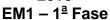


5^a Olimpíada de Química do Rio de Janeiro 2010 EM1 – 1^a Fase


MODALIDADE EM1

Leia atentamente as instruções abaixo:

- Esta prova destina-se exclusivamente aos alunos da 1ª série do ensino médio.
- A prova contém vinte questões objetivas, cada uma com cinco alternativas, das quais apenas uma é correta. Assinale na folha de respostas a alternativa que julgar correta.
- A prova deve ter um total de OITO páginas, sendo a primeira folha a página de instruções e a oitava a folha de respostas.
- Cada questão tem o valor de um ponto.
- A duração da prova é de **DUAS** horas.
- O uso de calculadoras comuns ou científicas é permitido.
- Fica proibida a consulta de qualquer material.

Rio de Janeiro, 21 de agosto de 2010.

TABELA PERIÓDICA DOS ELEMENTOS

1																	18
1 H 1,0	2											13	14	15	16	17	2 He 4,0
3 Li 6,9	4 Be 9,0					n° atômi SÍMBO massa atô	LO					5 B 10,8	6 C 12,0	7 N 14,0	8 O 16,0	9 F 19,0	10 Ne 20,2
11 Na 23,0	12 Mg 24,3	3	4	5	6	7	8	9	10	11	12	13 Al 27,0	14 Si 28,1	15 P 31,0	16 S 32,0	17 CL 35,5	18 Ar 39,9
19 K 39,0	20 Ca 40,0	21 Sc 45,0	22 Ti 47,9	23 V 50,9	24 Cr 52,0	25 Mn 55,0	26 Fe 55,8	27 Co 58,9	28 Ni 58,7	29 Cu 63,5	30 Zn 65,4	31 Ga 69,7	32 Ge 72,6	33 As 74,9	34 Se 79,0	35 Br 79,9	36 Kr 83,8
37 Rb 85,5	38 Sr 87,6	39 Y 88,9	40 Zr 91,2	41 Nb 92,9	42 Mo 95,9	43 Tc 98	44 Ru 101,1	45 Rh 102,9	46 Pd 106,4	47 Ag 107,9	48 Cd 112,4	49 In 114,8	50 Sn 118,7	51 Sb 121,8	52 Te 127,6	53 I 127,0	54 Xe 131,3
55 Cs 132,9	56 Ba 137,3	57 – 71	72 Hf 178,5	73 Ta 181,0	74 W 183,8	75 Re 186,2	76 Os 190,2	77 Ir 192,2	78 Pt 195,1	79 Au 197,0	80 Hg 200,6	81 T ℓ 204,4	82 Pb 207,2	83 Bi 209,0	84 Po 209	85 At 210	86 Rn 222
87 Fr 223	88 Ra 226	89 –103	104 Rf 261	105 Db 262	106 Sg 263	107 Bh 262	108 Hs 265	109 Mt 266									
	e dos nídeos	57 La 138,9	58 Ce 140,1	59 Pr 140,9	60 Nd 144,2	61 Pm 145	62 Sm 150,4	63 Eu 152,0	64 Gd 157,3	65 Tb 159,0	66 Dy 162,5	67 Ho 164,9	68 Er 167,3	69 Tm 168,9	70 Yb 173,0	71 Lu 174,97	
	e dos nídeos	89 Ac 227	90 Th 232,0	91 Pa 231,0	92 U 238,0	93 Np 237	94 Pu 244	95 Am 243	96 Cm 247	97 Bk 247	98 Cf 251	99 Es 252	100 Fm 257	101 Md 258	102 No 259	103 Lr 262	

QUESTÕES

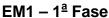
- 01 As forças intermoleculares interferem diretamente no estado físico da substância. Por exemplo, a água nas condições ambientais é encontrada no estado líquido devido às ligações de hidrogênio entre suas moléculas. O tipo de força intermolecular presente no gelo-seco (CO_2 no estado sólido) é
- (a) dipolo permanente dipolo permanente.
- (d) ligação de hidrogênio.
- (b) dipolo induzido dipolo permanente.
- (e) ligação covalente.
- (c) dipolo induzido dipolo induzido.
- 02 Na produção de fogos de artifício, diferentes metais são misturados à pólvora para que os fogos, quando detonados, produzam cores variadas. Por exemplo, o sódio, o estrôncio e o cobre produzem, respectivamente, as cores amarela, vermelha e azul. A configuração eletrônica do cátion monovalente do cobre é
- (a) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$

(d) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^9$

(b) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^9$

(e) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10}$

- (c) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^8$
- 03 Um íon do elemento **X** forma com o enxofre um composto de fórmula X_2S_3 . Sabendo-se que o isótopo 51 **X** tem 28 nêutrons, o número de elétrons no subnível d do íon de **X** é de
- (a) 0


(d) 3

(b) 1

(e) 4

(c) 2

- 04 Rutherford, em seu clássico experimento, bombardeou uma delgada lâmina com partículas alfa. Nessa experiência, ele demonstrou que
- (a) todos os átomos possuem elétrons.
- (b) a matéria é compacta e impenetrável.
- (c) os elétrons giram em órbitas elípticas ao redor do núcleo.
- (d) os elétrons tem carga elétrica negativa.
- (e) o volume nuclear é muito pequeno em relação ao volume do átomo.
- 05 A tabela periódica atual é uma evolução da obra de vários cientistas do século XIX, especialmente do russo Mendeleev. Ao organizar os elementos conhecidos até aquela época verificou-se a existência de uma "lei periódica", pois as propriedades químicas dos elementos repetiam-se ao longo da tabela. Os elementos com propriedades semelhantes foram agrupados em colunas, chamadas de grupos.

Analise as afirmativas abaixo sobre propriedades periódicas.

- I) Os halogênios apresentam os maiores valores de afinidade eletrônica dentre todos os grupos da tabela periódica.
- II) O elemento com maior valor para a primeira energia de ionização de toda a tabela periódica é o hélio.
- III) Os elementos do grupo 1 apresentam os menores valores de afinidade eletrônica dentre todos os grupos da tabela periódica.
- IV) O raio atômico diminui com o aumento do número de prótons em toda a tabela periódica.

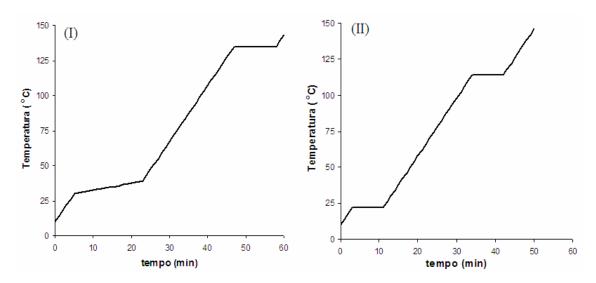
Estão corretas APENAS as afirmativas

(a) I e II.	(b) I e III.	(c) II e IV.	(d) II, III e IV.	(e) I, III e IV.	
					Ξ

- 06 Ao observar um bloco de gelo produzido em um freezer, um adolescente perguntou ao professor por que o gelo apresentava algumas bolhas no seu interior. A alternativa que corresponde à explicação **CORRETA** do professor é:
- (a) As bolhas formadas são devidas ao vapor d'água presente na estrutura do gelo.
- (b) O cristal de gelo possui uma estrutura circular e as cavidades são hexagonais.
- (c) A água sólida produzida em um freezer comum não se cristaliza totalmente, produzindo regiões esféricas de água líquida.
- (d) As bolhas existentes no interior do bloco de gelo são decorrentes do rápido congelamento da água no freezer, que não permite a perfeita cristalização.
- (e) A ocorrência das bolhas é devida ao ar dissolvido na água líquida, que não é solúvel na água sólida.
- 07 O alumínio e o cobre são largamente empregados na produção de fios e cabos elétricos. A condutividade elétrica é uma propriedade comum dos metais. Este fenômeno deve-se
- (a) à presença de impurezas de ametais que fazem a transferência de elétrons.
- (b) ao fato de os elétrons nos metais estarem fracamente atraídos pelo núcleo.
- (c) à alta afinidade eletrônica destes elementos.
- (d) à alta energia de ionização dos metais.
- (e) ao tamanho reduzido dos núcleos dos metais.
- 08 **(OBQ 2007 Adaptada)** O cloro existe como dois isótopos: cloro-35 e cloro-37. A massa atômica deste elemento é de, aproximadamente, 35,5. Pode-se afirmar que a razão entre as abundâncias de cloro-35 e cloro-37 é

(a) 1·1	(b) 1·2	(c) 1·3	(d) 2·1	(e) 3·1

5^a Olimpíada de Química do Rio de Janeiro 2010



EM1 – 1ª Fase

- 09 (OBQ 2007 Adaptada) Quando volumes iguais de água (H_2O , d = 1,00 g/cm³), etanol (C_2H_5OH , d = 0,79 g/cm³) e hexano (C_6H_{14} , d = 0,66 g/cm³) são misturados em um tubo de ensaio, observa-se a formação de
- (a) uma única fase.
- (b) duas fases, sendo o volume da fase superior maior que o volume da fase inferior.
- (c) duas fases, sendo o volume da fase superior menor que o volume da fase inferior.
- (d) três fases, sendo a fase do meio constituída de etanol.
- (e) três fases, sendo a fase do meio constituída de hexano.
- 10 (**OBQ Jr. 2008 Adaptada**) Na produção de pães, preparando-se a massa com fermento, os padeiros colocam uma bolinha da massa em um copo com água. No início, a bolinha afunda na água, depois de algum tempo, ela flutua, indicando o momento de assar os pães.

As seguintes afirmativas são sobre esse fenômeno.

- I) A bolinha flutua porque se encheu de água.
- II) A bolinha flutua porque o seu volume diminuiu.
- III) A bolinha flutua porque sua massa diminuiu.
- IV) A bolinha flutua porque sua densidade tornou-se menor que a da água.
- São INCORRETAS APENAS as afirmativas
- (a) I e II.
- (b) III e IV.
- (c) I e IV.
- (d) I, II e III.
- (e) II, III e IV.
- 11 Dois sólidos desconhecidos foram aquecidos utilizando as mesmas condições experimentais. Os gráficos (I) e (II) mostram o resultado obtido.

A análise dos gráficos mostra que

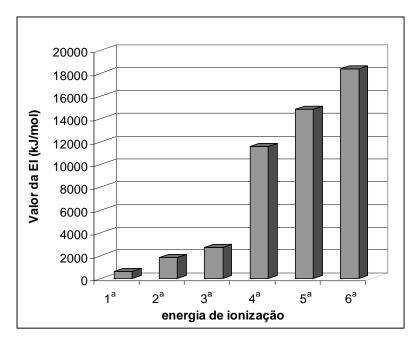
- (a) os dois sólidos são substâncias puras.
- (b) o sólido do gráfico (I) é uma mistura eutética.
- (c) o sólido do gráfico (II) é uma substância pura.
- (d) o sólido do gráfico (I) tem ponto de fusão de 30 °C.
- (e) o sólido do gráfico (II) é uma mistura azeotrópica.

5^a Olimpíada de Química do Rio de Janeiro 2010


EM1 – $1^{\underline{a}}$ Fase

12 — Quando um mesmo elemento forma substâncias simples com estruturas diferentes tem-se o fenômeno de alotropia. O exemplo mais conhecido de alotropia é a do carbono, que forma tanto o diamante como a grafita. Embora feitas do mesmo elemento, são substâncias com propriedades radicalmente opostas. Porém, nem todos os elementos têm alótropos conhecidos, um exemplo é o

- (a) oxigênio.
- (b) estanho.
- (c) enxofre.
- (d) fósforo.
- (e) nitrogênio.


13 – As figuras abaixo mostram as estruturas de Lewis para algumas substâncias.

Estão corretas APENAS estruturas mostradas nas figuras

- (a) I e II.
- (b) III e IV.
- (c) I e III.
- (d) I, II e IV.
- (e) II, III e IV.

14 – O gráfico abaixo mostra os valores das energias de ionização (EI) de um átomo da tabela periódica.

Dentre os elementos listados abaixo, qual apresenta o comportamento exibido no gráfico?

- (a) Alumínio.
- (b) Boro.
- (c) Fósforo.
- (d) Nitrogênio.
- (e) Vanádio.

EM1 – 1^a Fase

15 – Os ácidos, segundo definição de Arrhenius, são substâncias que, em meio aquoso, têm a capacidade de liberar para o fon H⁺. Quando o ácido possui átomos de oxigênio em sua estrutura, apenas os átomos de hidrogênio ligados diretamente aos de oxigênio são ionizáveis. No ácido sulfúrico, de fórmula química H₂SO₄, os dois átomos de hidrogênio são ionizáveis. Já o ácido nítrico (HNO₃) possui apenas um hidrogênio ionizável. Sabe-se que no ácido fosforoso (H₃PO₃) apenas dois átomos de hidrogênio são considerados ionizáveis. Considerando essa característica, a geometria molecular do ácido fosforoso é

(a) tetraédrica.

(d) quadrado plana.

(b) piramidal.

(e) pirâmide trigonal.

(c) trigonal plana.

16 – Considere que um elemento **Z** tem os seguintes valores de energia de ionização (EI):

 $1^a EI = 900 \text{ kJ/mol}$

 $2^a EI = 2100 \text{ kJ/mol}$

 $3^a EI = 4000 \text{ kJ/mol}$

O valor total de energia gasto, em kJ, para a formação de um mol do íon \mathbb{Z}^{3+} é de

(a) 2700.

(b) 3000.

(c) 4000.

(d) 7000.

(e) 12000.

17 – Uma maneira de identificar a presença dos íons dos metais alcalinos em solução é através do ensaio de chama. Nesse experimento, uma alça de platina é imersa na solução e levada a uma chama, como a do bico de Bunsen. A cor da chama varia de acordo com o elemento presente, como mostra a tabela abaixo:

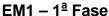
Elemento	Cor observada
Lítio	Vermelho
Sódio	Amarelo
Potássio	Violeta

A cor observada ensaio de chama depende fundamentalmente das transições eletrônicas entre os níveis de energia do átomo. Essa associação veio através das idéias de Niels Bohr para o átomo. Essas idéias explicam que a cor observada

- (a) é resultado da absorção de todos comprimentos de onda pelos vários elétrons presentes nos átomos.
- (b) é resultado da emissão da energia absorvida por elétrons ao retornar do estado excitado para o inicial.
- (c) é a cor complementar da absorvida pelos elétrons ao passar para o estado excitado.
- (d) é a cor refletida pela chama quando os elétrons absorvem energia ao retornar ao estado inicial.
- (e) é a emissão da energia emitida pelos elétrons quando passam do estado fundamental para o excitado.

18 – Considere os seguintes grupos de moléculas abaixo:

Grupo I: BF₃, CHF₃ e CℓF₃.


Grupo II: SO₂, SO₃ e O₃.

Grupo III: CO₂, H₂O e N₂O.

O número de moléculas em cada grupo que possuem um átomo central com hibridação sp² é

	Grupo I	Grupo II	Grupo III
(a)	1	2	1
(b)	3	1	2
(c)	1	3	0
(d)	2	2	2
(e)	2	3	3

19 – Um químico recebeu duas amostras de plástico, nomeadas de $\bf A$ e $\bf B$, para caracterizar e, para isso, resolveu usar uma avaliação comparativa de densidade. Para tal experimento selecionou a água (d = 1,00 g/cm³), um líquido I (d = 1,20 g/cm³) e um líquido II (d = 1,50 g/cm³). Os resultados dos experimentos podem ser vistos na tabela abaixo.

Á	gua	Líq	uido I	Líquido II		
Amostra A	Amostra B	Amostra A	Amostra B	Amostra A	Amostra B	
Flutuou	Afundou	Flutuou	Afundou	Flutuou	Afundou	

Tabela de densidade de polímeros

Plástico	Densidade (g/cm³)
Polipropileno	0,92-0,94
Poliamida 6,6	1,22-1,25
PVC (cloreto de polivinila)	1,39
PTFE (politetrafluoroetileno)	2,0-2,3

Consultado a tabela de densidade de polímeros industrializados e com base nos resultados obtidos, o químico $N\tilde{A}O$ pode concluir que

- (a) a amostra A é o polipropileno porque é a única que flutuou em todos os testes.
- (b) a amostra B é o PTFE porque é a única com densidade maior que todos os líquidos.
- (c) seria possível diferenciar do polipropileno e a poliamida 6,6 se fosse feito um teste com um líquido de densidade 1,30 g/cm³.
- (d) seria possível diferenciar a poliamida 6,6 do PVC se fosse feito um teste com um líquido de densidade 1,30 g/cm³.
- (e) não seria possível diferenciar todos os quatro polímeros sem um teste com um líquido de densidade 1,30 g/cm³.
- 20 Considere um sistema heterogêneo formado por duas fases: um líquido incolor e um sólido de cor marrom. O sólido marrom é uma substância pura enquanto a fase líquida é, na verdade, uma mistura homogênea com três componentes, nomeados de I, II e III. Algumas constantes físicas dos componentes desse sistema são dadas abaixo:

Componente	Ponto de Fusão	Ponto de Ebulição
Sólido marrom	60 °C	340 °C
Componente I	150 °C	420 °C
Componente II	– 4 °C	140 °C
Componente III	2 °C	180 °C

Uma sequência de métodos de separação para isolar os quatro componentes citados acima é

- (a) Filtração, destilação simples e destilação fracionada.
- (b) Destilação simples e destilação fracionada.
- (c) Filtração, destilação fracionada e evaporação.
- (d) Destilação simples, evaporação e destilação fracionada.
- (e) Filtração, destilação simples e evaporação.

5ª Olimpíada de Química do Rio de Janeiro 2010 EM1 – 1ª Fase

FOLHA DE RESPOSTA – EM1

	A	В	C	D	E
Questão 01					
Questão 02					
Questão 03					
Questão 04					
Questão 05					
Questão 06					
Questão 07					
Questão 08					
Questão 09					
Questão 10					
Questão 11					
Questão 12					
Questão 13					
Questão 14					
Questão 15					
Questão 16					
Questão 17					
Questão 18					
Questão 19					
Questão 20					

Número de acertos:	
--------------------	--