathbf{X} é maior que a do elemento \mathbf{A} , o que indica que o raio atômico do primeiro é menor que o do segundo.
- c) A é um gás nobre, pois de acordo com os gráficos não possui tendência a receber ou perder elétrons.
- d) ${f J}$ é o elemento flúor uma vez que energia de ionização é a maior de todos, mostrando um alto valor de eletronegatividade.
- e) O raio atômico de \mathbf{Z} é menor que o do elemento \mathbf{X} uma vez que a afinidade eletrônica do primeiro é maior que a do segundo.

4^a Olimpíada de Química do Rio de Janeiro 2009 EM1 – 1^a Fase

2 – A energia de ligação é a energia necessária para a quebra das ligações entre dois átomos. Quanto mais forte for uma ligação, maior será a energia de ligação. Considere as moléculas: CO, NO, O ₂ , F ₂ e C l_2 . A molécula com maior energia de ligação é:
a) CO
b) NO
c) O_2
d) F ₂
e) Cl ₂
3 − A hibridação do átomo central nos íons ClO ₃ ⁻ , NO ₃ ⁻ e I ₃ ⁻ é respectivamente:
a) sp^2 , sp^3 e sp.
b) sp^3 , $sp^2 e sp$.
c) sp^2 , sp^3 e sp^3 d.
d) sp^3 , $sp^2 e sp^3 d$.
e) sp^2 , sp^2 e sp^3 d.
4 – Certo elemento \mathbf{M} , quando ionizado, forma um composto iônico de fórmula $\mathbf{M}\mathbf{X}_2$ com o íon do elemento \mathbf{X} . O elemento \mathbf{X} é um ametal com configuração eletrônica da camada de valência ns^2np^4 . O íon do elemento \mathbf{M} possui três elétrons no subnível 3d. O elemento \mathbf{M} é:
a) V
b) Cr
c) Mn
d) Fe
e) Co
5 – Certo recipiente foi completamente cheio com água e teve sua massa aferida em uma balança analítica. O resultado obtido foi de 17,6732 g. O mesmo recipiente, quando completamente cheio com um líquido Y, tem massa de 17,8221 g. Se a massa específica da água nas condições do experimento é de 0,9982 g/cm³ e o recipiente vazio tem massa de 12,7926 g; a massa específica do líquido Y é:
a) 0.9704 g/cm^3
b) 0,9721 g/cm ³
c) $1,008 \text{ g/cm}^3$
d) $1,029 \text{ g/cm}^3$
e) 1,031 g/cm ³
6 – As formas geométricas das seguintes moléculas: SO ₂ , BeH ₂ , SO ₃ , PCl ₃ são:
a) Linear, angular, piramidal, trigonal plana
b) Linear, trigonal plana, trigonal plana
c) Angular, linear, trigonal plana, piramidal
d) Angular, angular, piramidal, trigonal plana
e) Linear, angular, trigonal plana, piramidal



4ª Olimpíada de Química do Rio de Janeiro 2009

EM1 - 1ª Fase

7 – Um átomo A excitado, ao perder energia, emite luz de freqüência igual a $6.0 \times 10^{14} \, \mathrm{s}^{-1}$. Considerando que a velocidade da luz é igual a $3.0 \times 10^{10} \, \mathrm{cm.s}^{-1}$. Calcule o comprimento de onda da luz emitida e identifique sua cor, com o auxilio da figura abaixo.

Comprimento de onda (x 10⁻⁵ cm)

- a) 3,5×10⁻⁵cm Violeta
- b) 5.0×10⁻⁵cm Verde
- c) 4,3×10⁻⁵cm Azul
- d) 5,8×10⁻⁵cm Laranja
- e) 7,3×10⁻⁵cm Vermelho
- 8 Os símbolos $C\ell$, $C\ell_2$ e $C\ell^-$ representam, respectivamente:
- a) o elemento químico cloro, átomos do elemento cloro e o átomo do elemento cloro eletronegativo.
- b) a molécula da substância simples cloro, o elemento cloro e o átomo de cloro eletronegativo.
- c) a molécula da substância simples cloro, a molécula da substância cloro e o átomo do elemento cloro.
- d) o átomo do elemento cloro, a molécula da substância composta cloro e o cátion cloreto.
- e) o átomo do elemento cloro, a molécula da substância simples cloro e o ânion cloreto.
- 9 O quadro a seguir apresenta valores comparativos de DUAS propriedades periódicas, medidos em unidades convenientes à propriedade.

Elemento	Propriedade 1	Propriedade 2
Berílio	1,12	215
Cálcio	1,97	141
Selênio	1,40	225

As propriedades 1 e 2 são, respectivamente:

- a) raio atômico e potencial de ionização.
- b) potencial de ionização e eletropositividade.
- c) afinidade eletrônica e raio atômico.
- d) eletronegatividade e potencial de ionização.
- e) raio atômico e eletronegatividade.
- 10 Coloque as seguintes espécies em ordem crescente de ponto de fusão: HF, NaF, F₂ e H₂.
- a) $HF < H_2 < F_2 < NaF$
- b) $H_2 < HF < F_2 < NaF$
- c) $NaF < HF < F_2 < H_2$
- d) $NaF < H_2 < F_2 < HF$
- e) $H_2 < F_2 < HF < NaF$

$4^{\underline{a}}$ Olimpíada de Química do Rio de Janeiro 2009 EM1 – $1^{\underline{a}}$ Fase

FOLHA DE RESPOSTA – EM1

Nome:						
Instituição:						
	A	В	C	D	E	
Questão 1						
Questão 2						
Questão 3						
Questão 4						
Questão 5						
Questão 6						
Questão 7						
Questão 8						
Questão 9						
Questão 10						

Número de acertos:	