

FÍSICA

FRENTE: FÍSICA IV

PROFESSOR(A): KEN AIKAWA

EAD - ITA/IME

AULAS 13 E 14

ASSUNTO: GASES IDEAIS

Resumo Teórico

Modelo de gás ideal

Os gases reais (hidrogênio, hélio, nitrogênio...), por possuírem características moleculares diferentes, também apresentam comportamentos diferentes. Porém, quando submetidos a baixas pressões e altas temperaturas, passam a se comportar, macroscopicamente de forma semelhante.

Tal semelhança sugere um modelo de referência para o estudo dos gases, denominado de **gás ideal**.

Diremos que um gás se enquadra no modelo de gás ideal quando se obedece às leis de Boyle, Charles e Gay-Lussac. As quais comentaremos adiante.

Variáveis de estado de um gás ideal

Uma vez que a quantidade de moléculas em uma porção de gás é demasiada numerosa, costuma-se utilizar o mol para quantificar a matéria.

Sendo ${\bf n}$ a quantidade de matéria (n° mols), dizemos que o número de partículas N corresponde a:

$$N = n \cdot A$$

Onde: $\frac{6,02 \cdot 10^{23}}{\text{mol}}$ corresponde ao número de Avogadro (A).

Número de mols (n)

$$n = \frac{m}{M}$$

Onde:

m é a massa do gás.

M é a massa molar do gás, ou seja, a massa de $6.02 \cdot 10^{23}$ moléculas do gás, onde A = $6.02 \cdot 10^{23}$ representa o número de Avogadro.

Veja que podemos escrever a relação:

Temperatura

Utiliza-se a temperatura absoluta, Kelvin K, lembrando que:

Volume

Uma vez que os gases são extremamente expansíveis e compressíveis, eles acabam ocupando o volume do recipiente que os contém. Recordemos algumas transformações de unidades:

$$1 L = 1 dm^3 = 10^{-3} m^3$$

 $1 m^3 = 10^3 L$

Pressão

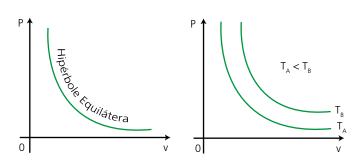
Definimos pressão como sendo a razão da força normal aplicada em uma superfície pela área onde essa força atua.

No caso dos gases, a pressão é exercida devido às colisões entre as moléculas e as paredes do recipiente. Por isso, todo gás confinado em um recipiente empurra suas paredes, exercendo pressão.

Estabelecidas essas variáveis de referência, o próximo passo é definir relações entre elas. As quais foram observadas experimentalmente.

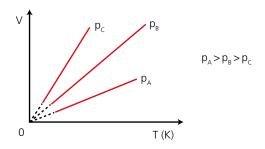
Leis experimentais

Lei de Boyle-Mariotte


Os estudos mais pormenorizados do comportamento dos gases ideais aconteceram no século dezessete. Em 1662, Robert Boyle descobriu uma lei que relacionava linearmente a pressão e o inverso do volume se a temperatura se mantiver constante. Em alguns países da Europa a descoberta desta lei é atribuída a Edme Mariotte que, no entanto, só publicou os seus trabalhos em 1676.

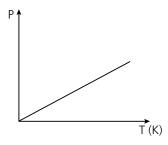
$$P \alpha \frac{1}{V}$$

Uma transformação gasosa a **temperatura constante** é denominada de **isotérmica** e seu gráfico de Clapeyron (pressão vs volume) é o mostrado abaixo:


MÓDULO DE ESTUDO

Lei de Gay-Lussac

Esta lei, descoberta por Joseph Louis Gay-Lussac nos princípios do século XIX, descreve a relação linear existente entre o valor e a temperatura de um gás ideal quando a pressão se mantém constante.


Uma transformação gasosa a **pressão constante** é denominada de **isobárica**.

Lei de Charles

Esta lei, descoberta em 1787 por Jaques Charles, relaciona linearmente a pressão e a temperatura de um gás ideal, se o volume se mantiver constante.

Uma transformação gasosa a **volume constante** é denominada de **isocórica** ou **isométrica** ou **isovolumétrica**.

Combinando as relações acima, podemos expressar a equação de Clapeyron:

$$PV = nRT$$

Onde R é uma constante de proporcionalidade. Um gás ideal é aquele cujo comportamento pode ser descrito com precisão pela equação citada para todas as pressões e temperaturas. Trata-se de um modelo idealizado, o qual funciona melhor para pressões muito pequenas e temperaturas muito elevadas, quando as distâncias entre

as moléculas são muito grandes e elas se deslocam com velocidades elevadas, ele (o gás) funciona razoavelmente bem (com erro percentual pequeno) para pressões moderadas (até algumas atmosferas) e para temperatura muito acima da temperatura à qual o gás se liquefaz.

Poderíamos esperar que a constante R da equação do gás ideal possuísse diferentes valores para gases diferentes, porém verificamos que ela possui o mesmo valor para todos os gases, pelo menos para pressões suficientemente baixas e temperaturas suficientemente elevadas. Ela é chamada de constante dos gases ideais (ou simplesmente constante dos gases). O valor numérico de R depende das unidades de P, V e T. Usando unidades do sistema SI, para o qual a unidade de pressão **p** é Pa (1 Pa = 1 N/m²) e a unidade de volume V é m³, o mesmo valor atual de R é dado por:

$$R = 8,3145 \frac{J \cdot K}{mol} = 0,08207 \frac{L \cdot atm}{mol \cdot K}$$

Uma relação útil

Um outro valor muito utilizado no estudo dos gases é a constante de Boltzmann, a qual pode ser expressa como:

$$k = \frac{R}{A} = 1,381 \cdot 10^{-23} \text{J/K}$$

Com essa relação em mente e lembrando que A = N/n. Podemos escrever:

Isto é a equação de Clapeyron, pode ser expressa como:

Lei geral dos gases

Para um gás ideal que sofre uma mudança de estado, sem alteração de sua massa, podemos escrever, tendo como referência a relação de Clapeyron:

$$\frac{PV}{T}$$
 = cte

Tal relação é conhecida como lei geral dos gases.

Densidade de um gás ideal

Utilizando a relação de Clapeyron, podemos escrever:

$$PV = \frac{m}{M}RT \Rightarrow \frac{m}{V} = \frac{PM}{RT}$$

$$\rho = \frac{\text{PM}}{\text{RT}}$$

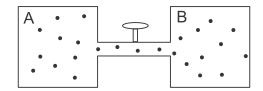
Onde $\rho = m/V$ corresponde a densidade do gás.

MÓDULO DE ESTUDO

Exercícios

01. (ITA) O pneu de um automóvel é calibrado com ar a uma pressão de $3,10 \times 10^5$ Pa a 20 °C, no verão. Considere que o volume não varia e que a pressão atmosférica se mantém constante e igual a $1,01 \times 10^5$ Pa. A pressão do pneu, quando a temperatura cai a 0 °C, no inverno, é:

A) $3,83 \times 10^5$ Pa.


B) 1.01×10^5 Pa.

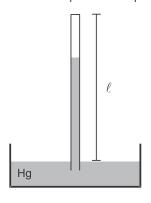
C) $4,41 \times 10^5$ Pa.

D) $2.89 \times 10^{5} \text{ Pa}$.

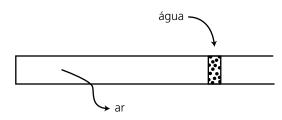
E) 1,95 × 10⁵ Pa.

02. (ITA/2018) Dois recipientes A e B de respectivos volumes V_A e $V_B = \beta V_A$, constantes, contêm um gás ideal e são conectados por um tubo fino com válvula que regula a passagem do gás, conforme a figura. Inicialmente o gás em A está na temperatura T_A sob pressão P_A e em B, na temperatura T_B sob pressão P_B . A válvula é então aberta até que as pressões finais P_{Af} e P_{Bf} alcancem a proporção $P_{Af}/P_{Bf} = \alpha$ mantendo as temperaturas nos seus valores iniciais. Assinale a opção com a expressão de P_{Af} .

A)
$$\left[\left(\frac{P_B}{P_A} \frac{T_A}{T_B} + \beta \right) \middle/ \left(\beta + \frac{1}{\alpha} \frac{T_A}{T_B} \right) \right] P_A$$


B)
$$\left[\left(1 + \beta \frac{P_B}{P_A} \frac{T_A}{T_B} \right) / \left(1 - \frac{\beta}{\alpha} \frac{T_A}{T_B} \right) \right] P_A$$

C)
$$\left[\left(1 + \beta \frac{P_B}{P_A} \frac{T_A}{T_B} \right) \middle/ \left(1 + \frac{\beta}{\alpha} \frac{T_A}{T_B} \right) \right] P_A$$


D)
$$\left[\left(1 + \beta \frac{P_B}{P_A} \frac{T_A}{T_B} \right) / \left(\alpha + \beta \frac{T_A}{T_B} \right) \right] P_A$$

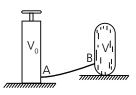
E)
$$\left[\left(\beta \frac{P_B}{P_A} \frac{T_A}{T_B} - 1\right) \middle/ \left(\alpha + \beta \frac{T_A}{T_B}\right)\right] P_A$$

03. (ITA/2017) Em equilíbrio, o tubo emborcado da figura contém mercúrio e ar aprisionado. Com a pressão atmosférica de 760 mm de Hg a uma temperatura de 27 °C, a altura da coluna de mercúrio é de 750 mm. Se a pressão atmosférica cai a 740 mm de Hg a uma temperatura de 2 °C, a coluna de mercúrio é de 735 mm. Determine o comprimento ℓ aparente do tubo.

- **04.** (ITA/2015) Num copo de guaraná, observa-se a formação de bolhas de CO₂ que sobem à superfície. Desenvolva um modelo físico simples para descrever este movimento e, com base em grandezas intervenientes, estime numericamente o valor da aceleração inicial de uma bolha formada no fundo do copo.
- **05.** (ITA/2002) Um tubo capilar fechado em uma extremidade contém uma quantidade de ar aprisionada por um pequeno volume de água. A 7,0 °C e à pressão atmosférica (76,0 cm Hg) o comprimento do trecho com ar aprisionado é de 15,0 cm. Determine o comprimento do trecho com ar aprisionado a 17,0 °C. Se necessário, empregue os seguintes valores da pressão de vapor da água: 0,75 cm Hg a 7,0 °C e 1,42 cm Hg a 17,0 °C.

06. (IME) Um balão esférico de raio 3 metros deve ser inflado com um gás ideal proveniente de um cilindro. Admitindo que o processo ocorra isotermicamente, que o balão esteja inicialmente vazio e que a pressão final do conjunto cilindro-balão seja a atmosférica, determine:

A) o trabalho realizado contra a atmosfera durante o processo; B) o volume do cilindro.


Dados:

Pressão atmosférica: 1 kgf/cm²

Pressão inicial do cilindro: 125 kgf/cm²

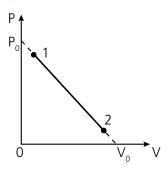
 $\pi = 3,1.$

07. Na figura temos uma bomba de bicicleta, com que se pretende encher uma câmara de ar de volume V · A e B são válvulas que impedem a passagem do ar em sentido inverso. A operação se faz isotermicamente e o volume da bomba descomprimida (à pressão atmosférica P₀) é V₀. Inicialmente a câmara está completamente vazia. Após N compressões da bomba, a pressão na câmara será:

A)
$$P_0 \left(1 + N \frac{V}{V_0} \right)$$

B) NP

C)
$$\frac{NP_0V}{V_0}$$


D)
$$\frac{NP_0V_0}{V}$$

$$E) \frac{NP_0 (V + V_0)}{V_0}$$

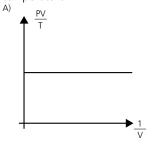
Bonline

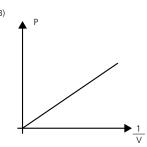
MÓDULO DE ESTUDO

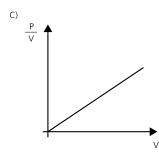
08. Um mol de um gás ideal monoatômico sofre um processo linear 1-2, em que a pressão P e sua variação do volume V, como mostrado na figura abaixo:

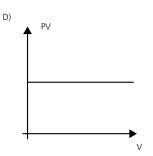
Assinale a alternativa que mostra a temperatura máxima do gás durante este processo.

A) T max = $P_0V_0 / 4R$

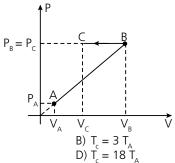

B) T max = $P_0V_0/2R$

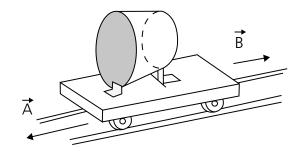

C) T max = $3P_0V_0 / 2R$


D) T max = $5P_0V_0 / 2R$


E) NDA.

09. Um cilindro provido de um pistão móvel, sem atrito, contém um gás ideal. Qual dos gráficos abaixo representa, qualitativamente, o comportamento incorreto do sistema quando a pressão P e/ou o volume V são modificados, sendo mantida constante a temperatura T.

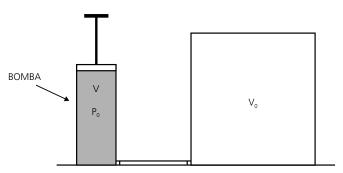




10. Um gás perfeito sofre uma transformação ABC, como indicado no diagrama abaixo; P representa a pressão do gás, V seu volume e T a sua temperatura absoluta. Sabe-se que: $V_C = 2V_A$ e $V_B = 6 V_A$; sendo T_C a temperatura no estado C e T_A a temperatura no estado A, podemos afirmar:

- **11.** Em um cilindro vertical de seção S, abaixo do êmbolo de massa **m**, existe ar. Sobre o êmbolo se encontra um corpo. Retirando-se esse corpo, o volume que ocupa o ar duplica e a temperatura fica duas vezes menor. Determine a massa do corpo. A pressão atmosférica é igual a P_o e a aceleração da gravidade é **g**.
- **12.** No esquema abaixo representa-se um carro ao qual está preso um vaso em forma de tronco de cone, cheio de gás comprimido sob pressão efetiva **p**. As bases têm áreas A (maior) e a (menor). Podemos afirmar que:

A) o carro não se movimenta.


B) o carro se movimenta no sentido do vetor \vec{A} .

C) o carro se movimenta no sentido do vetor \vec{B} .

D) o carro realiza um movimento periódico, mas não M.H.S.

E) o carro realiza um M.H.S. (Movimento Harmônico Simples).

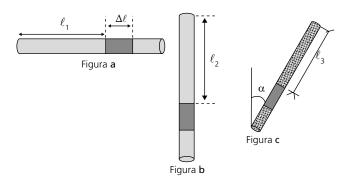
13. Determine o número de vezes que se deve acionar uma bomba com volume V para elevar a pressão do recipiente R desde a pressão atmosférica P₀ até P, sabendo-se que o volume do recipiente é V₀ e o processo é isotérmico. Obs.: A bomba quando não acionada, o ar no seu interior fica submetido à pressão atmosférica.

$$A) \ \frac{2V_0\left(P - P_0\right)}{P_0V}$$

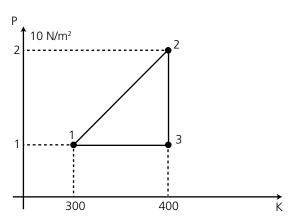
B)
$$\frac{V_0^2 (P - P_0)}{P_0 V^2}$$

C)
$$\frac{V_0 (P + P_0)}{P_0 V}$$

$$D) \ \frac{V_0 \left(P - P_0\right)}{P_0 V}$$


E)
$$\frac{V_0^2 (P + P_0)}{P_0 V^2}$$

A) $T_c = 2 T_A$ C) $T_c = 12 T_A$


Módulo de Estudo

14. Dentro de um tubo há uma coluna de mercúrio que isola do meio exterior um volume de ar que está dentro do tubo. O tubo pode girar em um plano vertical. Na primeira posição (figura a), a coluna de ar dentro do tubo tem um comprimento igual a ℓ_1 , enquanto na segunda posição (figura b),a dita coluna tem comprimento ℓ_2 . Determine o comprimento ℓ_3 da coluna de ar na terceira posição, quando o tubo está inclinado formando um ângulo α com a vertical (figura c).

15. No diagrama PT representa-se o processo fechado que realiza um gás ideal. Sabe-se que o volume máximo que ocupa o gás do processo é 16 dm³. Determine, em dm³, o volume do gás no ponto 1.

Gabarito

Aulas 13 e 14				
1	2	3	4	5
D	С	*	*	*
6	7	8	9	10
*	D	А	C	C
11	12	13	14	15
*	A	С	*	*

***03:** ℓ = 768 mm

04: $a = 5,0 \cdot 10^3 \text{ m/s}^2$

05: 15,67 cm

06

A)1,12 \times 10⁷ J. B)0,90 m³.

11: M = 3 $\left(m + \frac{P_0 S}{g} \right)$

14: $\frac{\ell_1 \ell_2}{\ell_2 - (\ell_2 - \ell_1) \cos \alpha}$

15: 12 dm³