MATEMÁTICA 2

Capítulo 9 Probabilidade

Capítulo 9

Probabilidade

Para pensar

$$1. P = \frac{100}{5.000.000} = 0,002\%$$

Exercícios propostos

1.
$$E = \{1, 2, 3, ..., 200\}, n(E) = 200$$

 $A = \{x \in E \mid x > 80\} = \{81, 82, 83, ..., 200\}, n(A) = 120$
Logo: $P(A) = \frac{n(A)}{n(E)} = \frac{120}{200} = 60\%$

Portanto, a probabilidade de se obter um número maior que 80 é 60%.

2. $E = \{x \mid x \in \text{lâmpada da caixa}\}, n(E) = 120$

a)
$$A = \{y \in E | y \in lampada perfeita\}, n(A) = 84$$

$$\therefore P(A) = \frac{n(A)}{n(E)} = \frac{84}{120} = 70\%$$

b)
$$B = \{z \in E \mid z \in B \}$$

b)
$$B = \{z \in E \mid z \in a \text{ lâmpada queimada}\}, n(B) = 36$$

$$\therefore P(B) = \frac{n(B)}{n(E)} = \frac{36}{120} = 30\%$$

3. Sendo n a população brasileira no último dia

$$\frac{\text{de 2011, temos:}}{7.000.000.000} = \frac{137}{5.000} \Rightarrow n = 191.800.000$$

Logo, a população brasileira era de 191.800.000 pessoas naquela data.

4. $E = \{(c, c), (c, k), (k, c), (k, k)\} \Rightarrow n(E) = 4$

a)
$$A = \{(c, k), (k, c)\}, n(A) = 2$$

a)
$$A = \{(c, k), (k, c)\}, n(A) = 2$$

$$\therefore P(A) = \frac{n(A)}{n(E)} = \frac{2}{4} = \frac{1}{2} = 50\%$$

Logo, a probabilidade de se obterem uma cara e uma coroa é $\frac{1}{2}$ ou 50%.

b)
$$B = \{(c, c)\}, n(B) = 1$$

$$P(B) = \frac{n(B)}{n(E)} = \frac{1}{4} = 25\%$$

Logo, a probabilidade de se obterem duas caras é $\frac{1}{4}$ ou 25%. c) $C = \{(c, k), (k, c), (c, c)\}, n(C) = 3$ ∴ $P(C) = \frac{n(C)}{n(E)} = \frac{3}{4} = 75\%$

c)
$$C = \{(c, k), (k, c), (c, c)\}, n(C) = 3$$

$$P(C) = \frac{n(C)}{n(E)} = \frac{3}{4} = 75\%$$

Logo, a probabilidade de se obter pelo menos uma cara é $\frac{3}{4}$ ou 75%.

5. E = {(c, c, c), (c, c, k), (c, k, c), (c, k, k), (k, c, c), (k, c, k), (k, k, c), (k, k, k)}, n(E) = 8

a)
$$A = \{(c, c, c)\}, n(A) = 1$$

$$P(A) = \frac{n(A)}{n(E)} = \frac{1}{8} = 12,5\%$$

Logo, a probabilidade de se obterem três caras é $\frac{1}{8}$ ou 12,5%.

b)
$$B = \{(c, c, k), (c, k, c), (k, c, c)\}, n(B) = 3$$

∴ P(B) =
$$\frac{n(B)}{n(E)} = \frac{3}{8} = 37,5\%$$

Logo, a probabilidade de se obterem duas caras e uma coroa é $\frac{3}{8}$ ou 37,5%.

c) C = {(c, c, c), (c, c, k), (c, k, c), (c, k, k), (k, c, c), (k, c, k), (k, k, c)}, n(C) = 7

$$P(C) = \frac{n(C)}{n(E)} = \frac{7}{8} = 87,5\%$$

Logo, a probabilidade de se obter pelo menos uma cara é $\frac{7}{8}$ ou 87,5%.

(c, k, c), (c, c, c), n(D) = 7

$$P(D) = \frac{n(D)}{n(E)} = \frac{7}{8} = 87,5\%$$

Logo, a probabilidade de se obterem no máximo duas coroas é $\frac{7}{8}$ ou 87,5%.

$$(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),$$

6.
$$E = \begin{cases} (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), \\ (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), \\ (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), \\ (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), \\ (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), \\ (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) \end{cases}, n(E) =$$

a)
$$A = \{(3, 6), (4, 5), (5, 4), (6, 3)\}, n(A) = 4$$

$$\therefore P(A) = \frac{n(A)}{n(E)} = \frac{4}{36} = \frac{1}{9}$$

Logo, a probabilidade de a soma dos pontos ser igual a 9 é $\frac{1}{9}$

b)
$$B = \{(6, 4), (5, 5), (4, 6)\}, n(B) = 3$$

$$\therefore$$
 P(B) = $\frac{n(B)}{n(E)} = \frac{3}{36} = \frac{1}{12}$

Logo, a probabilidade de a soma dos pontos ser igual a 10 é $\frac{1}{12}$

c) $C = \{(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)\}, n(C) = 6$

$$\therefore P(C) = \frac{n(C)}{n(E)} = \frac{6}{36} = \frac{1}{6}$$

Logo, a probabilidade de a soma dos pontos ser maior que 9 é $\frac{1}{6}$

:.
$$P(D) = \frac{n(D)}{n(E)} = \frac{0}{36} = 0$$

e) Todos os pares ordenados do espaço amostral satisfazem essa condição; logo:

$$P(E) = \frac{n(E)}{n(E)} = 1$$

$$(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),$$

7.
$$E = \begin{cases} (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), \\ (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), \\ (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), \\ (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), \\ (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), \\ (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) \end{cases}, n(E) = 36$$

 $A = \{(1, 3), (1, 6), (2, 3), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 3), (4, 6), (5, 3), (5, 6), (6, 1), (6, 6),$ (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), n(A) = 20

:.
$$P(A) = \frac{n(A)}{n(E)} = \frac{20}{36} = \frac{5}{9}$$

Logo, a probabilidade de o produto dos números de pontos apresentados ser múltiplo de 3 é $\frac{5}{9}$

8. No lançamento de dois dados, o espaço amostral E é o conjunto:

$$E = \begin{cases} (1, 1), (1, 2), (1, 3), ..., (1, 6) \\ (2, 1), (2, 2), (2, 3), ..., (2, 6) \\ (3, 1), (3, 2), (3, 3), ..., (3, 6) \\ \vdots & \vdots & \vdots \\ (6, 1), (6, 2), (6, 3), ..., (6, 6) \end{cases}, \text{ em que n(E)} = 36$$

Os eventos J, L e A, formados pelos pares ordenados que interessam a José, Paulo e Antônio, respectivamente, são:

$$J = \{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}, \text{ em que } n(J) = 6;$$

$$L = \{(1, 3), (2, 2), (3, 1)\}, \text{ em que } n(L) = 3;$$

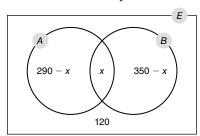
$$A = \{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)\}, \text{ em que } n(A) = 5.$$

Calculando a probabilidade de cada um desses eventos, temos:

$$P(J) = \frac{6}{36}$$
, $P(L) = \frac{3}{36}$ e $P(A) = \frac{5}{36}$

Alternativa **d**.

9. Sejam E o conjunto de todos os funcionários dessa empresa, A o conjunto dos funcionários que se vacinaram contra a febre amarela e B o conjunto dos que se vacinaram contra a gripe H1N1. Indicando por x o número de funcionários que tomaram as duas vacinas, temos:



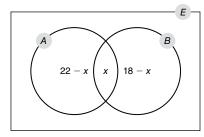
$$290 - x + x + 350 - x + 120 = 500 \Rightarrow x = 260$$

Como n(A \cap B) = 260 e n(E) = 500, concluímos que:

$$P(A \cap B) = \frac{n(A \cap B)}{n(E)} = \frac{260}{500} = \frac{13}{25} = 52\%$$

Logo, a probabilidade de o escolhido ter tomado as duas vacinas é $\frac{13}{25}$ ou 52%.

10. Sejam E o conjunto dos habitantes do país, A o conjunto dos habitantes com menos de 25 anos e B o conjunto dos habitantes com mais de 22 anos. Indicando por x o número de milhões de habitantes com mais de 22 anos e menos de 25 anos, temos:



$$22 - x + x + 18 - x = 30 \Rightarrow x = 10$$

Como n(A \cap B) = 10 e n(E) = 30, concluímos que:

$$P(A \cap B) = \frac{n(A \cap B)}{n(E)} = \frac{10}{30} = \frac{1}{3}$$

Logo, a probabilidade de o escolhido ter mais de 22 anos e menos de 25 anos é $\frac{1}{3}$.

11. a) Pelo princípio fundamental da contagem, temos:



Logo, podem ser digitadas 32.400 sequências nas condições enunciadas.

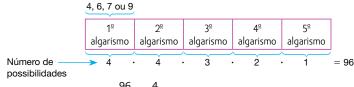
b) Como o cofre é aberto por uma única sequência, a probabilidade P de que uma pessoa, que desconheça o segredo, abra o cofre digitando uma única sequência é dada por:

$$P = \frac{1}{32.400}$$

12. O número de elementos do espaço amostral E desse experimento é o número de permutações dos algarismos 2, 4, 6, 7 e 9. Assim, pelo princípio fundamental da contagem, temos:

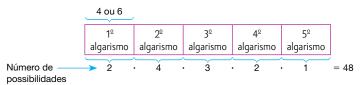
Logo, n(E) = 120.

a) Sendo A o evento formado pelos números de E, maiores que 40.000, podemos calcular n(A) pelo princípio fundamental da contagem:



Logo, n(A) = 96. Portanto: $P(A) = \frac{96}{120} = \frac{4}{5}$ ou P(A) = 80%

b) Sendo B o evento formado pelos números de E, maiores que 40.000 e menores que 70.000, podemos calcular n(B) pelo princípio fundamental da contagem:



Logo, n(B) = 48. Portanto: P(B) = $\frac{48}{120} = \frac{2}{5}$ ou P(B) = 40%

13. O espaço amostral E desse experimento é formado por todos os conjuntos de 4 pessoas que podem ser formados com os 5 homens e 4 mulheres; logo, $n(E) = C_{9,4} = 126$.

Sendo A o evento de E, formado pelos conjuntos de 2 homens e 2 mulheres, temos:

$$n(A) = C_{5,2} \cdot C_{4,2} = 10 \cdot 6 = 60$$

Concluímos, assim, que: $P(A) = \frac{60}{126} = \frac{10}{21}$

14. O espaço amostral E é formado por todas as quíntuplas ordenadas de faces da moeda:

Logo, pelo princípio fundamental da contagem:

$$n(E) = 2^5 = 32$$

Sendo $A = \{(ccckk), (cckkc), (ckckc), (ckckc), (ckckc), (kcckc), (kcckc), (kcckc), (kckcc), (kckcc),$

$$P(A) = \frac{n(A)}{n(E)} = \frac{10}{32} = \frac{5}{16} = 31,25\%$$

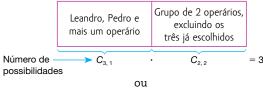
Logo, a probabilidade de se obterem 3 caras e 2 coroas é $\frac{5}{16}$ ou 31,25%.

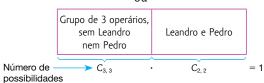
15. a) Pelo princípio fundamental da contagem, temos:

Logo, a separação pode ser feita de 10 maneiras diferentes.

b) O espaço amostral E desse experimento é formado por todas as decomposições possíveis dos 5 operários em 2 grupos: um com 2 operários e o outro com 3. Assim, pelo item a, temos que n(E) = 10.

Seja A o evento de E formado pelas decomposições de maneira que Leandro e Pedro pertençam a um desses grupos. Assim, pelo princípio fundamental da contagem, temos:





Logo, n(A) = 3 + 1 = 4.
Concluímos, então, que: P(A) =
$$\frac{4}{10} = \frac{2}{5} = 40\%$$

16. O espaço amostral E desse experimento é formado pelos visitantes que opinaram; logo:

$$n(E) = 79\% \cdot 500 = 0.79 \cdot 500 = 395$$

Sendo A o evento de E formado pelas pessoas que classificaram como "chato" o conto "Contos de Halloween", temos:

$$n(A) = 12\% \cdot 500 = 0,12 \cdot 500 = 60$$

Concluímos, assim, que:
$$P(A) = \frac{60}{395} \approx 0,15$$

Alternativa d

Nota: Esse resultado independe do número (500) de

visitantes, pois poderia ser obtido, simplesmente,

por
$$\frac{12\%}{79\%} = \frac{0,12}{0,79} \approx 0,15.$$

17. A probabilidade P de uma pessoa ser atingida por um raio em 2013 é dada por:

$$P = \frac{132}{200.000.000} = 0,00000066 \implies P = 0,000066\%$$

∴ 0,00001% < P < 0,0001%

Alternativa c.

- **18. a)** V, pois a maior probabilidade possível é a do espaço amostral: P(E) = 1
 - b) V, pois a menor probabilidade possível é a do evento vazio: $P(\emptyset) = 0$
 - c) F, pois para n = 4 temos $P(A) = \frac{7}{6} > 1$ e a maior probabilidade possível é 1.
 - **d)** F, pois $P(\overline{A}) = 1 P(A) = 0.2$.

19.
$$\begin{cases} P(A) = \frac{n-5}{8} \\ 0 \le P(A) \le 1 \end{cases} \Rightarrow 0 \le \frac{n-5}{8} \le 1$$

∴
$$0 \le n - 5 \le 8 \Rightarrow 5 \le n \le 13$$

Alternativa **a**.

20. $E = \{1, 2, 3, 4, 5, 6\}, n(E) = 6$

a) $M = \{x \in E \mid x \text{ \'e m\'ultiplo de 5 e de 3}\} = \emptyset$, ou seja, M 'e o evento imposs'ivel.

$$\therefore P(M) = \frac{n(M)}{n(E)} = \frac{0}{6} = 0$$

b) $D = \{y \in E \mid y \in divisor de 720\} = \{1, 2, 3, 4, 5, 6\} = E,$ ou seja, E é um evento certo.

:.
$$P(D) = \frac{n(D)}{n(E)} = \frac{6}{6} = 1$$

21. Seja E o espaço amostral formado por todas as sequências em que podem ser colocadas as etiquetas:

Assim, pelo princípio fundamental da contagem:

$$n(E) = 3 \cdot 2 \cdot 1 = 6$$

a)
$$A = \{(1, 2, 3)\}, n(A) = 1$$

$$\therefore P(A) = \frac{n(A)}{n(E)} = \frac{1}{6}$$

Logo, a probabilidade de que sejam colocados os três envelopes nas posições corretas é $\frac{1}{6}$.

b) O evento B, formado pelas sequências de envelopes com apenas dois números na posição correta, é impossível, pois, se dois envelopes estiverem na posição correta, o terceiro, automaticamente, estará na posição correta.

$$\therefore$$
 P(B) = C

22.
$$0 \le \frac{n-8}{20} \le 1 \implies 0 \le n-8 \le 20$$

Portanto, $8 \le n \le 28$

Concluímos, então, que o maior número possível de pessoas que podem estar na sala é 28.

23. Basta calcular a probabilidade P do complementar do evento "time A campeão"; logo:

$$P = 1 - \frac{8}{17} = \frac{9}{17}$$

24. O espaço amostral E desse experimento é formado pelas bolas da urna. Sendo V e A os eventos de E formados pelas bolas vermelhas e pelas bolas azuis, respectivamente, temos:

$$\begin{cases} P(V) = 4P(A) \\ P(V) + P(A) = 1 \end{cases} \Rightarrow P(A) = \frac{1}{5} e P(V) = \frac{4}{5}$$

a)
$$P(A) = \frac{1}{5}$$

b) Sendo no número de bolas vermelhas que havia na urna, antes da retirada, temos que:

$$P(V) = \frac{4}{5} \Rightarrow \frac{n}{35} = \frac{4}{5}$$

Logo, havia 28 bolas vermelhas na urna, antes da retirada.

25. Os eventos A e B determinados por "vencer a eleição" e "perder a eleição", respectivamente, são complementares e, portanto, P(A) + P(B) = 1.

$$\frac{x+3}{4} + \frac{x}{6} = 1 \Rightarrow 3(x+3) + 2x = 12$$

$$\therefore 5x = 3 \Rightarrow x = \frac{3}{5}$$

Logo, a probabilidade P de o candidato vencer a eleição é dada por:

$$P = \frac{\frac{3}{5} + 3}{4} = \frac{18}{5} \cdot \frac{1}{4} = \frac{18}{20} = 90\%$$

Alternativa e.

26. a)

1ª bola	2ª bola	3ª bola
9	9	9

Assim, pelo princípio fundamental da contagem, temos:

$$n(E) = 9 \cdot 9 \cdot 9 = 729$$

- b) Resposta possível: (1, 3, 5)
- c) Para que o produto de três números seja ímpar, os três números devem ser ímpares: 1, 3, 5, 7 ou 9.

1ª bola	2ª bola	3ª bola
5	5	5

Assim, pelo princípio fundamental da contagem, o total de ternos ordenados, em que o produto dos três números é ímpar, é dado por $5 \cdot 5 \cdot 5 = 125$.

d) $A = \{(x, y, z) \in E | xyz \in \text{impar}\}, n(A) = 125$

$$\therefore P(A) = \frac{n(A)}{n(E)} = \frac{125}{729}$$

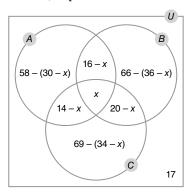
Logo, a probabilidade de o produto dos três números ser ímpar é $\frac{125}{729}$.

e) $B = \{(a, b, c) \in E \mid abc \in par\} = \overline{A} e$, portanto:

$$P(B) = P(\overline{A}) = 1 - P(A) = 1 - \frac{125}{729} = \frac{604}{729}$$

Logo, a probabilidade de o produto dos três números ser par é $\frac{604}{729}$.

27. a) Sejam *U* o universo das 160 pessoas entrevistadas e A, B e C os conjuntos das pessoas que usam as marcas A, B e C de sabonete, respectivamente. Indicando por *x* o número de pessoas que usam as três marcas, esquematizamos:



Assim, temos:

$$58 - (30 - x) + 16 - x + x + 14 - x + 66 - (36 - x) + 20 - x + 69 - (34 - x) + 17 = 160$$

$$\therefore x = 0$$

Logo, o evento $A \cap B \cap C$ é vazio, ou seja, o evento é impossível. Portanto, $P(A \cap B \cap C) = 0$.

- **28.** a) O número de triângulos que têm vértices em três dos pontos A, B, C, D, E, F, G e H é dado por $C_{8,3} = 56$.
 - b) O espaço amostral U desse experimento é formado por todos os triângulos que têm vértices em três dos pontos A, B, C, D, E, F, G e H. Pelo item a, temos que n(U) = 56.

Sendo S o evento de U formado pelos triângulos que têm vértices em três dos pontos A, B, C e D, temos $n(S) = C_{4,3} = 4$.

Assim, concluímos que: P(S) =
$$\frac{4}{56} = \frac{1}{14}$$

 c) Sendo T o evento de U formado pelos triângulos contidos em qualquer face do cubo, temos

$$n(T) = 6 \cdot C_{4,3} = 24$$
. Logo: $P(T) = \frac{24}{56} = \frac{3}{7}$

- d) O complementar do evento T, citado no item c, é o evento \overline{T} formado pelos triângulos que têm pontos interiores ao cubo. Logo: $P(\overline{T}) = 1 \frac{3}{7} = \frac{4}{7}$
- **29.** $E = \{1, 2, 3, ..., 30\}, n(E) = 30$

$$A = \{x \in E \mid x \in par\} = \{2, 4, 6, ..., 30\}, n(A) = 15$$

 $B = \{y \in E | y \text{ \'e m\'ultiplo de 6}\} = \{6, 12, 18, 24, 30\}, n(B) = 5$

$$A \cap B = \{6, 12, 18, 24, 30\}, n(A \cap B) = 5$$

$$\therefore$$
 P(A \cup B) = P(A) + P(B) - P(A \cap B) =

$$=\frac{15}{30}+\frac{5}{30}-\frac{5}{30}=\frac{15}{30}=\frac{1}{2}$$

Logo, a probabilidade de o número sorteado ser par ou múltiplo de 6 é $\frac{1}{2}$ ou 50%.

Outro modo

Seja D o conjunto dos números da lista de chamada que são pares ou múltiplos de 6:

 $D = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30\},$ em que n(D) = 15

Assim, a probabilidade pedida é dada por:

$$\frac{15}{30} = \frac{1}{2} = 50\%$$

30. $E = \{x | x \text{ \'e filme da videoteca}\}, n(E) = 200$

$$A = \{y \in E | y \in filme policial\}, n(A) = 60$$

$$B = \{z \in E \mid z \text{ \'e filme europeu}\}, n(B) = 70$$

 $A \cap B = \{w \in E | w \text{ \'e filme policial europeu}\},$ $n(A \cap B) = 10$

$$\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B) =$$

$$=\frac{60}{200}+\frac{70}{200}-\frac{10}{200}=\frac{120}{200}=\frac{3}{5}$$

Logo, a probabilidade de o filme escolhido ser policial ou europeu é $\frac{3}{5}$ ou 60%.

31. Sendo E o espaço amostral desse experimento, temos que n(E) = 30.

Sendo A e B os eventos de E formados pelas bolas brancas e pelas bolas de número par, respectivamente, temos que n(A) = 15, n(B) = 14, $n(A \cup B) = 22$ e $n(A \cap B) = 7$. Logo:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow$$

$$\Rightarrow P(A \cup B) = \frac{15}{30} + \frac{14}{30} - \frac{7}{30} = \frac{11}{15}$$

Alternativa d.

Nota: Esse resultado pode ser obtido aplicando-se,

simplesmente, a definição de probabilidade, pois o número de bolas brancas ou com número par que podem ser retiradas é dado por 15 + 5 + 2 = 22;

logo,
$$P = \frac{22}{30} = \frac{11}{15}$$
.

- **32.** Como A e B são mutuamente exclusivos, isto é, $A \cap B = \emptyset$, temos: $P(A \cup B) = P(A) + P(B)$ $\therefore x + 0.81 = x + 0.42 + 2x + 0.21 \Rightarrow x = 0.09$ Alternativa c.
- 33. No lançamento de dois dados, o espaço amostral E é o conjunto:

$$E = \begin{cases} (1, 1), (1, 2), (1, 3), ..., (1, 6) \\ (2, 1), (2, 2), (2, 3), ..., (2, 6) \\ (3, 1), (3, 2), (3, 3), ..., (3, 6) \\ \vdots & \vdots & \vdots \\ (6, 1), (6, 2), (6, 3), ..., (6, 6) \end{cases}, \text{ em que } n(E) = 36$$

Sendo A o evento formado pelos pares ordenados (x, y) de E, com x + y = 7, temos:

A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}; n(A) = 6. Sendo B o evento formado pelos pares ordenados (x, y) de E, com x + y = 9, temos:

 $B = \{(3, 6), (4, 5), (5, 4), (6, 3)\}; n(B) = 4$

Como A e B são mutuamente exclusivos, isto é, A \cap B = \varnothing , concluímos:

$$P(A \cup B) = P(A) + P(B) = \frac{6}{36} + \frac{4}{36} = \frac{10}{36} = \frac{5}{18}$$

Alternativa d.

Nota: Esse resultado pode ser obtido aplicando-se,

simplesmente, a definição de probabilidade, pois o evento C formado pelos pares ordenados (x, y) de E em que x + y = 7 ou x + y = 9 é $C = \{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1), (3, 6), (4, 5), (5, 4), (6, 3)\}, em$

que n(C) = 10. Logo, P(C) =
$$\frac{10}{36} = \frac{5}{18}$$
.

34. Sendo E o espaço amostral, A o evento formado pelos carros com freio ABS e B o evento formado pelos carros com direção hidráulica, temos:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow$$

$$\Rightarrow \frac{5}{6} = \frac{5}{8} + \frac{2}{3} - P(A \cap B)$$

$$\therefore P(A \cap B) = \frac{11}{24}$$

Logo, a probabilidade de que o automóvel escolhido tenha freio ABS e direção hidráulica é $\frac{11}{24}$.

35. Sendo E o espaço amostral das pessoas entrevistadas, consideremos os eventos:

 $A = \{x \in E \mid x \text{ \'e leitor do jornal } A\} \text{ e } B = \{y \in E \mid y \text{ \'e leitor do jornal } B\}.$

Assim, $P(A \cup B) = 1$, pois cada uma das pessoas entrevistadas é leitora de pelo menos um dos jornais A ou B. Devemos calcular $P(A \cap B)$, o que pode ser feito da seguinte maneira:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow$$

⇒ $1 = \frac{7}{10} + \frac{5}{8} - P(A \cap B)$
∴ $P(A \cap B) = \frac{7}{10} + \frac{5}{8} - 1 = \frac{13}{40}$

36.
$$P(B/A) = \frac{n(A \cap B)}{n(A)} = \frac{30}{120} = \frac{1}{4}$$

37.
$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{5}{8}}{\frac{3}{4}} = \frac{5}{6}$$

38. a)

	Psiquiatras	Psicólogos	Neurologistas
Número de mulheres	18	53	10
Número de homens	30	19	17

- b) $E = \{x \mid x \text{ \'e participante do congresso}\}, n(E) = 147$ $A = \{y \in E \mid y \text{ \'e mulher}\}, n(A) = 81$ $B = \{z \in E \mid z \text{ \'e psiquiatra}\}, n(B) = 48$ $A \cap B = \{w \in E \mid w \text{ \'e mulher e psiquiatra}\}, n(A \cap B) = 18$ $Logo: P(B/A) = \frac{n(A \cap B)}{n(A)} = \frac{18}{81} = \frac{2}{9}$
- **39.** Resumindo em uma tabela os dados do enunciado, temos:

	Medidas fora de especificação	Avarias	Perfeitas
Peça do tipo A	72	48	280
Peça do tipo B	113	67	420

Sendo E o espaço amostral desse experimento, consideremos os seguintes eventos:

 $G = \{x \in E \mid x \text{ \'e peça perfeita}\}, n(G) = 700$ $H = \{y \in E \mid y \text{ \'e peça do tipo B}\}, n(H) = 600$ $G \cap H = \{z \in E \mid z \text{ \'e peça perfeita do tipo B}\},$ $n(G \cap H) = 420$

Assim, temos:

$$n(H/G) = \frac{n(H \cap G)}{n(G)} = \frac{420}{700} = \frac{3}{5}$$

Logo, a probabilidade de que a peça perfeita retirada seja do tipo B é $\frac{3}{5}$.

40. Como sabemos que a soma dos números sorteados é 18, o espaço amostral desse experimento se reduz ao conjunto: U = {(1, 17), (2, 16), (3, 15), ..., (17, 1)}, em que n(U) = 17.

O evento H de U, formado pelos pares ordenados em que os dois números são pares, é $H = \{(2, 16), (4, 14), (6, 12), (8, 10), (10, 8), (12, 6), (14, 4), (16, 2)\},$ em que n(H) = 8.

Assim, concluímos que $P(H) = \frac{8}{17}$.

41.
$$E = \{5, 10, 15, ..., 50\}, n(E) = 10$$

 $A = \{5, 15, 25, 35, 45\}, n(A) = 5$
a) $B = \{25\}, n(B) = 1$
 $A \cap B = \{25\}, n(A \cap B) = 1$
 $\therefore P(B/A) = \frac{n(A \cap B)}{n(A)} = \frac{1}{5}$

Logo, a probabilidade de o número sorteado ser $25 \text{ é } \frac{1}{\pi}$.

b)
$$C = \{20, 25, 30, 35, 40, 45, 50\}, n(C) = 7$$

 $C \cap A = \{25, 35, 45\}, n(C) = 3$
 $P(C/A) = \frac{n(C \cap A)}{n(A)} = \frac{3}{5}$

Logo, a probabilidade de o número sorteado ser maior que 17 é $\frac{3}{5}$.

c)
$$D = \{15, 30, 45\}, n(D) = 3$$

 $D \cap A = \{15, 45\}, n(D \cap A) = 2$
 $\therefore P(D/A) = \frac{n(D \cap A)}{n(A)} = \frac{2}{5}$

Logo, a probabilidade de o número sorteado ser múltiplo de 3 é $\frac{2}{5}$.

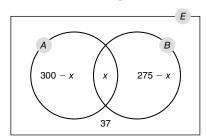
42. Indicando por A_i a camisa azul de número i e por V_i a camisa vermelha de número i, temos o espaço amostral: $E = \{A_1, A_2, A_3, A_4, A_5, A_6, V_1, V_2, V_3, V_4, V_5, V_6\},$ n(E) = 12 Sejam:

 $C = \{x \in E \mid x \text{ \'e camisa de n\'umero par}\}, \ n(C) = 6$ $D = \{y \in E \mid y \text{ \'e camisa azul}\}, \ n(D) = 6$ $C \cap D = \{z \in E \mid z \text{ \'e camisa azul de n\'umero par}\}, \ n(C \cap D) = 3$

:.
$$P(D/C) = \frac{n(D \cap C)}{n(C)} = \frac{3}{6} = \frac{1}{2}$$

Logo, a probabilidade de a camisa sorteada pertencer à equipe azul é $\frac{1}{2}$.

43. Sejam E o conjunto das pessoas entrevistadas, A o conjunto das pessoas que já consumiram o produto A, e B o conjunto das pessoas que já consumiram o produto B. Indicando por x o número de pessoas que já consumiram os dois produtos, temos:



$$300 - x + x + 275 - x + 37 = 400 \Rightarrow x = 212$$

Assim: $n(A) = 300 e n(A \cap B) = 212$

$$\therefore P(B/A) = \frac{n(B \cap A)}{n(A)} = \frac{212}{300} = \frac{53}{75}$$

Logo, a probabilidade de a pessoa escolhida também ter consumido o produto B é $\frac{53}{75}$.

44. a) Como sabemos que se obteve 6 pontos no primeiro dado, o espaço amostral desse experimento se reduz ao conjunto U= {(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}, em que n(U) = 6. Assim, temos:

O evento A de U formado pelos pares ordenados em que o segundo número é 6 é o conjunto A = {(6, 6)}, em que n(A) = 1.

Assim, concluímos que:
$$P(A) = \frac{n(A)}{n(U)} = \frac{1}{6}$$

 b) Como sabemos que se obteve um número par de pontos no primeiro lançamento, o espaço amostral desse experimento se reduz ao conjunto:

$$V = \begin{cases} (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6) \\ (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6) \\ (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) \end{cases}$$
em que n(V) = 18

O evento B de V formado pelos pares ordenados em que o segundo número é 6 é o conjunto $B = \{(2, 6), (4, 6), (6, 6)\}, em que n(B) = 3.$

Assim, concluímos que: P(B) =
$$\frac{n(B)}{n(V)} = \frac{3}{18} = \frac{1}{6}$$

c) Como sabemos que se obteve uma face com menos de 5 pontos no primeiro lançamento, o espaço amostral desse experimento se reduz ao conjunto:

$$S = \begin{cases} (1, 1) & (1, 2) & (1, 3) & (1, 4) & (1, 5) & (1, 6) \\ (2, 1) & (2, 2) & (2, 3) & (2, 4) & (2, 5) & (2, 6) \\ (3, 1) & (3, 2) & (3, 3) & (3, 4) & (3, 5) & (3, 6) \\ (4, 1) & (4, 2) & (4, 3) & (4, 4) & (4, 5) & (4, 6) \end{cases}$$

em que n(S) = 24

O evento C de S formado pelos pares ordenados em que o segundo número é 6 é o conjunto $B = \{(1, 6), (2, 6), (3, 6), (4, 6)\}$, em que n(C) = 4.

Assim, concluímos que: P(C) =
$$\frac{n(C)}{n(S)} = \frac{4}{24} = \frac{1}{6}$$

d) Vamos calcular a probabilidade de se obter 6 pontos no segundo lançamento, sabendo que se obteve um número k de pontos no primeiro lançamento, para qualquer valor natural k, com $1 \le k \le 6$.

Como sabemos que se obteve uma face com menos de k pontos no primeiro lançamento, o espaço amostral desse experimento se reduz ao conjunto:

$$T = \{(k, 1), (k, 2), (k, 3), (k, 4), (k, 5), (k, 6)\}, \text{ em que } n(T) = 6$$

O evento D formado pelos pares ordenados de T em que o segundo número é 6 é o conjunto:

$$D = \{(k, 6)\}, \text{ em que } n(D) = 1.$$

Assim, concluímos que:
$$P(D) = \frac{n(D)}{n(T)} = \frac{1}{6}$$

Outro modo

Vamos calcular a probabilidade de se obter 6 no segundo lançamento de dois dados.

O espaço amostral E é o conjunto:

$$E = \begin{cases} (1, 1) & (1, 2) & (1, 3) \dots & (1, 6) \\ (2, 1) & (2, 2) & (2, 3) \dots & (2, 6) \\ (3, 1) & (3, 2) & (3, 3) \dots & (3, 6) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (6, 1) & (6, 2) & (6, 3) \dots & (6, 6) \end{cases}, \text{ em que n(E)} = 36$$

O evento F formado pelos pares ordenados de E com o segundo elemento igual a 6 é:

$$F = \{(1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6)\}, \text{ em que } n(F) = 6$$

Assim, temos:
$$P(F) = \frac{n(F)}{n(E)} = \frac{6}{36} = \frac{1}{6}$$

Logo, a probabilidade de se obter 6 no segundo lançamento é $\frac{1}{6}$, independentemente do que ocorre no primeiro lançamento.

45.
$$P(A) = \frac{3}{5} e P(B) = \frac{2}{3}$$

Como os eventos são independentes, temos: P(B/A) = P(B) e P(A/B) = P(A)

a)
$$P(A/B) = P(A) = \frac{3}{5}$$

b)
$$P(B/A) = P(B) = \frac{2}{3}$$

c)
$$P(A/B) = \frac{P(A \cap B)}{P(B)} \Rightarrow \frac{3}{5} = \frac{P(A \cap B)}{\frac{2}{3}}$$

$$\therefore$$
 P(A \cap B) = $\frac{2}{5}$

d)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) =$$

= $\frac{3}{5} + \frac{2}{3} - \frac{2}{5} = \frac{9 + 10 - 6}{15} = \frac{13}{15}$

46. a)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow$$

⇒ 0,7 = 0,5 + 0,4 - P(A ∩ B)
∴ $P(A \cap B) = 0,2$

b)
$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{0.2}{0.4} = 0.5$$

- c) Como $P(A \cup B) \neq P(A) + P(B)$, concluímos que A e B não são mutuamente exclusivos.
- d) Como P(A/B) = P(A), concluímos que A e B são eventos independentes.
- 47. Pelo enunciado, temos o seguinte espaço amostral:

$$a) \ \ E = \begin{cases} (1, \ 1) \ (1, \ 2) \ (1, \ 3) \ (1, \ 4) \ (1, \ 5) \ (1, \ 6) \\ (2, \ 1) \ (2, \ 2) \ (2, \ 3) \ (2, \ 4) \ (2, \ 5) \ (2, \ 6) \\ (3, \ 1) \ (3, \ 2) \ (3, \ 3) \ (3, \ 4) \ (3, \ 5) \ (3, \ 6) \\ (4, \ 1) \ (4, \ 2) \ (4, \ 3) \ (4, \ 4) \ (4, \ 5) \ (4, \ 6) \\ (5, \ 1) \ (5, \ 2) \ (5, \ 3) \ (5, \ 4) \ (5, \ 5) \ (5, \ 6) \\ (6, \ 1) \ (6, \ 2) \ (6, \ 3) \ (6, \ 4) \ (6, \ 5) \ (6, \ 6) \end{cases}$$

em que
$$n(E) = 6 \cdot 6 = 36$$

b) A = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}

$$P(A) = \frac{6}{2c} = \frac{1}{c}$$

c)
$$B = \{(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2)\}$$

 $P(B) = \frac{6}{36} = \frac{1}{6}$

d)
$$P(B/A) = \frac{n(A \cap B)}{n(A)} = \frac{1}{6}$$

e)
$$P(A/B) = \frac{1}{6} = P(A)$$

Logo, A e B são eventos independentes.

48. a) $E = \{(x, y) | x \in y \text{ são os números das bolas da urna} \}$

1ª bola	2ª bola
х	у
4	3

Assim, pelo princípio fundamental da contagem, temos: $n(E) = 4 \cdot 3 = 12$

b)
$$A = \{(3, 1), (3, 2), (3, 4)\}$$

$$P(A) = \frac{3}{12} = \frac{1}{4}$$

c)
$$B = \{(1, 2), (3, 2), (4, 2)\}$$

$$P(B) = \frac{3}{12} = \frac{1}{4}$$

d)
$$P(B/A) = \frac{n(A \cap B)}{n(A)} = \frac{1}{3}$$

e)
$$P(B/A) = \frac{1}{3} \neq \frac{1}{4} = P(B)$$

Logo, os eventos A e B não são independentes.

49. Indicando por V, P e A as cores verde, preta e azul, respectivamente, temos:

 a) A probabilidade P de sair VPA, nessa ordem, é dada por:

$$P = \frac{3}{10} \cdot \frac{2}{10} \cdot \frac{5}{10} = \frac{3}{100}$$

 b) Há seis sequências diferentes para as cores: VPA, VAP, APV, AVP, PAV e PVA.

Todas as sequências têm a mesma probabilidade de ocorrer. Assim, a probabilidade P de saírem três bolas de cores diferentes é dada por:

$$P = 6 \cdot \frac{3}{10} \cdot \frac{2}{10} \cdot \frac{5}{10} = \frac{9}{50}$$

c) A probabilidade P de sair AAA é dada por

$$P = \frac{5}{10} \cdot \frac{5}{10} \cdot \frac{5}{10} = \frac{125}{1,000} = \frac{1}{8}$$

50. Indicando por V, P e A as cores verde, preta e azul, respectivamente, temos:

a) A probabilidade P de sair VPA, nessa ordem, é dada por:

$$P = \frac{3}{10} \cdot \frac{2}{9} \cdot \frac{5}{8} = \frac{1}{24}$$

b) Há seis sequências diferentes de cores:

VPA, VAP, APV, AVP, PAV e PVA.

Todas as sequências têm a mesma probabilidade de ocorrer. Assim, a probabilidade P de saírem três bolas de cores diferentes é dada por:

$$P = 6 \cdot \frac{3}{10} \cdot \frac{2}{9} \cdot \frac{5}{8} = \frac{1}{4}$$

c) A probabilidade P de sair AAA é dada por:

$$P = \frac{5}{10} \cdot \frac{4}{9} \cdot \frac{3}{8} = \frac{1}{12}$$

51. Indicando por A e V as cores azul e verde, respectivamente, temos:

a) Há cinco sequências possíveis de cores: AAAAV, AAAVA, AAVAA, AVAAA e VAAAA, todas com a mesma probabilidade de ocorrer. Assim, a probabilidade P de saírem 4 canetas de tinta azul e 1 de tinta vermelha é dada por:

$$P = 5 \cdot \frac{5}{9} \cdot \frac{4}{8} \cdot \frac{3}{7} \cdot \frac{2}{6} \cdot \frac{4}{5} = \frac{10}{63}$$

b) O número de permutações das letras A, A, A, V, V é dado por:

$$P_5^{(3,2)} = \frac{5!}{3! \cdot 2!} = 10$$

Logo, há 10 sequências possíveis de cores, todas com a mesma probabilidade de ocorrer. Assim, a probabilidade P de saírem 3 canetas de tinta azul e 2 de tinta vermelha é dada por:

$$P = 10 \cdot \frac{5}{9} \cdot \frac{4}{8} \cdot \frac{3}{7} \cdot \frac{4}{6} \cdot \frac{3}{5} = \frac{10}{21}$$

c) A probabilidade P de ocorrer AAAAA é dada por:

$$P = \frac{5}{9} \cdot \frac{4}{8} \cdot \frac{3}{7} \cdot \frac{2}{6} \cdot \frac{1}{5} = \frac{1}{126}$$

d) Os eventos F e G determinados por "pelo menos uma de tinta vermelha" e "todas de tinta azul", respectivamente, são complementares; logo:

$$P(F) = 1 - P(G) = 1 - \frac{1}{126} = \frac{125}{126}$$

52. Há seis sequências possíveis contendo 5 caras e 1 coroa: cccck, ccckc, cckcc, ckccc e kccccc, todas com a mesma probabilidade de ocorrer. Logo, a probabilidade P de saírem 5 caras e 1 coroa é dada por:

$$P = 6 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{6}{64} = \frac{3}{32}$$

- 53. A probabilidade de se retirarem as pérolas simultaneamente é igual à probabilidade de se retirarem uma a uma, sucessivamente, e sem reposição. Indicando por V e F as qualidades verdadeira e falsa, respectivamente, temos:
 - a) Há quatro sequências possíveis contendo 3 verdadeiras e 1 falsa: VVVF, VVFV, VFVV e FVVV, todas com a mesma probabilidade de ocorrer. Logo, a probabilidade P de se obterem 3 pérolas verdadeiras e 1 falsa é dada por:

$$P = 4 \cdot \frac{6}{11} \cdot \frac{5}{10} \cdot \frac{4}{9} \cdot \frac{5}{8} = \frac{10}{33}$$

b) A probabilidade P de se obter VVVV é dada por:

$$P = \frac{6}{11} \cdot \frac{5}{10} \cdot \frac{4}{9} \cdot \frac{3}{8} = \frac{1}{22}$$

c) Os eventos G e H determinados por "pelo menos uma falsa" e "todas verdadeiras", respectivamente, são complementares; logo:

$$P(G) = 1 - P(H) = 1 - \frac{1}{22} = \frac{21}{22}$$

54. O espaço amostral E desse experimento é formado por todas as comissões de 4 pessoas que podem ser formadas pelas 5 garotas e os 3 rapazes; logo, $n(E) = C_{8,4} = 70.$

Sendo A o evento de E formado pelas comissões de 3 garotas e 1 rapaz, temos: $n(A) = C_{5,3} \cdot C_{3,1} = 30$ Assim, pela definição de probabilidade, concluímos

que:
$$P(A) = \frac{30}{70} = \frac{3}{7}$$

Outro modo

Indicando por G cada garota e por R cada rapaz, vamos fazer a escolha das pessoas uma a uma e sem reposição (não se esqueça de que, ao retirar as pessoas uma a uma, devemos considerar a ordem de retirada). Assim, nos interessam as sequências formadas por três letras G e uma letra R, ou seja:

> **GGGR GGRG**

GRGG

RGGG

Qualquer uma dessas sequências tem a mesma probabilidade de ocorrer. Assim, calculamos a probabilidade de uma delas, por exemplo, da primeira, e multiplicamos o resultado por 4. Portanto, a probabilidade P pedida é dada por:

$$P = 4 \cdot \frac{5}{8} \cdot \frac{4}{7} \cdot \frac{3}{6} \cdot \frac{3}{5} = \frac{3}{7}$$

- 55. A probabilidade de se retirarem as cartas simultaneamente é igual à probabilidade de retirá-las uma a uma, sucessivamente, e sem reposição. Indicando por C, P e E os naipes de copas, paus e espadas, respectivamente, temos:
 - a) A probabilidade P de sair CCC é dada por:

$$P = \frac{4}{9} \cdot \frac{3}{8} \cdot \frac{2}{7} = \frac{1}{21}$$

b) Há três sequências possíveis de naipes: CCP, CPC e PCC, todas com a mesma probabilidade de ocorrer. Assim, a probabilidade P de ocorrer 2 cartas de copas e 1 de paus é dada por:

$$P = 3 \cdot \frac{4}{9} \cdot \frac{3}{8} \cdot \frac{3}{7} = \frac{3}{14}$$

c) O número de permutações das letras C, P e E é dado por:

$$P_3 = 3! = 6$$

Assim, há seis sequências possíveis de naipes diferentes, todas com a mesma probabilidade de ocorrer. Logo, a probabilidade P de sair três naipes diferentes é dada por:

$$P = 6 \cdot \frac{4}{9} \cdot \frac{3}{8} \cdot \frac{2}{7} = \frac{2}{7}$$

56. a) O espaço amostral E desse experimento é formado por todos os conjuntos constituídos de dois vértices distintos do octógono; logo, $n(E) = C_{8,2} = 28.$

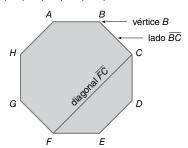
Sendo A o evento de E formado pelos conjuntos de dois vértices que sejam extremos de um mesmo lado, temos n(A) = 8.

Assim, pela definição de probabilidade, con-

cluímos que:
$$P(A) = \frac{8}{28} = \frac{2}{7}$$

Outro modo

Vamos fazer a escolha dos vértices um a um e sem reposição (não se esqueça de que, ao retirar os vértices um a um, devemos considerar a ordem de retirada). Assim, nos interessam as dezesseis sequências: AB, BA, BC, CB, CD, DC, DE, ED, EF, FE, FG, GF, GH, HG, HA e AH.



Qualquer uma dessas sequências tem a mesma probabilidade de ocorrer. Assim, calculamos a probabilidade de uma delas, por exemplo, da primeira, e multiplicamos o resultado por 16. Portanto, a probabilidade P pedida é dada por:

$$P = 16 \cdot \frac{1}{8} \cdot \frac{1}{7} = \frac{2}{7}$$

Outro modo

Escolhido um vértice qualquer, a probabilidade de escolher o segundo é a probabilidade P procurada, ou seja, $P = \frac{2}{7}$.

b) O evento formado pelos pares de vértices que são extremos de uma diagonal é o complementar do evento formado pelos pares de vértices que são extremos de um lado. Logo, a probabilidade P pedida é dada por:

$$P = 1 - \frac{2}{7} = \frac{5}{7}$$

57. a) O espaço amostral E desse experimento é formado por todos os conjuntos de dois pés de tênis; logo, $n(E) = C_{10,2} = 45$.

Sendo A o evento de E formado por 2 pés de tênis, um direito e um esquerdo, temos que $n(A) = 5 \cdot 5 = 25$.

Assim, concluímos que a probabilidade P pedida é dada por:

$$P = \frac{25}{45} = \frac{5}{9}$$

Outro modo

Indicando por D um pé direito de tênis e por E um pé esquerdo, vamos raciocinar como se a retirada dos dois pés de tênis fosse feita sucessivamente e sem reposição (não se esqueça de que, ao retirar os tênis um a um, devemos considerar a ordem de retirada). Assim, nos interessam as sequências: DE e ED.

Qualquer uma dessas sequências tem a mesma probabilidade de ocorrer. Assim, calculamos a probabilidade de uma delas, por exemplo, da primeira, e multiplicamos o resultado por 2. Portanto, a probabilidade P pedida é dada por:

$$P=2\cdot\frac{5}{10}\cdot\frac{5}{9}=\frac{5}{9}$$

b) O espaço amostral E desse experimento é formado por todos os conjuntos de dois pés de tênis; logo, $n(E) = C_{10,2} = 45$.

Sendo B o evento de E formado pelos conjuntos de dois pés direitos de tênis, temos que $n(B) = C_{5,\,\,2} = 10$.

Assim, concluímos que a probabilidade P pedida é dada por:

$$P = \frac{10}{45} = \frac{2}{9}$$

Outro modo

Como há uma única sequência formada por duas letras D, ou seja, DD, temos que a probabilida-

de P pedida é dada por:
$$P = \frac{5}{10} \cdot \frac{4}{9} = \frac{2}{9}$$

c) O espaço amostral E desse experimento é formado por todos os conjuntos de dois pés de tênis; logo, $n(E) = C_{10,2} = 45$.

Sendo S o evento de E formado pelo conjunto dos dois pés do tênis vermelho, temos que n(S)=1. Assim, concluímos que a probabilidade P pedida é dada por:

$$P = \frac{1}{45}$$

Outro modo

Vamos supor que a escolha dos pés de tênis tenha sido feita um a um e sem reposição (não se esqueça de que, ao retirar os tênis um a um, devemos considerar a ordem de retirada). Indicando por V cada pé do tênis vermelho, nos interessa apenas a sequência VV, cuja probabilidade

P é dada por: P =
$$\frac{2}{10} \cdot \frac{1}{9} = \frac{1}{45}$$

d) O espaço amostral E desse experimento é formado por todos os conjuntos de dois pés de tênis; logo, $n(E) = C_{10,2} = 45$.

Sendo H o evento de E formado pelos conjuntos de dois pés do mesmo par de tênis, temos que n(H) = 5.

Assim, concluímos que a probabilidade P pedida é dada por:

$$P = \frac{5}{45} = \frac{1}{9}$$

Outro modo

Vamos supor que os pés de tênis tenham sido escolhidos um a um e sem reposição (não se esqueça de que, ao retirar os tênis um a um, devemos considerar a ordem de retirada).

Indicando os pares corretos de tênis por: A_1 e A_2 ; B_1 e B_2 ; C_1 e C_2 ; D_1 e D_2 ; E_1 e E_2 , temos que calcular a probabilidade P de ocorrer uma das 10 sequências: A_1A_2 , A_2A_1 , B_1B_2 , B_2B_1 , ..., E_1E_2 , E_2E_1 .

Qualquer uma dessas sequências tem a mesma probabilidade de ocorrer. Assim, calculamos a probabilidade de uma delas, por exemplo, da primeira, e multiplicamos o resultado por 10. Portanto, a probabilidade P pedida é dada por:

$$P = 10 \cdot \frac{1}{10} \cdot \frac{1}{9} = \frac{1}{9}$$

Outro modo

Escolhido um pé qualquer de tênis, a probabilidade de o segundo pé escolhido fazer par correto com o primeiro é a probabilidade P procurada,

isto é,
$$P = \frac{1}{9}$$
.

58. A probabilidade P de nenhuma das sementes germinar é dada por:

$$P = 0.4 \cdot 0.4 \cdot 0.4 = 0.064$$

Os eventos G e N determinados, respectivamente, por "pelo menos uma semente germinar" e "nenhuma semente germinar" são complementares; logo:

$$P(G) = 1 - P(N) = 1 - 0,064 = 0,936 = 93,6\%$$

Alternativa **d**.

59. Indicando por $C \in \overline{C}$ a cura e a não cura, respectivamente, temos:

 a) Devemos calcular a probabilidade P de ocorrer CC, dada por:

$$P = 0.9 \cdot 0.9 = 0.81 = 81\%$$

Logo, a probabilidade de os dois serem curados é 81%.

b) Devemos calcular a probabilidade P de ocorrer \overline{CC} , dada por:

$$P = 0.1 \cdot 0.1 = 0.01 = 1\%$$

Logo, a probabilidade de nenhum deles ser curado é 1%.

c) Devemos calcular a probabilidade P de ocorrer CC, dada por:

$$P = 0.9 \cdot 0.1 = 0.09 = 9\%$$

Logo, a probabilidade de apenas João ser curado é 9%.

d) Devemos calcular a probabilidade P de ocorrer CC ou CC, dada por:

$$P = 2 \cdot 0.09 = 0.18 = 18\%$$

Logo, a probabilidade de apenas um deles ser curado é 18%.

Exercícios complementares

Exercícios técnicos

1. Como A e B são mutuamente exclusivos, isto é, $A \cap B = \emptyset$, temos que: $P(A \cup B) = P(A) + P(B)$; e, como $A \cup B = E$, temos $P(A \cup B) = 1$. Logo:

$$\begin{cases} P(A \cup B) = P(A) + P(B) \\ P(A \cup B) = 1 \\ P(A) = 3P(B) \end{cases} \Rightarrow 1 = 3P(B) + P(B)$$

:.
$$P(B) = \frac{1}{4} = 0.25 = 25\% e P(A) = \frac{3}{4} = 0.75 = 75\%$$

Alternativa e.

2.
$$P(B/A) = \frac{P(A \cap B)}{P(A)} \Rightarrow \frac{4}{n-2} = \frac{\frac{1}{2}}{P(A)}$$

$$\therefore P(A) = \frac{n-2}{8} \Rightarrow 0 \leqslant \frac{n-2}{8} \leqslant 1$$

$$\therefore \ 0 \leqslant n-2 \leqslant 8 \ \Rightarrow \ 2 \leqslant n \leqslant 10 \quad \text{(I)}$$

E, ainda:

$$0 \le P(B/A) \le 1 \Rightarrow 0 \le \frac{4}{n-2} \le 1$$

$$\therefore \frac{n-2}{4} \geqslant 1 \Rightarrow n \geqslant 6 \quad \text{(II)}$$

Logo, de (I) e (II): $6 \le n \le 10$. Assim:

- a) O maior valor possível de n é 10.
- b) O menor valor possível de n é 6.
- 3. a) Os eventos A e B são mutuamente exclusivos se, e somente se, $A \cap B = \emptyset$. Assim, temos: $P(A \cup B) = P(A) + P(B) \Rightarrow k = 0.25 + 0.08$
 - ∴ k = 0,33
 b) Os eventos A e B são independentes se, e somente se, P(A/B)= P(A).

Para o cálculo de P(A/B) necessitamos de P(A \cap B), que é obtido da seguinte maneira:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow$$

$$\Rightarrow$$
 k = 0,25 + 0,08 - P(A \cap B)

$$\therefore$$
 P(A \cap B) = 0,33 - k

Concluímos, então, que

$$P(A/B) = P(A) \Rightarrow \frac{P(A \cap B)}{P(B)} = P(A)$$

$$\therefore \frac{0,33-k}{0.08} = 0,25 \implies k = 0,31$$

4. Os eventos A e B são independentes se, e somente se, P(A/B) = P(A). Assim, temos:

$$P(A/B) = P(A) \Rightarrow \frac{P(A \cap B)}{P(B)} = P(A)$$

$$\therefore P(A \cap B) = P(A) \cdot P(B)$$

Alternativa **e**.

Exercícios contextualizados

5. O espaço amostral E é o conjunto dos 27 cubinhos.

a) $A = \{x \in E | x \in \text{cubinho com uma única face pintada}\}$, n(A) = 6

$$\therefore P(A) = \frac{6}{27} = \frac{2}{9}$$

b) $B = \{y \in E | y \in Cubinho com exatamente duas faces pintadas\}, n(B) = 12$

$$\therefore P(B) = \frac{12}{27} = \frac{4}{9}$$

c) $C = \{z \in E \mid z \in \text{cubinho com nenhuma face pintada}\}, n(C) = 1$

$$\therefore P(C) = \frac{1}{27}$$

6. Sendo k o número de peras da caixa, temos que o número de maçãs é k + 6. Assim:

$$k + k + 6 = 40 \implies k = 17$$

Logo:

 $E = \{x | x \text{ \'e fruta da caixa}\}, n(E) = 40$

$$A = \{y \in E | y \in pera\}, n(A) = 17$$

Concluímos, então, que:

$$P(A) = \frac{n(A)}{n(E)} = \frac{17}{40}$$

7. $E = \{x \mid x \text{ \'e peixaria pesquisada}\}, n(E) = 5$ $A = \{y \in E \mid y \text{ vende peixe na temperatura ideal}\},$ n(A) = 1n(A) = 1

Alternativa **d**

8. $E = \{x \mid x \text{ \'e filho de ex-aluna}\},\ n(E) = 7 \cdot 1 + 6 \cdot 2 + 2 \cdot 3 = 25$ $A = \{y \in E \mid y \text{ \'e filho \'unico}\}, n(A) = 7$

$$\therefore P(A) = \frac{n(A)}{n(E)} = \frac{7}{25}$$

Alternativa e

9. O espaço amostral E é o conjunto de todas as pessoas atendidas nesse posto, e o evento A que esperamos ocorrer é formado pelas pessoas portadoras de doenças crônicas; assim, temos que n(E) = 200 e n(A) = 22. Logo:

$$P(A) = \frac{n(A)}{n(E)} = \frac{22}{200} = \frac{11}{100} = 11\%$$

Alternativa c

10. O gráfico mostra que, em 2050, os países desenvolvidos terão 461 milhões de habitantes com 60 anos ou mais. Essa população corresponde a um percentual entre 30% e 35% do total de habitantes desses países. A alternativa que mais se aproxima desses percentuais é $\frac{8}{25}$, que equivale a 32%.

Alternativa **c**.

L. Nomeando os ímpares por Le

11. Nomeando os ímpares por I e os pares por P, temos as seguintes sequências possíveis: PPP, PPI, PIP, IPP, PII, IIP, III, IIP, III.

Como o produto dos três termos só será ímpar quando todos forem ímpares, a probabilidade de isso acontecer é $\frac{1}{8}$.

12. a) O espaço amostral E desse experimento é o conjunto:

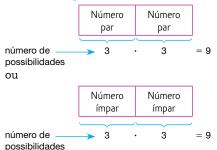
$$E = \begin{cases} (1,1) & (1,2) & (1,3) & ... & (1,6) \\ (2,1) & (2,2) & (2,3) & ... & (2,6) \\ (3,1) & (3,2) & (3,3) & ... & (3,6) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (6,1) & (6,2) & (6,3) & ... & (6,6) \end{cases}$$

em que n(E) = 36

Sejam A e B eventos de E tais que:

- o evento A é formado pelos pares ordenados cuja soma dos dois números é par;
- o evento B é formado pelos pares ordenados cuja soma dos números é ímpar.

Para calcular n(A) pelo princípio fundamental da contagem, lembramos que a soma de dois números naturais é par se ambos forem pares ou ambos ímpares. Assim, temos:



Logo,
$$n(A) = 9 + 9 = 18$$
.

Se há exatamente 18 pares ordenados de E em que a soma dos números é par, conclui--se que nos demais 18 pares ordenados de E, a soma dos números é ímpar. Assim, temos que n(B) = 36 - 18 = 18 e, portanto, a probabilidade de Lúcia ganhar é dada por: P(B) = $\frac{18}{36} = \frac{1}{2}$.

- b) O evento A citado no exemplo anterior é formado pelos pares ordenados cuja soma dos dois números é par, logo, a probabilidade de Paulo ganhar é dada por: $P(A) = \frac{18}{36} = \frac{1}{2}$
 - Portanto, o argumento de Lúcia está incorreto, pois os dois adversários têm a mesma probabilidade de ganhar.
- **13.** $E = \{x | x \text{ \'e paciente com problemas respiratórios}$ causados pelas queimadas $\}$, n(E) = 200

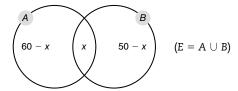
A = {y \in E | y \in \text{criança}}, n(A) = 150
\therefore P(A) =
$$\frac{n(A)}{n(E)} = \frac{150}{200} = 75\%$$

- 14. O menor intervalo de tempo entre dois ônibus é 10 min, e o maior é 20 min. Assim, nesse universo de tempo, a probabilidade de Carlos chegar ao maior desses intervalos é $\frac{20}{30} = \frac{2}{3}$, e a probabilidade de ele chegar ao menor é $\frac{10}{30} = \frac{1}{3}$. Portanto, a probabilidade de Carlos viajar em um ônibus da empresa ANDABEM é o dobro da probabilidade de ele viajar na empresa BOMPASSEIO. Alternativa d.
- 15. Sendo k o número de andorinhas do bando, apenas uma será capturada, e k-1 andorinhas vão escapar. Assim, temos: $\frac{k-1}{k} = 0.96 \implies k = 25$ Logo, há 25 andorinhas no bando.
- 16. O espaço amostral E desse experimento é formado por todos os usuários consultados; logo, n(E) = 1.000.

Sendo H o evento de E cujos elementos são os usuários que não pretendem trocar seu modelo, temos que n(H) é a soma dos elementos que compõem a diagonal principal da matriz A, isto é, n(H) = 50 + 100 + 200 = 350.

Assim, concluímos que: $P(H) = \frac{350}{1.000} = 0.35 = 35\%$ Alternativa b.

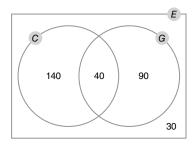
17. Sejam E o conjunto de todos os clientes entrevistados, A o conjunto dos clientes com rendimento mensal superior a R\$ 2.000,00 e B o conjunto dos clientes com rendimento mensal inferior a R\$ 2.800,00. Indicando por x o número de clientes com rendimento mensal superior a R\$ 2.000,00 e inferior a R\$ 2.800,00, temos:



60 - x' + x' + 50 - x = 80 ⇒ x = 30 = n(A ∩ B)
∴ P(A ∩ B) =
$$\frac{n(A \cap B)}{n(E)} = \frac{30}{80} = \frac{3}{8}$$

Logo, a probabilidade de sortear um cliente com rendimento mensal entre R\$ 2.000,00 e R\$ 2.800,00 $\acute{e}\frac{3}{8}$

18. Sendo E o espaço amostral desse experimento e C e G os eventos formados pelos alunos que tomam os refrigerantes das marcas C e G, respectivamente, esquematizamos:

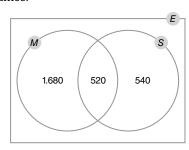


Assim, n(E) = 140 + 40 + 90 + 30 = 300. Concluímos, então, que a probabilidade P de o escolhido tomar refrigerante da marca G, mas não tomar da marca C é dada por: $P = \frac{90}{300} = 0.3 = 30\%$

é dada por: P =
$$\frac{90}{300}$$
 = 0,3 = 30%

Alternativa c.

19. Sendo E o espaço amostral desse experimento e M e S os eventos formados pelos inscritos no nível médio e no nível superior, respectivamente, esquematizamos:



Assim, n(E) = 1.680 + 520 + 540 = 2.740. Concluímos, então, que a probabilidade P de que a pessoa escolhida tenha feito sua inscrição somente no

nível superior é dada por:
$$P = \frac{540}{2.740} = \frac{27}{137}$$

Alternativa c.

20. a) O total de unidades monetárias recebidas por cada hóspede é a soma S dos cem termos da progressão aritmética (1, 2, 3, 4, ..., 100), isto é:

$$S = 1 + 2 + 3 + ... + 100 = \frac{(1 + 100) \cdot 100}{2} = 5.050$$

b) O espaço amostral E desse experimento é formado por todos os conjuntos possíveis de duas fichas; logo, $n(E) = C_{100,2} = 4.950$.

Sendo A o evento formado pelos conjuntos de duas fichas cuja soma \acute{e} 141, temos que os elementos de A são: $\{41, 100\}, \{42, 99\}, \{43, 98\}, ..., \{70, 71\}; logo, n(A) = 30.$

Concluímos, então, que a probabilidade pedida é dada por: P = $\frac{30}{4.950}$ = $\frac{1}{165}$

21. $E = \{\{x, y, z\} | x, y \in z \text{ são dias de } 2^{\frac{n}{2}} \text{ feira a domingo}\}, n(E) = C_{7,3} = \frac{7!}{3! \cdot 4!} = 35$

a) $A = \{\{2^{\underline{a}} \text{ feira, } 5^{\underline{a}} \text{ feira, domingo}\}\}, n(A) = 1$

$$\therefore P(A) = \frac{n(A)}{n(E)} = \frac{1}{35}$$

Logo, a probabilidade pedida é $\frac{1}{35}$.

b) $B = \{\{a, b, c\} \in E \mid a, b \in c \text{ são dias consecutivos}\}, n(B) = 5$

$$P(B) = \frac{n(B)}{n(E)} = \frac{5}{35} = \frac{1}{7}$$

Logo, a probabilidade pedida é $\frac{1}{7}$.

22. $E = \{x | x \text{ \'e reta determinada pelos v\'ertices do cubo}\}$, $n(E) = C_{8,2} = 28$ $B = \{y \in E | y \text{ \'e reta que passa pelo v\'ertice A}\}$, $n(B) = C_{7,1} = 7$

$$\therefore P(B) = \frac{n(B)}{n(E)} = \frac{7}{28} = \frac{1}{4}$$

Logo, a probabilidade de que a reta sorteada passe pelo vértice A é $\frac{1}{4}$.

23. a) O total de maneiras de preencher um cartão com 6 números é dado por:

$$C_{60,6} = \frac{60!}{6! \cdot 54!} = 50.063.860$$

b)
$$P = \frac{1}{50.063.860}$$

24. a) $E = \{x \mid x \in \text{comissão de 4 pessoas escolhidas entre os 4 homens e as 3 mulheres}\}$, $n(E) = C_{7,4} = 35$

b) $A = \{y \in E \mid y \in C_{4,2} \cdot C_{3,2} = 6 \cdot 3 = 18\}$

:.
$$P(A) = \frac{n(A)}{n(E)} = \frac{18}{35}$$

Logo, a probabilidade de a comissão ser formada por 2 homens e 2 mulheres é $\frac{18}{35}$.

25. $E = \{x \mid x \text{ \'e equipe de 5 educadores escolhidos entre os 4 pedagogos e os 5 professores}, <math>n(E) = C_{9,5} = 126$

 $A = \{y \in E \mid y \text{ \'e equipe formada por 3 professores e 2 pedagogos}\}, n(A) = C_{5,3} \cdot C_{4,2} = 10 \cdot 6 = 60$

$$\therefore P(A) = \frac{n(A)}{n(E)} = \frac{60}{126} = \frac{10}{21}$$

Logo, a probabilidade de a equipe escolhida ser formada por 3 professores e 2 pedagogos é $\frac{10}{21}$

26. $E = \{w \mid w \text{ \'e uma sequência de votos dos três diretores}\}$, $n(E) = 2 \cdot 2 \cdot 2 = 8$

 $A = \{z \in E | z \text{ \'e a sequência de três votos para o candidato X}\}, n(A) = 1$

$$\therefore P(A) = \frac{n(A)}{n(E)} = \frac{1}{8}$$

Logo, a probabilidade de X ser eleito com três votos é $\frac{1}{8}$ ou 12,5%.

Alternativa **a**.

27. O número de etiquetas com número par é dado pela soma S dos termos da progressão aritmética (2, 4, 6, ..., 50), isto é:

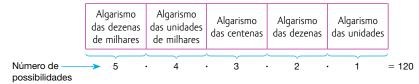
$$S = 2 + 4 + 6 + ... + 50 = \frac{(2 + 50) \cdot 25}{2} = 650$$

O número total de etiquetas é dado pela soma $S_{\scriptscriptstyle T}$ dos termos da progressão aritmética

$$(1, 2, 3, 4, ..., 50)$$
, isto é: $S_T = 1 + 2 + 3 + 4 + ... + 50 = \frac{(1 + 50) \cdot 50}{2} = 1.275$

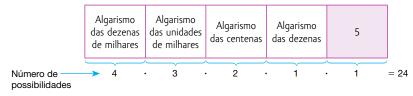
Logo, a probabilidade de retirar um número par é dada por: $\frac{650}{1.275} = \frac{26}{51}$

28. O espaço amostral E desse experimento é formado por todos os números naturais de 5 dígitos distintos formados pelos dígitos 1, 2, 3, 4 e 5:



Logo,
$$n(E) = 120$$
.

Seja A o evento formado pelos números de *E* divisíveis por 15. Para que um número seja divisível por 15, ele deve ser divisível por 3 e por 5. Como todos os números de *E* são divisíveis por 3, pois a soma dos valores absolutos de seus algarismos é 15, que é divisível por 3, basta contarmos aqueles números de *E* que terminam por 5:



Logo,
$$n(E) = 24$$
.

Concluímos, então, que a probabilidade P pedida é dada por: $P = \frac{24}{120} = \frac{1}{5} = 20\%$ Alternativa a.

29. O espaço amostral E desse experimento é formado pelos conjuntos de duas bolas que podem ser retiradas da urna; logo, $n(E) = C_{6,2} = 15$.

O evento A formado pelos conjuntos de duas bolas tal que 4 é o maior número sorteado é:

$$A = \{\{1, 4\}, \{2, 4\}, \{3, 4\}\}, \text{ em que } n(A) = 3$$

Concluímos, então, que: $P(A) = \frac{3}{15} = \frac{1}{5}$

Alternativa c

30. O espaço amostral E desse experimento é formado por todas as sequências de 10 elementos distintos:

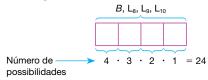


Logo, n(E) = 3.628.800.

Seja A o evento de E formado pelas sequências de livros em que os de Economia estão juntos. Para obter n(A), vamos, inicialmente, calcular o número de sequências em que os livros de Economia podem estar juntos:

Logo, os livros de Economia podem aparecer juntos em 5.040 sequências distintas.

Indicando por B uma dessas sequências, vamos calcular o número de sequências que podem ser formadas por B e pelos livros restantes $L_{\rm g},\,L_{\rm g}$ e $L_{\rm 10},\,$ considerando B um "bloco", isto é, um único elemento da sequência:



Assim, o número de sequências dos 10 livros, que apresentam os livros de Economia juntos, é dado por $5.040 \cdot 24 = 120.960$, ou seja, n(A) = 120.960. Concluímos, então, que:

$$P(A) = \frac{120.960}{3.628.800} = \frac{1}{30}$$

Alternativa c.

- 31. a) Como o número máximo de pontos de um dado é 6, no lançamento de 3 dados, a soma máxima será 18. Logo, a probabilidade de a soma ultrapassar 18 é igual a zero.
 - b) Como o número máximo de pontos de um dado é 6, no lançamento de 3 dados, a soma máxima será 18. Logo, a probabilidade de a soma ser menor que 19 é igual a um.
- **32.** Uma escolha de x pessoas terá duas pessoas do mesmo sexo para $5 < x \le 10$. Assim, o menor valor possível de x deve ser o número natural 6.
- 33. Como há 17 números naturais distintos no intervalo 120 ≤ x ≤ 136, podemos ter, no máximo, 17 caixas com números distintos de tomates. Porém, como há 18 caixas, concluímos que, certamente, pelo menos duas caixas terão o mesmo número de tomates. Logo, a probabilidade pedida é 100%.
- **34.** A probabilidade P de qualquer evento é tal que $0 \le P \le 1$. Portanto:

$$0\leqslant \frac{2n-23}{21}\leqslant 1 \,\Rightarrow\, 0\leqslant 2n-23\leqslant 21$$

$$\therefore 23 \leqslant 2n \leqslant 44 \Rightarrow \frac{23}{2} \leqslant n \leqslant 22$$

Logo, o menor e o maior valor de n são, respectivamente, 12 e 22.

35. A probabilidade P de qualquer evento é tal que $0 \le P \le 1$. Portanto:

$$0 \leqslant \frac{27 - n}{9} \leqslant 1 \Rightarrow 0 \leqslant 27 - n \leqslant 9$$

$$\therefore -27 \leqslant -n \leqslant -18 \Rightarrow 27 \geqslant n \geqslant 18$$

Logo, o número mínimo de deputados do partido X que participam dessa sessão é 18. Alternativa **d**.

36. Os eventos A e B determinados por "seja professor da rede pública de ensino" e "não seja professor da rede pública de ensino", respectivamente, são complementares. Logo:

$$P(B) = 1 - P(A) = 1 - 0.12 = 0.88$$

Assim, a probabilidade de o escolhido não ser professor da rede pública é 0,88.

37. Os eventos A e B determinados por "apresentar reação ao medicamento" e "não apresentar reação ao medicamento", respectivamente, são complementares. Portanto:

$$P(A) + P(B) = 1 \Rightarrow \frac{2n+1}{3n} + \frac{3n-5}{6} = 1$$

$$\therefore$$
 2(2n + 1) + n(3n - 5) = 6n \Rightarrow 3n² - 7n + 2 = 0

$$\therefore n = \frac{1}{3} \text{ ou } n = 2$$

• Para
$$n = \frac{1}{3}$$
, temos: $P(B) = \frac{3 \cdot \frac{1}{3} - 5}{6} = -\frac{2}{3}$ (não convém)

• Para
$$n = 2$$
, temos: $P(B) = \frac{3 \cdot 2 - 5}{6} = \frac{1}{6}$

Logo, a probabilidade de um paciente não apresentar reação ao medicamento é $\frac{1}{6}$.

38. Sendo P(M) e P(G) as probabilidades de se obter uma camiseta de tamanhos médio e grande, respectivamente, temos:

$$\begin{cases} P(M) = 9P(G) \\ P(M) + P(G) = 1 \end{cases} \Rightarrow P(G) = \frac{1}{10} e P(M) = \frac{9}{10}$$

Logo, a probabilidade de se obter uma camiseta de tamanho grande é $\frac{1}{10}$.

39. Sendo P(C) e P(R) as probabilidades de o atirador acertar e errar o alvo, respectivamente, temos:

$$\begin{cases} P(C) = 7P(R) \\ P(C) + P(R) = 1 \end{cases} \Rightarrow P(C) = \frac{7}{8} e P(R) = \frac{1}{8}$$

Logo, a probabilidade de o atirador acertar o alvo no próximo tiro é $\frac{7}{8}$.

40. Sendo x a probabilidade de cair a face 1, temos que a probabilidade da face 6 é 2x. Como a probabilidade de cair cada uma das faces 2, 3, 4 e 5 é $\frac{1}{6}$, concluímos:

$$x + 2x + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = 1 \Rightarrow x = \frac{1}{9}$$

Alternativa c

41. O espaço amostral E é dado por:

 $E=\{\{x,y,z\}|x,y$ e z são números de bolas da urna, distintos entre si}, logo, n(E) = $C_{20,3}=1.140$

Seja A o evento dado por: $A = \{\{x,y,z\} \in E \,|\, x,y \in z \, \text{são números impares}\}, \, \log o,$

$$n(A) = C_{10,3} = 120$$

Assim, temos que
$$P(A) = \frac{120}{1.140} = \frac{2}{19}$$

Observando que o complementar de A é dado por: $\overline{A} = \{\{x, y, z\} \in E \mid \text{pelo menos um dos três números, } x, y ou z, é par\}.$

Então, concluímos que:

$$P(\overline{A}) = 1 - P(A) = 1 - \frac{2}{19} = \frac{17}{19}$$

Logo, a probabilidade pedida é $\frac{17}{19}$

42. $E = \{\{x, y\} | x \text{ e y são alunos que votaram}\},$

$$n(E) = C_{30,2} = 435$$

$$F = \{\{z, w\} \in E \mid z \in w \text{ votaram em B}\},$$

$$n(B) = C_{10,2} = 45$$

A probabilidade P de pelo menos um dos alunos ter votado em A é igual a 1 menos a probabilidade de os dois alunos terem votado em B, ou seja:

$$P = 1 - P(F) = 1 - \frac{45}{435} = \frac{390}{435} = \frac{26}{29}$$

43. Os eventos A e B determinados por "a partícula é desviada ou repelida" e "a partícula não sofre alteração em sua trajetória", respectivamente, são complementares. Logo:

$$P(B) = 1 - P(A) = 1 - \frac{1}{10^5} = \frac{10^5 - 1}{10^5} = \frac{99.999}{100.000} =$$

= 99,999%

Alternativa e.

44. O espaço amostral E desse experimento é dado por:
E = {x | x é anagrama da palavra MASCOTE}, logo,
n(E) = 7! = 5.040
Sejam:

 $A = \{y \in E | y \text{ \'e anagrama que começa por vogal}\},$ $n(A) = 3 \cdot 6! = 2.160;$

 $B = \{z \in E | z \text{ \'e anagrama que termina por vogal}\},$ $n(B) = 3 \cdot 6! = 2.160;$ e

 $A \cap B = \{w \in E \mid w \in a \text{ nagrama que começa e termina por vogal}\}, n(A \cap B) = 6 \cdot 5! = 720.$

Assim, temos que:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow$$

$$\Rightarrow \frac{2.160}{5.040} + \frac{2.160}{5.040} - \frac{720}{5.040} = \frac{3.600}{5.040} = \frac{5}{7}$$

Concluímos, então, que a probabilidade de o anagrama sorteado começar ou terminar por vogal é $\frac{5}{7}$.

Outro modo

O espaço amostral E desse experimento é dado por: $E = \{x | x \text{ \'e anagrama da palavra MASCOTE}\}, logo, n(E) = 7! = 5.040$

Sendo A o evento dado por:

 $A=\{y\in E\,|\,y \ \text{\'e} \ \text{anagrama} \ \text{que} \ \text{começa} \ \text{e} \ \text{termina} \ \text{por} \ \text{consoante}\}, \ \text{temos} \ \text{que} \ \text{n(A)}=12\cdot 5!=1.440$

Observando que o complementar de A é o evento dado por:

 $\overline{A}=\{z\in E\,|\,z$ é anagrama que começa ou termina por vogal}, concluímos que:

$$P(\overline{A}) = 1 - P(A) = 1 - \frac{1.440}{5.040} = \frac{3.600}{5.040} \Rightarrow P(\overline{A}) = \frac{5}{7}$$

Portanto, a probabilidade pedida é $\frac{5}{7}$.

45. E = {1, 2, 3, ..., 1.000}, n(E) = 1.000

$$A = \{2, 4, 6, ..., 1.000\}, n(A) = 500$$

$$B = \{10, 11, 12, ..., 99\}, n(B) = 90$$

$$A \cap B = \{10, 12, 14, ..., 98\}, n(A \cap B) = 45$$

$$\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B) =$$

$$=\frac{500}{1.000}+\frac{90}{1.000}-\frac{45}{1.000}=\frac{545}{1.000}=\frac{109}{200}$$

Logo, a probabilidade de o número sorteado ser par ou ter 2 algarismos é $\frac{109}{200}$ ou 54,5%.

46. Os eventos A e B determinados por "aparece uma letra na tela do monitor" e "aparece um algarismo na tela do monitor", respectivamente, são mutuamente exclusivos. Portanto:

$$P(A \cup B) = P(A) + P(B) = \frac{3}{11} + \frac{2}{11} = \frac{5}{11}$$

Logo, a probabilidade de aparecer uma letra ou um algarismo na tela do monitor é $\frac{5}{11}$.

47. I) Dois eventos são mutuamente exclusivos se, e somente se, a intersecção entre eles é vazia. Assim, apenas a alternativa \mathbf{d} apresenta eventos mutuamente exclusivos, pois $\mathbf{H} \cap \mathbf{I} = \varnothing$. Alternativa \mathbf{d} .

II)
$$P(H \cup I) = P(H) + P(I) \Rightarrow P(H \cup I) =$$

= $\frac{49}{100} + \frac{30}{100} = \frac{79}{100} = 79\%$

48. $E = \{x | x \text{ \'e p\'agina do livro}\}, n(E) = 200$

A = $\{y \in E | y \text{ \'e p\'agina com ilustração colorida}\}$, n(A) = 50

 $B = \{z \in E \mid z \text{ \'e p\'agina sem ilustração}\}, n(B) = 120$

$$\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B) =$$

$$=\frac{50}{200}+\frac{120}{200}-0=\frac{170}{200}=\frac{17}{200}$$

Logo, a probabilidade de a página ter ilustração colorida ou não ter ilustração é $\frac{17}{20}$ ou 85%.

49. Sendo P(X), P(F), $P(X \cap F)$ e $P(X \cup F)$ as probabilidades de o refrigerador escolhido ser da marca X, ser frost free, ser da marca X e frost free e ser da marca X ou frost free, respectivamente, temos:

$$P(X \cup F) = P(X) + P(F) - P(X \cap F) \Rightarrow$$

 $\Rightarrow P(X \cup F) = \frac{3}{5} + \frac{3}{4} - \frac{7}{10} = \frac{13}{20}$

do seja da marca X ou frost free é $\frac{13}{20}$.

50. a) Um número natural é múltiplo de 3 e de 7 se,

50. a) Um número natural é múltiplo de 3 e de 7 se, e somente se, for múltiplo do mmc(3, 7) = 21. Assim, os elementos de S que são múltiplos de 3 e 7 formam a progressão aritmética: 21, 42, 63, ..., 483. Sendo n o número de termos dessa sequência, temos:

$$483 = 21 + (n - 1) \cdot 21 \Rightarrow n = 23$$

Logo, 23 elementos de S são múltiplos de 3 e 7.

b) O espaço amostral desse experimento é o conjunto S, em que n(S) = 481. Sejam:

 $A = \{x \in S \mid x \text{ \'e m\'ultiplo de 3}\} = \{21, 24, 27, ..., 498\},$ em que n(A) = 160;

 $B = \{x \in S | x \in \text{multiplo de 7}\} = \{21, 28, 35, ..., 497\},$ em que n(B) = 69;

 $A \cap B = \{x \in S | x \in m \text{ ``ull tiplo de 3 e de 7} \}$, em que $n(A \cap B) = 23$

Temos:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow$$

 $\Rightarrow P(A \cup B) = \frac{160}{481} + \frac{69}{481} - \frac{23}{481}$

$$P(A \cup B) = \frac{206}{481}$$

Ou seja, a probabilidade de o número escolhido ser um múltiplo de 3 ou de 7 é $\frac{206}{481}$.

51. Sendo P(A), P(B), $P(A \cap B)$ e $P(A \cup B)$ as probabilidades de vendas na loja A, na loja B, nas lojas A e B e nas lojas A ou B, respectivamente, temos:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow$$

 $\Rightarrow P(A \cup B) = 0.75 + 0.78 - 0.62 = 0.91$

Logo, a probabilidade de venda em pelo menos uma das lojas é 91%.

52. O espaço amostral E desse experimento é formado por todos os ternos ordenados (a, b, c), em que a, b e c representam o número de pontos na face superior do dado no 1º, no 2º e no 3º lançamento, respectivamente. Calculando n(E):

1º lançamento	2º lançamento	3º lançamento	
→ 6	. 6	. 6	= 216

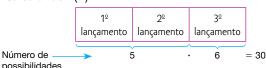
Número de — possibilidades

Logo, n(E) = 216. Seigm os eventos $A = I(a, h, c) \in F \mid h$

Sejam os eventos A = $\{(a, b, c) \in E \mid b \text{ \'e sucessor de } a\}$, B = $\{(a, b, c) \in E \mid c \text{ \'e sucessor de } b\}$ e

 $A \cap B = \{(a, b, c) \in E \mid b \text{ \'e sucessor de } a, e c \text{ \'e sucessor de } b\}.$

Calculando n(A):



Logo, n(A) = 30. Calculando n(B):

Número de — possibilidades

Logo,
$$n(B) = 30$$
.

$$A \cap B = \{(1,2,3),\, (2,3,4),\, (3,4,5),\, (4,5,6)\},\, em$$
 que $n(A \cap B) = 4.$

Assim, concluímos que:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow$$

 $\Rightarrow P(A \cup B) = \frac{30}{216} + \frac{30}{216} - \frac{4}{216} = \frac{7}{27}$

Alternativa c.

53. Sejam P(C), P(I), $P(C \cap I)$ e $P(C \cup I)$ as probabilidades de o sorvete retirado ser de chocolate, da marca Ice, de chocolate e da marca Ice e de chocolate ou da marca Ice, respectivamente. Indicando por x o número de sorvetes da marca Ice, temos:

$$P(C \cup I) = P(C) + P(I) - P(C \cap I) \Rightarrow$$

$$\Rightarrow 1 = \frac{40}{60} + \frac{x}{60} - \frac{1}{5}$$

$$\therefore$$
 60 = 40 + x - 12 \Rightarrow x = 32

Logo, há 32 sorvetes da marca Ice no freezer.

54. $E = \{x | x \text{ \'e pneu em estoque}\}, n(E) = 2.400$ $B = \{y \in E | y \text{ \'e pneu da marca B}\}, n(B) = 1.200$

 $T = \{z \in E \mid z \text{ \'e pneu de aro 13}\}, n(T) = 620$

 $\mathtt{B} \cap \mathtt{T} = \{ w \in \mathtt{E} \, | \, w \in \mathtt{pneu} \text{ da marca B e de aro 13} \}, \ \mathtt{n}(\mathtt{B} \cap \mathtt{T}) = \mathtt{300}$

$$\therefore P(B \cup T) = P(B) + P(T) - P(B \cap T) =$$

$$= \frac{1.200}{2.400} + \frac{620}{2.400} - \frac{300}{2.400} = \frac{1.520}{2.400} = \frac{19}{30}$$

Alternativa e.

55. O espaço amostral E desse experimento é o conjunto das possíveis populações do país. Sendo os eventos A = {x ∈ E | x ≥ 110.000.000},

 $B = \{x \in E \mid x \le 110.000.000\} \text{ e } A \cap B = \{110.000.000\},$ temos:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow$$

 $\Rightarrow 1 = 0.95 + 0.08 - P(A \cap B)$

$$\therefore$$
 P(A \cap B) = 0,03

Logo, a probabilidade de a população ser exatamente 110.000.000 é de 3%.

- **56.** Sejam:
 - E o espaço amostral formado por todos os animais dessa espécie;
 - A o evento formado pelos animais dessa espécie que vivem 30 anos ou menos;
 - B o evento formado pelos animais dessa espécie que vivem 30 anos ou mais;
 - $A \cap B$ o evento formado pelos animais dessa espécie que vivem 30 anos.

Temos:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow$$

$$\Rightarrow 1 = 0.6 + 0.5 - P(A \cap B)$$

$$\therefore P(A \cap B) = 0.1$$

Logo, a probabilidade de que o animal escolhido viva exatamente 30 anos é 0,1.

57. Indicando por x o número de repórteres mulheres do jornal C, temos:

	Jornal A	Jornal B	Jornal C
Homens	8	6	7
Mulheres	4	9	Х

Sendo P(M), P(A), P(M \cap A) e P(M \cup A) as probabilidades de o escolhido ser mulher, ser do jornal A, ser mulher e do jornal A, e ser mulher ou do jornal A, respectivamente, temos:

$$P(M \cup A) = P(M) + P(A) - P(M \cap A) \Rightarrow$$

$$\Rightarrow \frac{2}{3} = \frac{13 + x}{34 + x} + \frac{12}{34 + x} - \frac{4}{34 + x}$$

$$\therefore \frac{2}{3} = \frac{21 + x}{34 + x} \Rightarrow 63 + 3x = 68 + 2x$$

Logo, o número de repórteres mulheres do jornal C

58. I) Como a soma dos percentuais correspondentes aos motivos para viver na rua ultrapassa 100%, concluímos que existem pessoas que declararam mais de um motivo.

Alternativa **c**.

II)
$$P(P \cup Q) = P(P) + P(Q) - P(P \cap Q) \Rightarrow$$

 $\Rightarrow 40\% = 36\% + 16\% - P(P \cap Q)$
 $\therefore P(P \cap Q) = 12\%$
Alternativa a.

59. $E = \{x | x \text{ \'e carta do baralho}\}, n(E) = 52$ $A = \{y \in E | y \text{ \'e rei}\}, n(A) = 4$

> $B = \{z \in E | z \text{ \'e carta de ouros}\}, n(B) = 13$ $A \cap B = \{\text{rei de ouros}\}, n(A \cap B) = 1$

$$\therefore P(B/A) = \frac{n(A \cap B)}{n(A)} = \frac{1}{4}$$

Logo, a probabilidade de que o rei retirado seja de ouros é $\frac{1}{4}$.

60.

	Α	В	С
Natal	70	80	90
Fortaleza	60	85	95

 $E = \{x | x \text{ \'e passageiro}\}$

 $A = \{y \in E | y \text{ foi para Natal}\}, n(A) = 240$

 $B = \{z \in E | z \text{ optou pelo pacote do tipo A} \}$

 $A \cap B = \{w \in E \mid w \text{ foi para Natal e optou pelo pacote do tipo } A\}$,

$$n(A \cap B) = 70$$

$$\therefore \ P(B/A) = \frac{n(A \cap B)}{n(A)} = \frac{70}{240} = \frac{7}{24}$$

Logo, a probabilidade de que o sorteado tenha optado pelo pacote do tipo A é $\frac{7}{24}$.

61. a) Em cada linha da tabela, subtraindo do total o valor conhecido, obtém-se o valor desconhecido:

ÁREA		SEXO		
AREA	Masculino (M)	Feminino (F)	Total	
Exatas (E)	120	80	200	
Humanidades (H)	45	80	125	
Biológicas (B)	100	75	175	
Total	265	235	500	

b) Como sabemos que o estudante escolhido é do sexo feminino, temos que o espaço amostral desse experimento se reduz ao conjunto F formado pelos estudantes do sexo feminino que responderam à pergunta; logo, n(F) = 235.

Pela tabela, observamos que os estudantes pertencem a F e escolheram a área de ciências humanas ou a área de ciências biológicas formam um evento G com 155 estudantes, ou seja, n(G) = 155. Assim, concluímos que a probabilidade P pedida é dada por:

é dada por:

$$P = \frac{155}{235} = \frac{31}{47}$$

62. a) O espaço amostral E desse experimento é formado pelos 2.000 motoristas da amostra; logo, n(E) = 2.000.

Sendo A o evento de E formado pelos motoristas que sofreram exatamente 1 acidente no período, temos que:

$$n(A) = 50 + 120 + 80 + 105 = 355$$

Assim, concluímos que:

$$P(A) = {355 \over 2.000} = {71 \over 400}$$
 ou $P(A) = 17,75\%$

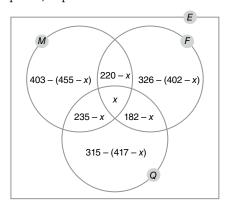
b) Como sabemos que o motorista escolhido tem menos de 20 anos, deduzimos que o espaço amostral desse experimento se reduz ao conjunto B formado pelos motoristas considerados na tabela, em que x < 20; logo, n(B) = 200 + 50 + 20 + 10 = 280.

Pela tabela, observamos que os motoristas que pertencem a B e sofreram exatamente 2 acidentes formam um evento C com 20 motoristas, ou seja, n(C) = 20.

Assim, concluímos que a probabilidade P pedida é dada por:

$$P = \frac{20}{280} = \frac{1}{14}$$

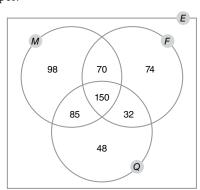
63. Sejam E o universo dos 557 candidatos e M, F e Q os conjuntos dos candidatos aprovados em Matemática, Física e Química, respectivamente. Indicando por x o número de estudantes aprovados nas três disciplinas, esquematizamos:



Assim:

$$403 - (455 - x) + 326 - (402 - x) + + 315 - (417 - x) + 220 - x + 182 - x + + 235 - x + x = 557 \Rightarrow x = 150$$

Portanto, o esquema anterior pode ser representado por:



Como sabemos que o candidato escolhido foi aprovado em Matemática e Física, temos que o espaço amostral desse experimento se reduz ao evento $A = M \cap F$; logo, n(A) = 70 + 150 = 220.

Pelo esquema observamos que os elementos que pertencem a $M \cap F$ e foram aprovados nas três disciplinas formam o evento $B = M \cap F \cap Q$; logo, n(B) = 150. Assim, concluímos que a probabilidade P pedida é dada por:

$$P = \frac{150}{220} = \frac{15}{22}$$

64. $E = \{x \mid x \text{ \'e reta determinada pelos v\'ertices do hexágono}\}$, $n(E) = C_{6,2} = 15$

 $A = \{y \in E \mid y \text{ não cont\'em lado do hex\'agono}\}, n(A) = 9$ $B = \{z \in E \mid z \text{ passa pelo v\'ertice } F\}, n(B) = 5$

 $A \cap B = \{w \in E | n\tilde{a}o \text{ cont\'em lado do hex\'agono e passa pelo v\'ertice } F\}, n(A \cap B) = 3$

:.
$$P(B/A) = \frac{n(A \cap B)}{n(A)} = \frac{3}{9} = \frac{1}{3}$$

Logo, a probabilidade de que a reta que não contém nenhum dos lados do polígono passe pelo vértice F é $\frac{1}{2}$.

- **65.** $E = \{x | x \text{ \'e triângulo determinado pelos pontos}\},$ $n(E) = 5 \cdot C_{4,2} + 4 \cdot C_{5,2} = 70$
 - $A = \{y \in E | y \text{ tem lado contido na reta s} \}$

$$n(A) = 5 \cdot C_{4,2} = 30$$

 $B = \{z \in E | z \text{ tem v\'ertice no ponto } F\},$

$$n(B) = C_{5,2} + C_{5,1} \cdot C_{3,1} = 25$$

 $A \cap B = \{w \in E | w \text{ tem lado contido em s e tem } \}$ vértice F}, $n(A \cap B) = C_{3,1} \cdot C_{5,1} = 15$

:.
$$P(B/A) = \frac{n(A \cap B)}{n(A)} = \frac{15}{30} = \frac{1}{2}$$

Logo, a probabilidade de o triângulo sorteado, que tem um lado contido em s, ter vértice no ponto F é $\frac{1}{2}$.

- **66.** $E = \{(x, y) | x \in a \text{ primeira bola retirada } e y \in a \text{ segun-}$ da}, $n(E) = 9 \cdot 9 = 81$
 - a) $A = \{(r, s) | r \in bola azul\}, n(A) = 3 \cdot 7 = 21$ $B = \{(v, w) | w \in bola azul\}, n(B) = 7 \cdot 3 = 21$ $A \cap B = \{(t, u) | t \in bola azul e u \in bola azul\},$

$$n(A \cap B) = 3 \cdot 3 = 9$$

 $\therefore P(B/A) = \frac{n(A \cap B)}{n(A)} = \frac{9}{21} = \frac{3}{7}$

b) $C = \{(g, h) \in E \mid g \text{ não \'e bola azul}\}, n(C) = 4 \cdot 7 = 28$ $B = \{(v, w) \in E | w \in bola azul\}, n(B) = 7 \cdot 3 = 21$ $C \cap B = \{(i, j) \in E \mid i \text{ não é bola azul e } j \text{ é bola azul}\},$ $n(C \cap B) = 4 \cdot 3 = 12$

:.
$$P(B/C) = \frac{n(B \cap C)}{n(C)} = \frac{12}{28} = \frac{3}{7}$$

67. Como sabemos que a soma dos números obtidos nos dois primeiros lançamentos é igual ao número obtido no terceiro lançamento, temos que o espaço amostral desse experimento se reduz ao conjunto: $A = \{(1, 1, 2), (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 5, 6), (2, 1, 3), (1, 3, 4), (1, 4, 5), (1, 5, 6), (2, 1, 3), (1, 3, 4), (1, 4, 5), (1, 5, 6), (2, 1, 3), (1, 3, 4), (1, 4, 5), (1, 5, 6), (2, 1, 3), (1, 3, 4), (1, 4, 5), (1, 5, 6), (2, 1, 3), (1, 5, 6), (2, 1, 3), (1, 5, 6), (2, 1, 3), (1, 5, 6), (2, 1, 3), (1, 5, 6), (2, 1, 3), (2,$ (2, 2, 4), (2, 3, 5), (2, 4, 6), (3, 1, 4), (3, 2, 5), (3, 3, 6),(4, 1, 5), (4, 2, 6), (5, 1, 6), em que n(A) = 15Os elementos de A em que aparece o 2 em pelo menos um lançamento formam o conjunto: $B = \{(1, 1, 2), (1, 2, 3), (2, 1, 3), (2, 2, 4), (2, 3, 5), (2, 4, 6), (2, 3, 5), (2, 4, 6), (2, 3, 5), (2, 4, 6), (2, 3, 5), (2, 4, 6), (2, 3, 5), (2, 4, 6), (2, 3, 5), (2, 4, 6), (2, 3, 5), (2, 4, 6), (2,$ (3, 2, 5), (4, 2, 6), em que n(B) = 8Assim, concluímos que a probabilidade P pedida é dada por: $P = \frac{8}{10}$

Alternativa c.

68. a) Pelo princípio fundamental da contagem, temos:

Logo, n(E) = 25.

- **b)** $A = \{(3, 1), (3, 2), (3, 3), (3, 4), (3, 5)\}$ $B = \{(1, 4), (2, 4), (3, 4), (4, 4), (5, 4)\}$
- c) $P(B) = \frac{5}{25} = \frac{1}{5}$
- **d)** Temos que $A \cap B = \{(3, 4)\}, \text{ em que } n(A \cap B) = 1.$ Assim, concluímos que:

$$P(B/A) = \frac{n(A \cap B)}{n(A)} = \frac{1}{5}$$

e) Como P(B/A) = P(B), concluímos que A e B são eventos independentes.

Portanto: $n(E) = 9 \cdot 8 = 72$

$$\textbf{b)} \ \ A = \begin{cases} (1,\,2),\,(1,\,3),\,(1,\,4),\,...,\,(1,\,9) \\ (3,\,1),\,(3,\,2),\,(3,\,4),\,...,\,(3,\,9) \\ \vdots & \vdots & \vdots \\ (9,\,1),\,(9,\,2),\,(9,\,3),\,...,\,(9,\,8) \end{cases}, \ n(A) = 5 \cdot 8 = 40$$

c)
$$B = \begin{cases} (2, 1), (3, 1), (4, 1), ..., (9, 1) \\ (1, 3), (2, 3), (4, 3), ..., (9, 3) \\ \vdots & \vdots & \vdots \\ (1, 9), (2, 9), (3, 9), ..., (8, 9) \end{cases}, n(B) = 8 \cdot 5 = 40$$

$$\textbf{d)} \ A \cap B = \begin{cases} (1,3),\, (1,5),\, (1,7),\, (1,9) \\ (3,1),\, (3,5),\, (3,7),\, (3,9) \\ \vdots & \vdots & \vdots \\ (9,1),\, (9,3),\, (9,5),\, (9,7) \end{cases},$$

$$n(A \cap B) = 5 \cdot 4 = 20$$

$$\therefore P(B/A) = \frac{n(A \cap B)}{n(A)} = \frac{20}{40} = \frac{1}{2}$$

e)
$$P(B) = \frac{n(B)}{n(E)} = \frac{40}{72} = \frac{5}{9}$$

Observando que $P(B/A) \neq P(B)$, concluímos que A e B são eventos dependentes.

70. a) $E_1 = \{(x, y) | x \in a \ 1^a \text{ bola retirada e y } \in a \ 2^a, \text{ com } \}$ reposição}, $n(E_1) = 5 \cdot 5 = 25$

$$A = \{(z, w) \in E_1 | z \in bola vermelha\},$$

$$n(A) = 1 \cdot 5 = 5$$

 $B = \{(r, s) \in E_1 | s \in bola \text{ vermelha}\},$

$$n(B) = 5 \cdot 1 = 5$$

$$A \cap B = \{(\text{vermelha}, \text{vermelha})\}, n(A \cap B) = 1$$

 $\therefore P(B/A) = \frac{n(A \cap B)}{n(A)} = \frac{1}{5}$

b) $E_2 = \{(t, u) | t \in a \ 1^a \text{ bola retirada } e \ u \in a \ 2^a \text{ bola,}$ sem reposição}, $n(E_2) = 5 \cdot 4 = 20$

$$C = \{(g, h) \in E_2 | g \text{ \'e bola vermelha}\},$$

$$n(C) = 1 \cdot 4 = 4$$

 $D = \{(i, j) \in E_2 | j \text{ \'e bola vermelha}\},$

$$n(D)=4\cdot 1=4$$

$$C \cap D = \emptyset$$
, $n(C \cap D) = 0$

$$\therefore P(D/C) = \frac{n(C \cap D)}{n(C)} = \frac{0}{4} = 0$$

c) No item a, calculando P(B), temos:

$$P(B) = \frac{n(B)}{n(E_1)} = \frac{5}{25} = \frac{1}{5}$$

Como P(B/A) = P(B), concluímos que A e B são eventos independentes.

No item b, calculando P(D), temos:

$$P(D) = \frac{n(D)}{n(E_2)} = \frac{4}{20} = \frac{1}{5}$$

Como $P(D/C) \neq P(D)$, concluímos que C e D não são eventos independentes.

71. O espaço amostral E desse experimento é dado por: $E = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, \text{ em que } n(E) = 10$ Sejam os eventos: $I = \{2, 4, 6, 8, 10\}$, em que n(I) = 5; $II = \{7, 8, 9, 10\}, \text{ em que } n(II) = 4; III = \{5, 10\}, \text{ em }$ que n(III) = 2; I \cap II = {8, 10}, em que n(I \cap II) = 2; e II \cap III = {10}, em que n(II \cap III) = 1. Assim, temos:

a)
$$P(II) = \frac{n(II)}{n(E)} = \frac{4}{10} = \frac{2}{5} e P(II/I) = \frac{n(II \cap I)}{n(I)} = \frac{2}{5}$$

Como P(II/I) = P(II), concluímos que os eventos I e II são independentes.

b)
$$P(III) = \frac{n(III)}{n(E)} = \frac{2}{10} = \frac{1}{5} e P(III/II) = \frac{n(III \cap II)}{n(II)} = \frac{1}{4}$$

Como $P(III/II) \neq P(III)$, concluímos que os eventos II e III não são independentes. Dizemos que eles são dependentes.

- 72. A probabilidade de a pessoa retirar as moedas simultaneamente é igual à probabilidade de retirálas uma a uma, sucessivamente, e sem reposição. Indicando por U, C e D as moedas de R\$ 1,00, R\$ 0,50 e R\$ 0,10, respectivamente, temos:
 - a) O número de permutações das letras U, C, D é 3! = 6. Logo, existem 6 sequências possíveis de valores, todas com a mesma probabilidade de ocorrer. Logo, a probabilidade P de ocorrer uma sequência de moedas de valores distintos é dada por:

$$P = 6 \cdot \frac{2}{9} \cdot \frac{4}{8} \cdot \frac{3}{7} = \frac{2}{7}$$

b) A probabilidade P de ocorrer CCD ou CDC ou DCC é dada por:

$$P = 3 \cdot \frac{4}{9} \cdot \frac{3}{8} \cdot \frac{3}{7} = \frac{3}{14}$$

c) Para totalizar R\$ 1,20 devemos ter uma moeda de R\$ 1,00 e duas de R\$ 0,10. A probabilidade P de ocorrer UDD ou DUD ou DDU é dada por:

$$P = 3 \cdot \frac{2}{9} \cdot \frac{3}{8} \cdot \frac{2}{7} = \frac{1}{14}$$

- 73. Indicando por V, A e P as cores vermelha, azul e preta, respectivamente, temos:
 - a) O número de permutações das letras VVVVAA é dado por:

$$P_6^{(4, 2)} = \frac{6!}{4! \cdot 2!} = 15$$

Assim, há 15 sequências possíveis de cores, todas com a mesma probabilidade de ocorrer. Logo, a probabilidade P de sair 4 bolas vermelhas e 2 azuis é dada por:

$$P = 15 \cdot \frac{5}{12} \cdot \frac{4}{11} \cdot \frac{3}{10} \cdot \frac{2}{9} \cdot \frac{3}{8} \cdot \frac{2}{7} = \frac{5}{308}$$

b) O número de permutações das letras VVVVVA é 6. Assim, a probabilidade P₁ de ocorrer 5 bolas vermelhas e 1 azul é dada por:

$$P_1 = 6 \cdot \frac{5}{12} \cdot \frac{4}{11} \cdot \frac{3}{10} \cdot \frac{2}{9} \cdot \frac{1}{8} \cdot \frac{3}{7} = \frac{1}{308}$$

O número de permutações das letras VVVVVP é 6. Assim, a probabilidade P_2 de ocorrer 5 bolas vermelhas e 1 preta é dada por:

$$P_2 = 6 \cdot \frac{5}{12} \cdot \frac{4}{11} \cdot \frac{3}{10} \cdot \frac{2}{9} \cdot \frac{1}{8} \cdot \frac{4}{7} = \frac{1}{231}$$

Logo, a probabilidade P de ocorrer 5 bolas vermelhas entre as 6 bolas retiradas é dada por:

$$P = P_1 + P_2 = \frac{1}{308} + \frac{1}{231} = \frac{1}{132}$$

74. Vamos supor que a escolha dos habitantes seja feita um a um e sem reposição (não se esqueça de que, ao escolher os habitantes um a um, devemos considerar a ordem de retirada). Indicando por S uma pessoa nutrida e por S uma pessoa subnutrida, devemos calcular a probabilidade de ocorrer uma sequência com três S e dois S. O número de sequências nessa condição é dado por:

$$P_5^{(3, 2)} = \frac{5!}{3! \cdot 2!} = 10$$

Como todas essas sequências têm a mesma probabilidade de ocorrer, basta calcular a probabilidade de ocorrer uma delas, por exemplo, \overline{SSSSS} , e multiplicar o resultado por 10. Assim, temos que a probabilidade P pedida é dada por: $P = 10 \cdot 0.2 \cdot 0.2 \cdot 0.2 \cdot 0.8 \cdot 0.8 = 0.0512$ ou P = 5.12%

75. Vamos supor que a escolha das pessoas seja feita uma a uma e sem reposição (não se esqueça de que, ao escolher as pessoas uma a uma, devemos considerar a ordem de retirada). Indicando cada homem por H, devemos calcular a probabilidade de ocorrer a sequência HH. Assim, a

probabilidade P pedida é dada por:
$$P = \frac{5}{9} \cdot \frac{4}{8} = \frac{5}{18}$$

76. a) Pelo princípio fundamental da contagem, temos:

	1º algarismo	2º algarismo	3º algarismo	4º algarismo	
Número de ———	4	• 3	. 2	• 1 =	24

Logo, João escreveu 24 números.

- b) A probabilidade de João:
 - não abrir o cofre na primeira tentativa é $\frac{23}{24}$;
 - não abrir o cofre na segunda tentativa é $\frac{22}{23}$
 - não abrir o cofre na terceira tentativa é $\frac{21}{22}$

não abrir o cofre na décima primeira tentativa é 13/14;

abrir o cofre na décima segunda tentativa é 1/13.

Assim, a probabilidade P pedida é dada por:
$$P = \frac{23}{24} \cdot \frac{22}{23} \cdot \frac{21}{22} \cdot \frac{20}{21} \cdot \frac{19}{20} \cdot \frac{18}{19} \cdot \frac{17}{18} \cdot \frac{16}{17} \cdot \frac{15}{16} \cdot \frac{14}{15} \cdot \frac{13}{14} \cdot \frac{1}{13} = \frac{1}{24}$$

77. Devemos multiplicar a probabilidade de escolha de cada urna pela probabilidade de retirar dela uma bola vermelha e adicionar os produtos obtidos. Assim, a probabilidade P pedida é dada por:

$$P = \frac{1}{2} \cdot \frac{2}{5} + \frac{1}{2} \cdot \frac{1}{2} = \frac{9}{20}$$

Alternativa c.

78. a) O espaço amostral E desse experimento é formado por todos os conjuntos formados por dois vértices do cubo; logo, $n(E) = C_{8,2} = 28$. Sendo H o evento de E formado pelos vértices A e B, isto é, $H = \{\{A, B\}\}\$, em que n(H) = 1, concluímos que:

$$P(H) = \frac{1}{28}$$

Outro modo

Vamos supor que a escolha dos vértices seja feita um a um e sem reposição (não se esqueça de que, ao escolher os vértices um a um, devemos considerar a ordem de retirada). Assim, devemos calcular a probabilidade de ocorrer uma das sequências AB ou BA. Como ambas têm a mesma probabilidade de ocorrer, podemos calcular a probabilidade de ocorrer uma delas, por exemplo, AB, e multiplicar por 2 o resultado obtido. Assim, a probabilidade P pedida é

$$P = 2 \cdot \frac{1}{8} \cdot \frac{1}{7} = \frac{1}{28}$$

b) O espaço amostral U desse experimento é formado por todos os conjuntos formados por três vértices do cubo; logo, $n(U) = C_{8,3} = 56$.

Sendo G o evento de U formado pelos vértices A, B e C, isto é, $G = \{\{A, B, C\}\}$, em que n(G) = 1, concluímos que:

$$P(G) = \frac{1}{56}$$

Outro modo

Vamos supor que a escolha dos vértices seja feita um a um e sem reposição (não se esqueça de que, ao escolher os vértices um a um, devemos considerar a ordem de retirada). Assim, devemos calcular a probabilidade de ocorrer uma das 3! sequências formadas por A, B e C. Como elas têm a mesma probabilidade de ocorrer, podemos calcular a probabilidade de ocorrer uma delas, por exemplo, ABC, e multiplicar por 3! o resultado obtido. Assim, a probabilidade P pedida é dada por:

$$P = 3! \cdot \frac{1}{8} \cdot \frac{1}{7} \cdot \frac{1}{6} = \frac{1}{56}$$

c) O espaço amostral E desse experimento é formado por todos os conjuntos formados por dois vértices do cubo; logo, $n(E) = C_{8,2} = 28$.

Sendo M o evento de E formado pelos conjuntos de vértices extremos de uma mesma aresta, temos n(M) = 12. Assim, concluímos que:

$$P(M) = \frac{12}{32} = \frac{3}{7}$$

Outro modo

Vamos supor que a escolha dos vértices seja feita um a um e sem reposição (não se esqueça de que, ao escolher os vértices um a um, devemos considerar a ordem de retirada). Assim, devemos calcular a probabilidade de ocorrer uma das 24 sequências: AB, BA, CD, DC, ..., FG e GF. Como elas têm a mesma probabilidade de ocorrer, podemos calcular a probabilidade de ocorrer uma delas, por exemplo, AB, e multiplicar por 24 o resultado obtido. Assim, a probabilidade P pedida é dada por:

$$P = 24 \cdot \frac{1}{8} \cdot \frac{1}{7} = \frac{3}{7}$$

Escolhido um vértice qualquer, a probabilidade de escolher o segundo em uma mesma aresta que o primeiro escolhido é a probabilidade P pe-

dida, isto é,
$$P = \frac{3}{7}$$
.

d) O espaço amostral V desse experimento é formado por todos os conjuntos formados por duas arestas do cubo; logo, $n(V) = C_{12,2} = 66$.

Sendo L o evento de E formado pelos conjuntos de duas arestas paralelas do cubo, temos n(L)=18. Assim, concluímos que:

$$P(L) = \frac{18}{66} = \frac{3}{11}$$

Outro modo

Vamos supor que a escolha das arestas seja feita uma a uma e sem reposição (não se esqueça de que, ao escolher as arestas uma a uma, devemos considerar a ordem de retirada).

Assim, devemos calcular a probabilidade de ocorrer uma das 36 sequências:

 $(\overline{AB}, \overline{DC}), (\overline{DC}, \overline{AB}), (\overline{AD}, \overline{BC}), (\overline{BC}, \overline{AD}), ..., (\overline{HG}, \overline{EF}),$ (EF, HG). Como elas têm a mesma probabilidade de ocorrer, podemos calcular a probabilidade de ocorrer uma delas, por exemplo, (AB, DC), e multiplicar por 36 o resultado obtido. Assim, a probabilidade P pedida é dada por: $P = 36 \cdot \frac{1}{12} \cdot \frac{1}{11} = \frac{3}{11}$

$$P = 36 \cdot \frac{1}{12} \cdot \frac{1}{11} = \frac{3}{11}$$

Outro modo

Escolhida uma aresta qualquer, a probabilidade de escolher a segunda paralela à primeira esco-

lhida é a probabilidade P pedida, isto é, $P = \frac{3}{11}$.

79. O número total de possibilidades para a escolha de três vértices é dado por: $C_{8,3} = 56$

O número de possibilidades de escolha de três vértices de uma face é dado por $C_{4,3}=4$. Como um cubo tem 6 faces, o número total de escolha de três vértices do cubo que pertençam a uma mesma face \acute{e} : 6 • 4 = 24

Logo, a probabilidade pedida é dada por: $\frac{24}{56} = \frac{3}{7}$ Alternativa d.

Outro modo

Os dois primeiros vértices escolhidos podem ser extremos de uma aresta do cubo ou extremos de uma diagonal de face. Assim, a probabilidade P é

$$P = 1 \cdot \frac{3}{7} \cdot \frac{4}{6} + 1 \cdot \frac{3}{7} \cdot \frac{2}{6} = \frac{3}{7}$$

80. Indicando por U, S e L os sabores de uva, pêssego e laranja, respectivamente, devemos calcular a probabilidade P de ocorrer uma das sequências: UU, SS ou LL. Assim, temos:

$$P = \frac{4}{12} \cdot \frac{3}{11} + \frac{4}{12} \cdot \frac{3}{11} + \frac{4}{12} \cdot \frac{3}{11} = \frac{3}{11} \Rightarrow P \approx 27,3\%$$

81. Aplicando a propriedade do evento complementar, deduzimos que a probabilidade P pedida é dada por:

$$P = \left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{2}{5}\right) \cdot \left(1 - \frac{5}{6}\right) = \frac{1}{20} = 5\%$$

82. a)
$$P_1 = \frac{22}{40} = \frac{11}{20}$$

b)
$$P_2 = \frac{18}{40} = \frac{9}{20}$$

c)
$$P_3 = \frac{18}{40} \cdot \frac{17}{39} \cdot \frac{22}{38} = \frac{561}{4.940}$$

83. A probabilidade de nenhum dos dois ser escolhido é dada pelo produto $0.4 \cdot 0.3 = 0.12$.

Logo, a probabilidade P de pelo menos um dos dois ser escolhido é:

$$P = 1 - 0,12 = 0,88$$

Alternativa d.

84. Se a probabilidade de o aparelho ser defeituoso (d) é 0,2%, então a probabilidade de o aparelho ser perfeito (p) é 100% – 0,2%, ou seja, 99,8%.

Queremos calcular a probabilidade de ocorrer: ppdd ou pdpd ou pddp ou ddpp ou dpdp ou dppd. Calculando a probabilidade P1 da sequência ppdd,

 $P_1 = 99.8\% \cdot 99.8\% \cdot 0.2\% \cdot 0.2\% = (99.8\%)^2 \cdot (0.2\%)^2$ Multiplicando P₁ por 6, obtemos a probabilidade P

$$P = 6 \cdot P_1 \implies P = 6 \cdot (99,8\%)^2 \cdot (0,2\%)^2$$

Alternativa **c**.

85. A probabilidade de não faltar energia ao longo de um mês é 1 - 0.2 = 0.8. Assim, no período de janeiro a março, a probabilidade de faltar energia elétrica somente em março é dada por:

$$P = 0.8 \cdot 0.8 \cdot 0.2 = 0.128 = 12.8\%$$

86. Sejam A, B, C e D os destinatários cujas cartas adequadas seriam a, b, c, d, respectivamente. Há 6 sequências possíveis com apenas dois destinatários recebendo cartas adequadas, conforme mostra a tabela:

Α	В	С	D
a	Ь	d	С
a	d	С	Ь
a	С	Ь	d
d	Ь	С	a
С	Ь	a	d
Ь	a	С	d

Logo, a probabilidade P de exatamente dois destinatários receberem cartas adequadas é dada por:

$$P = 6 \cdot \frac{1}{4} \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{1} = \frac{1}{4}$$

Alternativa e.

87. Sendo P_a a probabilidade de o participante ganhar

$$P_g = \frac{2}{3} \cdot \frac{1}{4} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{2} = \frac{1}{54}$$

Assim, pela propriedade do evento complementar, concluímos que a probabilidade P, de o participante perder o carro é dada por:

$$P_p = 1 - P_g = 1 - \frac{1}{54} = \frac{53}{54}$$

88. Vamos supor que a retirada dos mosquitos seja feita um a um e sem reposição (não se esqueça de que, ao retirar os mosquitos um a um, devemos considerar a ordem de retirada). Assim, calculamos a probabilidade P de ocorrer uma das sequências: DEN3 e DEN3

ou

DEN3 e DEN1

ou

DEN1 e DEN3

DEN3 e DEN2

DEN2 e DEN3

Logo:
$$P = \frac{10}{100} \cdot \frac{9}{99} + 2 \cdot \frac{10}{100} \cdot \frac{30}{99} + 2 \cdot \frac{10}{100} \cdot \frac{60}{99} \Rightarrow$$

$$\Rightarrow P = \frac{21}{110}$$

Alternativa d.

Outro modo

Calculando a probabilidade P pelo evento complementar, temos que P é igual a 1 menos a probabilidade de nenhum dos dois mosquitos estar contaminado com o tipo DEN 3, isto é:

$$P = 1 - \frac{90}{100} \cdot \frac{89}{99} = \frac{21}{110}$$

89. Considerando o intervalo de 60 minutos, sejam A_L e B_L os eventos determinados por "tempo que A permanece ligado" e "tempo que B permanece ligado", respectivamente, temos:

$$P(A_L) = \frac{45}{60} = \frac{3}{4}$$

$$P(B_L) = \frac{48}{60} = \frac{4}{5}$$

$$P(A_L \cap B_L) = \frac{3}{4} \cdot \frac{4}{5} = \frac{3}{5}$$

Assim, temos:

$$P(B_{L}/A_{L}) = \frac{P(A_{L} \cap B_{L})}{P(A_{L})} = \frac{\frac{3}{5}}{\frac{3}{4}} = \frac{4}{5}$$

Logo, a probabilidade pedida é $\frac{4}{5}$.

90. Como há 10 algarismos possíveis para formar a senha de 4 algarismos, o número de senhas que podem ser formadas é 10⁴, ou seja, 10.000.

A probabilidade P de a pessoa errar a senha nas três primeiras tentativas é dada por:

$$P = \frac{9.999}{10.000} \cdot \frac{9.998}{9.999} \cdot \frac{9.997}{9.998} = \frac{9.997}{10.000}$$

91. Indicando por P_n a probabilidade de ocorrer efeito colateral em pelo menos uma de n doses e por \overline{P}_n probabilidade de não ocorrer efeito colateral, temos que $P_n = 1 - \overline{P}_n$. Assim:

$$P_2 = 1 - 0.9 \cdot 0.9 \cdot 0.9 = 0.271 = 27.1\%$$

$$P_3 = 1 - 0.9 \cdot 0.9 \cdot 0.9 = 0.271 = 27.1\%$$

 $P_4 = 1 - 0.9 \cdot 0.9 \cdot 0.9 \cdot 0.9 = 0.3439 = 34.39\%$

$$P_6=1-0.9\cdot0.9\cdot0.9\cdot0.9\cdot0.9=0.40951=40.951\%$$
 Logo, 4 é o maior número admissível de doses para esse paciente.

Alternativa b.

92. a) A probabilidade PD de que os dois relógios despertem na hora programada é dada por:

$$P_D = 0.8 \cdot 0.7 = 0.56 = 56\%$$

b) A probabilidade P_N de que nenhum dos dois relógios desperte na hora programada é dada

$$P_{N} = (1 - 0.8) \cdot (1 - 0.7) = 0.06 = 6\%$$

93. Indicando por C o evento "obter face 5" e por \overline{C} o complementar de C, isto é, "obter face diferente de 5", devemos calcular a probabilidade P de ocorrer uma das infinitas sequências: CC, CCCC, CCCCC, ... Assim, concluímos que a probabilidade P pedida é dada por:

$$\begin{split} P &= \frac{5}{6} \cdot \frac{1}{6} + \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6} + \\ &+ \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6} + \dots \end{split}$$

$$+\frac{5}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6} + \dots$$

Note que P é a soma dos infinitos termos de uma progressão geométrica de primeiro termo $\frac{5}{36}$ e razão $\frac{25}{36}$; logo:

$$P = \frac{\frac{5}{36}}{1 - \frac{25}{36}} = \frac{5}{11}$$

Alternativa d.

- 94. Vamos calcular a probabilidade de sair cada uma das cores na urna 2, após a bola da urna 1 ter sido colocada nela.
 - A probabilidade P_{AM} de que saia bola amarela da urna 2 é dada por:

$$P_{AM} = \frac{4}{10} \cdot \frac{1}{11} + \frac{6}{10} \cdot \frac{0}{11} = \frac{4}{110}$$

• A probabilidade P_{AZ} de que saia bola azul da urna 2 é dada por:

$$P_{AZ} = \frac{3}{10} \cdot \frac{2}{11} + \frac{7}{10} \cdot \frac{1}{11} = \frac{13}{110}$$

• A probabilidade P_B de que saia bola branca da urna 2 é dada por:

$$P_{B} = \frac{2}{10} \cdot \frac{3}{11} + \frac{8}{10} \cdot \frac{2}{11} = \frac{22}{110}$$

• A probabilidade P_{VD} de que saia bola verde da urna 2 é dada por: $P_{VD} = \frac{1}{10} \cdot \frac{4}{11} + \frac{9}{10} \cdot \frac{3}{11} = \frac{31}{110}$

$$P_{VD} = \frac{1}{10} \cdot \frac{4}{11} + \frac{9}{10} \cdot \frac{3}{11} = \frac{31}{110}$$

• A probabilidade P_{VM} de que saia bola vermelha da urna 2 é dada por:

$$P_{VM} = \frac{0}{10} \cdot \frac{4}{11} + \frac{10}{10} \cdot \frac{4}{11} = \frac{40}{110}$$

Logo, o jogador deve escolher a cor vermelha para que tenha a maior probabilidade de ganhar.

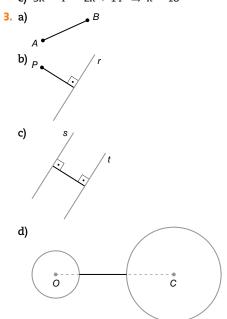
Alternativa e.

Pré-requisitos para o capítulo 10

- 1. a) V, por definição de retas concorrentes.
 - b) V, por definição de retas paralelas distintas.
 - c) F, pois retas coincidentes têm todos os seus pontos em comum.
 - d) V, por definição de retas paralelas.
 - e) F, pois podemos ter semirretas de mesma origem coincidentes ou, ainda, semirretas de mesma origem contidas em retas distintas.
 - f) V, por definição de semirretas opostas.
 - g) F, pois semirretas opostas formam entre si um ângulo de 180°; logo, a soma das medidas dos ângulos \widehat{COA} e \widehat{COB} é 180°.
- **2.** a) O grau é definido como $\frac{1}{360}$ da circunferência;

logo, a circunferência mede 360°.

- b) Os quatro ângulos têm a mesma medida e a soma deles é 360°; logo, cada um mede 90°.
- c) $x + 10^{\circ} + 5x + 50^{\circ} = 180^{\circ} \Rightarrow x = 20^{\circ}$
- d) $2x + 70^{\circ} + 3x + x + 50^{\circ} = 360^{\circ} \Rightarrow x = 40^{\circ}$
- e) $3x 4^{\circ} = 2x + 14^{\circ} \Rightarrow x = 18^{\circ}$



- 4. a) V, por definição de razão.
 - b) V, por convenção de nomenclatura.
 - c) V, por definição de proporção.
 - d) F, pois, por exemplo, $\frac{1}{2} = \frac{2}{4}$ é uma proporção e, no entanto, $1 \cdot 2 \neq 2 \cdot 4$.
 - e) V, pois, adicionando 1 a ambos os membros da proporção $\frac{a}{b} = \frac{c}{d}$, obtêm-se $\frac{a}{b} + 1 = \frac{c}{d} + 1$, ou seja, $\frac{a+b}{b} = \frac{c+d}{d}$.

- f) F, pois, por exemplo, $\frac{3}{2} = \frac{6}{4}$ é uma proporção e, no entanto, $\frac{3 \cdot 2}{2} \neq \frac{6 \cdot 4}{4}$.
- g) V, pois, se $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k$, temos:

$$\begin{cases} a = kb \\ c = kd \\ e = kf \end{cases}$$

Adicionando, membro a membro, essas igualdades, concluímos:

$$a+c+e=k(b+d+f)$$
 $\Rightarrow \frac{a+c+e}{b+d+f}=k$

Logo:

$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} \Rightarrow \frac{a+c+e}{b+d+f} = \frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$

Trabalhando em equipe

Matemática sem fronteiras

- **1.** a) $P = (1 0.015)(1 0.023) = 0.985 \cdot 0.977 \Rightarrow P \approx 96.23\%$
 - **b)** $P = (1 0.023)(1 0.040) = 0.977 \cdot 0.960 \Rightarrow P \approx 93.79\%$
 - c) Vimos, no texto, que a probabilidade de uma pessoa de 20 anos estar viva aos 49 anos é 92,4%, aproximadamente. Logo, a probabilidade P de uma pessoa de 20 anos morrer antes dos 50 anos é dada por:

$$P \approx 1 - 92,4\% \Rightarrow P \approx 7,6\%$$

Análise da resolução

COMENTÁRIO: Consideremos o espaço amostral E e os eventos G e H descritos a seguir:

 $E = \{(x, y) | x \text{ \'e a peça da caixa A e y \'e a peça da caixa B} \}$ $G = \{(m, n) \in E | \text{uma das duas peças \'e perfeita e a outra \'e defeituosa}\}$

 $H = \{(r, s) \in E \mid s \in a \text{ peça perfeita da caixa B}\}$

O aluno deveria ter calculado a probabilidade condicional P(H/G), no entanto, ele calculou $P(H \cap G)$, errando, portanto, a resposta.

Resolução correta:

Considerando os eventos descritos anteriormente, temos:

- $n(E) = 8 \cdot 5 = 40$
- $n(G) = 5 \cdot 2 + 3 \cdot 3 = 19$
- $n(H) = 8 \cdot 3 = 24$

Além disso, temos:

 $G \cap H = \{(t, u) | t \in a \text{ peça defeituosa da caixa } A \in u \in a \text{ peça perfeita da caixa } B\}, n(G \cap H) = 3 \cdot 3 = 9$

Concluímos, então:

$$P(H/G) = \frac{n(G \cap H)}{n(G)} = \frac{9}{19}$$