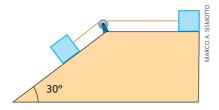

## $\bigoplus$

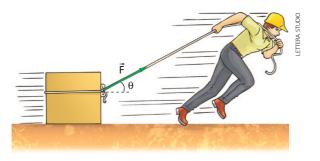

## CAPÍTULO 15 – Força de atrito

**1.** Dois blocos, A e B, estão em repouso, encostados um no outro e apoiados sobre uma superfície plana horizontal, numa região em que q = 10 m/s². As massas de A e B são respectivamente iguais a 3,0 kg e 2,0 kg, e o coeficiente de atrito dinâmico entre cada bloco e a superfície horizontal é  $\mu_{d}=$  0,40. A partir de certo instante, aplicam-se aos blocos as forças horizontais  $\vec{F}_1$  e  $\vec{F}_2$ , conforme mostra a figura.



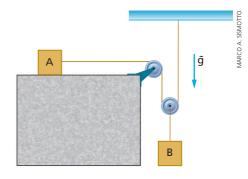
Sendo 80 N e 30 N, respectivamente, os módulos de  $\vec{F}_1$ e  $\vec{F}_2$ , calcule, após iniciado o movimento, os módulos:

- a) da força de atrito exercida sobre o bloco A;
- b) da força de atrito exercida sobre o bloco B;
- c) da aceleração dos blocos;
- e) da força exercida pelo bloco A sobre o bloco B.
- **2.** (UF-PE) No sistema representado na figura abaixo, dois blocos têm massas iguais e estão ligados por um fio de massa desprezível. Na superfície do plano inclinado, o bloco desloca-se sem atrito. O coeficiente de atrito cinético entre o plano horizontal e o bloco é 0,4, e o atrito na roldana da corda, desprezível.




Sendo  $g = 10 \text{ m/s}^2$ , a aceleração de cada bloco vale, em m/s2:

a) 5


d) 0,4

- b) 10
- e) 0,87
- c) 0,5
- 3. (Cefet-PR) Uma pessoa puxa, com velocidade constante, uma caixa de peso P sobre uma superfície horizontal, como indica a figura a sequir.



Sabendo que o coeficiente de atrito cinético entre a caixa e a superfície é  $\mu$ , o módulo da força  $\vec{F}$  exercida pela pessoa é dado por:

- a)  $F = \mu(P + \mu \cdot \text{sen } \theta)$
- b)  $F = \frac{P \cdot \text{sen } \theta}{\mu + P \cdot \text{cos } \theta}$
- c)  $F = P\left(\frac{\mu}{\cos\theta + \mu \cdot \sin\theta}\right)$
- d)  $F = \frac{\text{sen } \theta + \mu \cdot \text{cos } \theta}{P}$
- e)  $F = P(\mu \cdot \cos \theta \sin \theta)$
- 4. O sistema esquematizado na figura é abandonado em repouso.



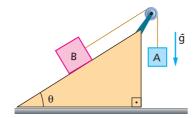
A massa de A é 6,0 kg, a massa de B é 8,0 kg, os fios e as polias são ideais, g = 10 m/s² e o coeficiente de atrito entre A e a superfície horizontal é 0,40. Determine:

- a) a aceleração de A;
- b) a aceleração de B;
- c) a tração no fio ligado a A.
- 5. (UFF-RJ) Um pano de prato retangular, com 60 cm de comprimento e constituição homogênea, está em repouso sobre uma mesa, parte sobre sua superfície, horizontal e fina, e parte pendente, como mostra a figura.



Sabendo-se que o coeficiente de atrito estático entre a superfície da mesa e o pano é igual a 0,50 e que o pano está na iminência de deslizar, pode-se afirmar que o comprimento  $\ell$  da parte sobre a mesa é:

- a) 40 cm
- c) 15 cm
- e) 30 cm


- b) 20 cm
- d) 60 cm

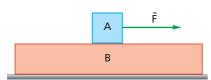
**Editora** 

9/24/12 4:58 PM

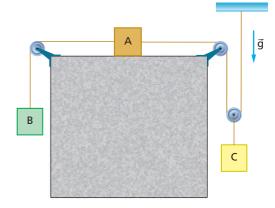



**6.** O sistema esquematizado na figura é abandonado em repouso. O fio e a polia são ideais, a massa de *A* é 6,0 kg, a massa de *B* é 4,0 kg e o coeficiente de atrito entre *B* e o plano inclinado é 0,05. São dados: q = 10 m/s², sen θ = 0,60, cos θ = 0,80.



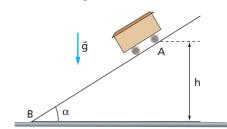

## Determine:

- a) o módulo da aceleração de cada bloco;
- b) a tração no fio.
- **7.** (Cesesp-PE) Dois blocos de massa  $M_1$  e  $M_2$  são ligados por uma corda leve e inextensível que passa por um pino fixo e liso, conforme mostra a figura. O coeficiente de atrito estático entre o bloco 2 e a mesa horizontal é  $\mu$ .

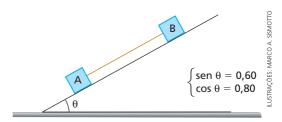



Se  $M_2 = 4M_{1'}$  o menor valor possível de  $\mu$  para que os blocos não entrem em movimento deve ser:

- a) 4,50
- b) 0,45
- c) 0,20
- d) 0,65
- e) 0,25
- **8.** Um bloco A, de massa 4,0 kg, está sobre um bloco B, de massa 8,0 kg, o qual está sobre uma superfície plana horizontal, sem atrito, numa região em que  $g=10 \text{ m/s}^2$ . O coeficiente de atrito estático entre o bloco A e o bloco B é  $\mu_e=0,20$ . Calcule a máxima intensidade de uma força horizontal  $\vec{F}$  que pode ser aplicada sobre o bloco A, de modo que o conjunto se mova sem que A escorregue sobre B.




9. (PUC-SP) No sistema representado na figura, as polias e os fios são ideais, o peso de A é 20 N e o peso de B é 10 N. O coeficiente de atrito entre A e a superfície horizontal é igual a 0,2.




Para que o sistema fique em equilíbrio, o peso de *C* deve ficar no intervalo:

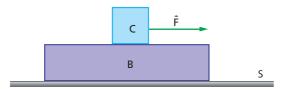
- a) 3 N a 5 N
- d) 12 N a 28 N
- b) 6 N a 8 N
- e) 30 N a 45 N
- c) 8,5 N a 11 N
- 10. (Fuvest-SP) Um bloco de massa m, montado sobre rodas (para tornar o atrito desprezível), parte do repouso em A e leva um tempo t<sub>0</sub> para atingir B. A massa das rodas é desprezível. Retirando-se as rodas, verifica-se que o bloco, partindo do repouso em A, leva um tempo 2t<sub>0</sub> para atingir B.



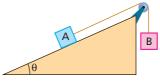
- a) Determine o valor de  $t_0$
- b) Determine o valor do coeficiente de atrito entre o plano e o bloco (sem rodas), em função de  $\alpha$ .
- **11.** Sobre um plano inclinado são abandonados dois blocos, A e B, ligados por um fio ideal, como mostra a figura. As massas de A e B são respectivamente iguais a 4,0 kg e 6,0 kg. Os coeficientes de atrito dinâmico entre os blocos A e B e o plano inclinado são, respectivamente,  $\mu_A$  = 0,25 e  $\mu_B$  = 0,50.



Sabendo que  $g = 10 \text{ m/s}^2$ , calcule:

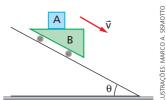

- a) o módulo da aceleração do conjunto;
- b) o módulo da tração no fio.

Atual Atual Editora






- 12. Considere a situação do exercício anterior. Calcule a intensidade da tração no fio, supondo  $\mu_{\text{\tiny A}}=\mu_{\text{\tiny B}}=0,50.$
- **13.** Os blocos  $B \in C$  estão inicialmente em repouso apoiados sobre a superfície horizontal S. A massa de B é 10 kg, a massa de C é 5,0 kg, o coeficiente de atrito entre C e B é 0,20, o coeficiente de atrito entre B e S é 0,05 e g = 10 m/s². Aplicamos sobre o bloco C uma força horizontal  $\overrightarrow{F}$ , de intensidade 5,0 N.




- a) O bloco C deslizará sobre B?
- b) O bloco B deslizará sobre S?
- **14.** No sistema representado na figura, o fio e a polia são ideais e a massa do bloco A é 20 kg. Adote  $g=10 \text{ m/s}^2$ , suponha que o coeficiente de atrito estático entre o bloco A e o plano inclinado é  $\mu=0.25$  e admita que o sistema tenha sido abandonado em repouso.



sen  $\theta = 0.60 e \cos \theta = 0.80$ 

- a) Determine os valores da massa de *B* para os quais o sistema permanece em repouso.
- b) Para que valor da massa de B a força de atrito entre o bloco A e o plano inclinado é nula?
- **15.** Um bloco A, de massa m=10 kg, está sobre um carro B, o qual desce por uma rampa sem atrito, como mostra a figura, sem que A escorregue sobre B. São dados: g=10 m/s², sen  $\theta=0.60$  e cos  $\theta=0.80$ . Calcule as intensidades da força normal e da força de atrito exercidas pelo carro sobre o bloco A.







