MATEMÁTICA

Função Logarítmica

INTRODUÇÃO L

Chamamos de função logarítmica toda função \mathbf{f} , de domínio \mathbb{R}_+^* e contradomínio \mathbb{R} , que associa a cada número real positivo \mathbf{x} o logaritmo $\log_a x$, sendo \mathbf{a} um número real positivo e diferente de 1.

$$f: \mathbb{R}_{+}^{*} \to \mathbb{R} \mid f(x) = \log_{a} x$$
, em que $0 < a \neq 1$

Exemplos:

10)
$$f(x) = \log_5 x$$

20)
$$f(x) = \log_{0.4} x$$

4°)
$$y = \log_{10} x$$

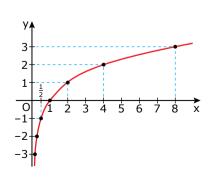
GRÁFICOS ■

Vamos construir os gráficos das funções $f(x) = \log_2 x$ e $f(x) = \log_{\frac{1}{2}} x$. Em cada caso, vamos atribuir alguns valores

para \mathbf{x} e, em seguida, calcularemos os correspondentes valores de \mathbf{y} . Os pares ordenados obtidos serão usados para construir cada gráfico.

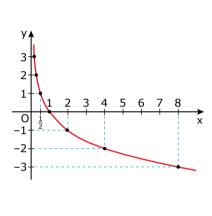
1°) Gráfico da função $f(x) = \log_2 x$

х	У
1/8	-3
$\frac{1}{4}$	-2
$\frac{1}{2}$	-1
1	0
2	1
4	2
8	3



2°) Gráfico da função $f(x) = \log_{\frac{1}{2}} x$

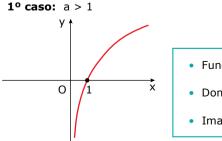
Х	У
8	-3
4	-2
2	-1
1	0
$\frac{1}{2}$	1
$\frac{1}{4}$	2
$\frac{1}{8}$	3



OBSERVAÇÕES

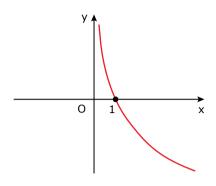
- i) Ambos os gráficos não interceptam o eixo das ordenadas. Isso ocorre porque a função logarítmica não está definida para x = 0.
- ii) Ambos os gráficos interceptam o eixo das abscissas no ponto (1, 0). Isso se deve ao fato de que log_a 1 = 0, para qualquer número real a positivo e diferente de 1.
- iii) O gráfico da função f(x) = log₂ x é crescente. Isso ocorre porque a base do logaritmo é igual a 2, ou seja, é maior do que 1.
- iv) O gráfico da função $f(x) = \log_{\frac{1}{2}} x$ é decrescente. Isso ocorre porque a base do logaritmo é igual a $\frac{1}{2}$, ou seja, é um número maior que 0 e menor que 1.

De modo geral, há dois casos a serem considerados no esboço do gráfico da função $f(x) = log_a x$:



- Função crescente
- Domínio D = ℝ^{*}_⊥
- Imagem Im = \mathbb{R}

2º caso: 0 < a < 1

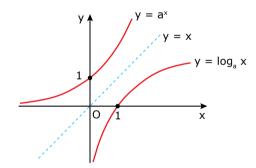


- Função decrescente
- Domínio D = \mathbb{R}^*
- Imagem Im = \mathbb{R}

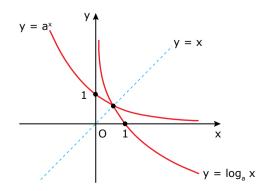
OBSERVAÇÃO

A função f: $\mathbb{R}_+^* \to \mathbb{R}$, definida por $f(x) = \log_a x$, é inversa da função g: $\mathbb{R} \to \mathbb{R}_+^*$, definida por $g(x) = a^x$, com $0 < a \ne 1$. Os gráficos das funções \mathbf{f} e \mathbf{g} são simétricos em relação à bissetriz dos quadrantes ímpares (y = x).

1º caso: a > 1

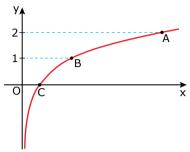


2º caso: 0 < a < 1



EXERCÍCIO RESOLVIDO

01. (UFJF-MG) A figura a seguir é um esboço, no plano cartesiano, do gráfico da função f(x) = log_b x, com alguns pontos destacados. Supondo que a abscissa do ponto **A** é igual a 9, é incorreto afirmar que:



- A) a base **b** é igual a 3.
- B) a abscissa de **C** é igual a 1.
- C) f(x) < 0 para todo $x \in (0, 1)$.
- D) a abscissa de **B** é igual a 2.
- E) f(x) é crescente.

Resolução:

O ponto **A** possui abscissa 9 e ordenada 2. Substituindo, na expressão da função, temos:

$$\log_b 9 = 2 \Rightarrow b^2 = 9 \Rightarrow b = 3$$

Portanto, a alternativa A está correta.

Para f(x) = 0, temos $log_b x = 0 \Rightarrow x = 1$. Logo, a abscissa do ponto \mathbf{C} é igual a 1. Portanto, a alternativa B está correta.

Para 0 < x < 1, as correspondentes imagens são negativas. Portanto, a alternativa C está correta.

Para f(x) = 1, temos $\log_3 x = 1 \Rightarrow x = 3$. Portanto, a alternativa D está incorreta.

O gráfico representa uma função crescente, pois a base b = 3 > 1, ou seja, a alternativa E está correta.

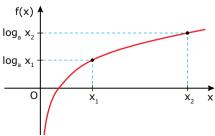
INEQUAÇÃO LOGARÍTMICA

É toda desigualdade em que a variável aparece no logaritmando ou na base do logaritmo. Há dois casos básicos:

Consideremos a função logarítmica $f(x) = \log_a x$.

1º caso: a > 1

O gráfico representa uma função crescente. Assim, observe que, para $\log_{\rm a} x_1 < \log_{\rm a} x_2$, temos $x_1 < x_2$.



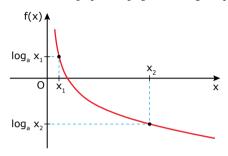
Portanto:

Se **a > 1**, devemos **conservar** o sinal da desigualdade ao comparar os logaritmandos.

$$x_1 < x_2 \Leftrightarrow \log_a x_1 < \log_a x_2$$

2º caso: 0 < a < 1

O gráfico representa uma função decrescente. Assim, observe que, para $\log_a x_1 > \log_a x_2$, temos $x_2 > x_1$.



Portanto:

Se **0** < **a** < **1**, devemos **inverter** o sinal da desigualdade ao comparar os logaritmandos.

$$X_1 < X_2 \Leftrightarrow \log_a X_1 > \log_a X_2$$

OBSERVAÇÃO

Ao resolver uma inequação logarítmica, devemos levar em consideração as condições de existência dos logaritmos envolvidos. Portanto, a solução consiste na interseção dos intervalos obtidos da condição de existência dos logaritmos e da inequação logarítmica.

EXERCÍCIOS RESOLVIDOS

02. Resolver, em \mathbb{R} , a inequação $\log_7 (x - 2) \le \log_7 5$.

Resolução:

Verificamos, inicialmente, a condição de existência:

$$x-2>0 \Rightarrow x>2$$
 (I)

Como 7 > 1, devemos conservar a desigualdade para os logaritmandos, ou seja:

$$x - 2 \le 5 \Rightarrow x \le 7$$
 (II)

A solução é dada pela interseção dos intervalos (I) e (II).

Portanto, $S = \{x \in \mathbb{R} \mid 2 < x \le 7\}.$

03. Resolver, em \mathbb{R} , a inequação $\log_{\frac{1}{2}}(2x-8) > \log_{\frac{1}{2}}x$

Resolução:

Verificamos, inicialmente, as condições de existência:

$$\begin{cases} 2x - 8 > 0 \\ e \\ x > 0 \end{cases} \Rightarrow \begin{cases} x > 4 \text{ (I)} \\ e \\ x > 0 \text{ (II)} \end{cases}$$

Como $0 < \frac{1}{6} < 1$, devemos inverter a desigualdade para os logaritmandos, ou seja:

$$2x - 8 < x \Rightarrow x < 8$$
 (III)

A solução é dada pela interseção dos intervalos (I), (II) e (III).

Portanto, $S = \{x \in \mathbb{R} \mid 4 < x < 8\}.$

04. Resolver, em \mathbb{R} , a inequação $\log_2 7 + \log_{\frac{1}{2}} (x + 1) \ge -3$.

Resolução:

A condição de existência é dada por:

$$x + 1 > 0 \Rightarrow x > -1$$
 (I)
 $\log_2 7 + \log_{\frac{1}{2}} (x + 1) \ge -3 \Rightarrow$

$$\log_2 7 + \log_{2^{-1}} (x + 1) \ge -3 \Rightarrow$$

$$\log_2 7 - \log_2 (x + 1) \ge -3\log_2 2 \Rightarrow$$

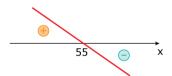
$$\log_2\left(\frac{7}{x+1}\right) \ge \log_2 2^{-3} \Rightarrow \frac{7}{x+1} \ge \frac{1}{8} \Rightarrow$$

$$\frac{7}{x+1} - \frac{1}{8} \ge 0 \Rightarrow \frac{56 - x - 1}{8(x+1)} \ge 0 \Rightarrow \frac{\overbrace{-x + 55}^{\text{Função I}}}{\underbrace{8x + 8}_{\text{Função II}}} \ge 0$$

Estudo do sinal:

Função I: $y_1 = -x + 55$

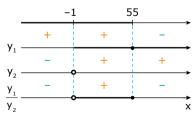
Raiz: $0 = -x + 55 \Rightarrow x = 55$



Função II: $y_2 = 8x + 8$

Raiz: $0 = 8x + 8 \Rightarrow x = -1$

Quadro de sinais:



Logo, o intervalo obtido da inequação logarítmica é $-1 < x \le 55$ (II).

Com a interseção de (II) com a condição de existência (I), temos como solução $S = \{x \in \mathbb{R} \mid -1 < x < 55\}.$

APLICAÇÕES DOS 1 LOGARITMOS

Há equações exponenciais que não conseguimos reduzir a potências de mesma base.

Assim, para resolver essas equações, devemos aplicar o logaritmo, em uma base adequada, dos dois lados da igualdade.

Esse artifício é utilizado devido ao fato de a função logarítmica ser a inversa da exponencial.

EXERCÍCIOS RESOLVIDOS

05. Resolver a equação exponencial $4^x = 12$. (Considerar: $\log 2 = 0.30$; $\log 3 = 0.48$.)

Resolução:

$$4^x = 12 \Rightarrow \log 4^x = \log 12 \Rightarrow$$

$$x.log 4 = log (4.3) \Rightarrow$$

$$x.log 2^2 = log 2^2 + log 3 \Rightarrow$$

$$2x.log 2 = 2.log 2 + log 3 \Rightarrow$$

$$2x.0,30 = 2.0,30 + 0,48 \Rightarrow$$

$$0,60x = 1,08 \Rightarrow x = 1,8$$

- **06.** (UFOP-MG) A massa de certo material radioativo num instante \mathbf{t} é dada por $m(t) = m_0.10^{-kt}$. Se \mathbf{t} é dado em anos, $m_0 = m(0) = 500 g \acute{e}$ a massa inicial, m(20) = 400 g, adotando $\log 2 = 0.3 e \log 5 = 0.7$, encontrar:
 - A) o valor de k.
 - B) o tempo necessário para que metade da massa inicial se desintegre.

Resolução:

A) Cálculo do valor de k:

Para
$$t = 0$$
, temos $m(0) = 500$.

Para t = 20, temos m(20) = 500 .
$$10^{-20k} \Rightarrow$$

$$400 = 500 \cdot 10^{-20k} \Rightarrow \frac{4}{5} = 10^{-20k} \Rightarrow$$

$$\log 10^{-20k} = \log \left(\frac{4}{5}\right) \Rightarrow -20k = \log 4 - \log 5 \Rightarrow$$

$$-20k = 2.\log 2 - \log 5 \Rightarrow -20k = 2.0,3 - 0,7 \Rightarrow$$

$$-20k = 0.6 - 0.7 \Rightarrow -20k = -0.1 \Rightarrow k = \frac{1}{200}$$

B) Temos que m(t) = 500 . $10^{-\frac{L}{200}}$.

Queremos que m(t) = 250 g (metade da massa inicial).

$$250 = 500 \cdot 10^{-\frac{t}{200}} \Rightarrow \frac{1}{2} = 10^{-\frac{t}{200}} \Rightarrow$$

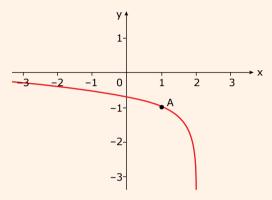
$$\log \frac{1}{2} = \log \left(10^{-\frac{t}{200}} \right) \Rightarrow \log 1 - \log 2 = -\frac{t}{200} \Rightarrow$$

$$0 - 0.30 = -\frac{t}{200} \Rightarrow t = 60$$

O tempo necessário é igual a 60 anos.

EXERCÍCIOS DE APRENDIZAGEM

01. (UPF-RS-2018) Na figura, está representada parte do gráfico da função **f** definida por $f(x) = \log (ax + 2) - 1$, com a $\neq 0$ e o ponto A(1, -1) pertencente ao gráfico da função f.



O valor de a é:

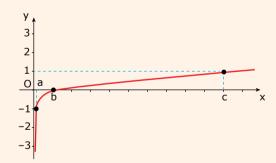
A) 1

D) -2

B) 2

E) 8

- C) -1
- 02. (PUC RS) Observando-se o céu após uma chuva, avista-se parte de um arco-íris atrás de uma construção. A parte visível poderia ser identificada como a representação gráfica da função **f** dada por $f(x) = \log x$, a seguir.



A soma dos valores a, b e c, indicados na figura, é:

- A) 11,1
- C) 14,9
- E) 100,1

- B) 14,5
- D) 15,5
- **03.** CJHU (CEFET-MG) Considere a função f:]-2, ∞ [$\to \mathbb{R}$ definida por $f(x) = \log_3 (x + 2)$. Se $f(a) = \frac{1}{3}f(b)$, então:

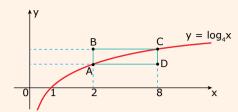
A)
$$a = \sqrt[3]{b+1}$$

B)
$$a = \sqrt[3]{b+3}$$

C)
$$a = \sqrt[3]{b+2} - 2$$

D)
$$a = \sqrt[3]{b+4} + 2$$

04. 0VSR (EsPCEx-SP-2017) A curva do gráfico a seguir representa a função $y = log_4 x$.

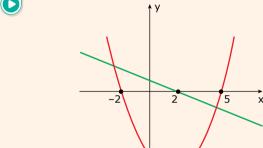


A área do retângulo ABCD é:

- A) 12
- C) 3
- E) log₄ 6

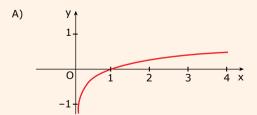
- B) 6
- D) $6\log_4 \frac{3}{2}$

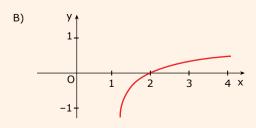


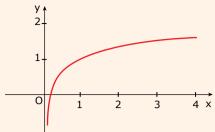


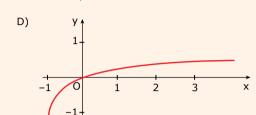
Se \mathbf{h} é a função definida $h(x) = \log (f(x).g(x))$, o domínio de \mathbf{h} é:

- A)]-2, 2[\cup]5, + ∞ [
- D) ℝ −]−2, 5[
- B)]-∞, -2[∪]2, 5[
- E)]-2, 5[
- C)]- ∞ , 2[\cup]5, + ∞ [
- **06.** (UEG-GO) O gráfico da função y = log (x + 1) é representado por:









07. WRMW (UDESC-SC) O conjunto de números reais que representa a interseção entre os domínios das funções

$$f(x) = \sqrt{(-2x^2 - 6x + 8)} eg(x) = log(x + 2)$$

é um intervalo

- A) aberto à direita e fechado à esquerda.
- B) aberto nos dois extremos.
- C) fechado nos dois extremos.
- D) infinito.
- E) aberto à esquerda e fechado à direita.

OS. XUDT (ESPM-SP) Em 1997 iniciou-se a ocupação de uma fazenda improdutiva no interior do país, dando origem a uma pequena cidade. Estima-se que a população dessa cidade tenha crescido segundo a função $P=0,1+\log_2{(x-1\,996)},$ onde P é a população no ano x, em milhares de habitantes. Considerando $\sqrt{2} \cong 1,4$, podemos concluir que a população dessa cidade atingiu a marca dos 3 600 habitantes em meados do ano

- A) 2005.
- C) 2011.
- E) 2004.

- B) 2002.
- D) 2007.

EXERCÍCIOS PROPOSTOS

01. KAUF

(UECE) Se f: $\mathbb{R}\to\mathbb{R}$ é a função definida por $f(x)=10^{1-Lx}$ então, o valor de $\log(f(e))$ é igual a

Atenção!

e = base do logaritmo natural;

Log = logaritmo na base 10;

L = logaritmo natural.

- A) $\frac{1}{2}$.
- B) 0.
- C) $\frac{1}{3}$.
- D) 1.

02.

(UERN) O produto entre o maior número inteiro negativo e o menor número inteiro positivo que pertence ao domínio da função $f(x) = log_3 (x^2 - 2x - 15)$ é:

A) -24

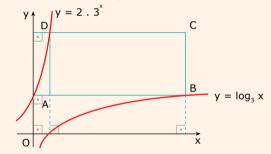
C) -10

B) -15

- 03. (UESB-BA-2018) É correto afirmar que o conjunto--solução da inequação em $x \in \mathbb{R}$, expressa por $\log_2(x^3 - x^2 + 1) \ge 0$, é:
 - A) $]-\infty,-1] \cup [1,+\infty[$
- D) [1, +∞[
- B) [-1, 1]

- E) [-1, 0] ∪ [1, +∞[
- C) [0, +∞[
- **04.** (FGV-SP) A solução da inequação $\log_1 (x^2 3) > 0$ é:
 - A) $\left\{x \in \mathbb{R} \mid x < -\sqrt{3} \text{ ou } x > \sqrt{3}\right\}$
 - B) $\{x \in \mathbb{R} \mid -2 < x < 2\}$
 - C) $\{x \in \mathbb{R} \mid -\sqrt{3} < x < \sqrt{3}\}$
 - D) $\{x \in \mathbb{R} \mid -2 < x < -\sqrt{3} \text{ ou } \sqrt{3} < x < 2\}$
 - E) $\{x \in \mathbb{R} \mid x < -2 \text{ ou } x > 2\}$

(UNIFESP) Com base na figura, o comprimento da diagonal AC do quadrilátero ABCD, de lados paralelos aos eixos coordenados, é:



- A) $2\sqrt{2}$
- C) 8
- E) $6\sqrt{3}$

- B) $4\sqrt{2}$
- D) $4\sqrt{5}$

(UEL-PR-2020) No Brasil, a preservação natural de um cadáver é rara devido ao clima tropical e ao solo ácido, que aceleram a sua decomposição. Por isso, a múmia encontrada em Goianá, Minas Gerais, no século XIX é tão incomum.

Disponível em: <www.museunacional.ufrj.br> (Adaptação).

Uma múmia encontrada em território brasileiro. Museu Nacional do Rio de Janeiro

Passados t anos após a morte deste ser humano, suponha que a massa m(t) de seu cadáver, medida em quilogramas, seja dada por $m(t) = 40e^{-C.t}$, onde e > 1 é uma constante e **C** é um parâmetro relacionado às características morfoclimáticas da região onde originalmente se encontrava. Admitindo que passados t = 600 anos a múmia possuía exatos 4 kg, assinale a alternativa que apresenta, corretamente, o valor do parâmetro C.

- A) $C = \frac{1}{200} \log_e 50$
- D) $C = \frac{1}{500} \log_e 40$
- B) $C = \frac{1}{300} \log_e 20$
 - E) $C = \frac{1}{600} \log_e 10$
- C) $C = \frac{1}{400} \log_e 30$
- 07. (FUVEST-SP) O conjunto dos números reais x que satisfazem a inequação $\log_2 (2x + 5) - \log_2 (3x - 1) > 1$ é o intervalo:
 - A) $\left|-\infty,-\frac{5}{2}\right|$
- D) $\left[\frac{1}{3}, \frac{7}{4}\right]$
- B) $\frac{7}{4}$, ∞
- E) $\left[0,\frac{1}{3}\right[$
- C) $-\frac{5}{2},0$
- **08.** NK2N (UECE) O domínio da função real de variável real definida por $f(x) = \log_{7}(x^{2} - 4x) \cdot \log_{3}(5x - x^{2})$ é o intervalo aberto cujos extremos são os números
 - A) 3 e 4.

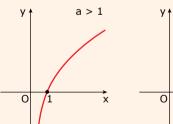
C) 5 e 6.

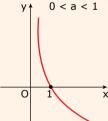
B) 4 e 5.

D) 6 e 7.

09. CXG1 O

(FUVEST-SP) Seja f uma função a valores reais, com domínio D $\subset \mathbb{R}$, tal que $f(x) = \log_{10} \left\lceil \log_{\underline{1}} (x^2 - x + 1) \right\rceil$ para todo $x \in D$.





Gráficos da função logarítmica de base a.

O conjunto que pode ser o domínio **D** é:

- A) $\{x \in \mathbb{R} \mid 0 < x < 1\}$
- B) $\{x \in \mathbb{R} \mid x \leq 0 \text{ ou } x \geq 1\}$
- C) $\left\{ x \in \mathbb{R} \mid \frac{1}{3} < x < 10 \right\}$
- D) $\left\{ x \in \mathbb{R} \mid x \leq \frac{1}{3} \text{ ou } x \geq 10 \right\}$
- E) $\left\{ x \in \mathbb{R} \mid \frac{1}{9} < x < \frac{10}{3} \right\}$

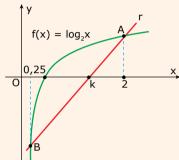
10. 551Q (UECE-2017) Se ${\bf f}$ é a função real de variável real definida por então, ${\bf f}({\bf x}) = \log \left(4 - {\bf x}^2\right) + \sqrt{4{\bf x} - {\bf x}^2}$, o maior domínio possível para ${\bf f}$ é:

 $\log x = \log \operatorname{aritmo} \operatorname{de} \mathbf{x}$ na base 10

- A) {números reais \mathbf{x} tais que $0 \le x < 4$ }.
- B) {números reais \mathbf{x} tais que 2 < x < 4}.
- C) {números reais \mathbf{x} tais que -2 < x < 4 }.
- D) {números reais \mathbf{x} tais que $0 \le x < 2$ }.

4FQ3

(UFPR) Considere o gráfico da função $f(x) = \log_2 x$ e a reta \mathbf{r} que passa pelos pontos \mathbf{A} e \mathbf{B} , como indicado na figura a seguir, sendo \mathbf{k} a abscissa do ponto em que a reta \mathbf{r} intersecta o eixo Ox. Qual é o valor de \mathbf{k} ?



A) $\frac{17}{12}$

D) $\frac{11}{9}$

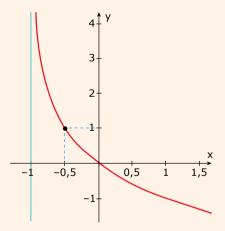
B) $\frac{14}{11}$

E) $\frac{7}{4}$

C) $\frac{12}{7}$

12. NX59 (UEG-GO-2018) O gráfico a seguir é a representação da

função $f(x) = log_2\left(\frac{1}{ax + b}\right)$.



O valor de f-1(-1) é

- A) -1.
- B) 0.
- C) -2.
- D) 2.
- E) 1.

 (UCS-RS) Um equipamento é depreciado de tal forma que, t anos após a compra, seu valor é dado por V(t) = C.e^{-0,2t} + 31 000. Se 10 anos após a compra o equipamento estiver valendo R\$ 112 000,00, então ele foi comprado por um valor, em reais,

Dado: In $7,4 \cong 2$.

- A) maior que 700 000.
- B) entre 600 000 e 700 000.
- C) entre 500 000 e 600 000.
- D) entre 400 000 e 500 000.
- E) menor que 400 000.

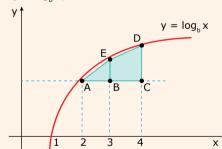
VM4X

(UCB-DF) Quando se administra uma medicação a um paciente, a droga entra na corrente sanguínea e, após a metabolização, é eliminada de tal forma que a quantidade presente no organismo decresce exponencialmente. Com base no exposto, suponha que, para o antibiótico ampicilina, 40% da droga presente no organismo de uma pessoa é eliminada a cada hora após a aplicação. Se uma dose típica de ampicilina tem 250 mg, e considerando que log 6 = 0,77, o tempo necessário, em horas, para que o organismo de uma pessoa elimine 235 mg dessa dose é

- A) menor que 4.
- B) entre 4 e 4,4.
- C) entre 4,4 e 4,8.
- D) entre 4,8 e 5,2.
- E) maior que 5,2.

G9SE

 (ACAFE-SC) A figura a seguir representa o gráfico da função y = log_b x, com b > 1 e x > 0.



Nessa representação, o polígono ABCDE possui área igual a:

- A) $\log_b \frac{3\sqrt{2}}{2}$
- C) $\log_b 3 + \log_b 2$

B) $\log_b 3$

D) $1,5.\log_{b} \sqrt{2}$

ECI7

(Unifor-CE) As populações de duas cidades A e B são dadas em milhares de habitantes pelas funções $A(t) = \log_8 (1 + t)^9$ e $B(t) = \log_2 (16t + 16)$ onde ${\bf t}$ é dado em anos. Após certo instante ${\bf t}$, a população de uma dessas cidades é sempre maior que a outra. O valor mínimo desse instante ${\bf t}$ é de

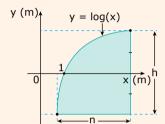
- A) 2 anos.
- B) 3 anos.
- C) 4 anos.
- D) 5 anos.
- E) 6 anos.

(Unicamp-SP) A altura (em metros) de um arbusto em uma dada fase de seu desenvolvimento pode ser expressa pela função h(t) = $0.5 + \log_2(t + 1)$, onde o tempo t ≥ 0 é dado em anos.

- A) Qual é o tempo necessário para que a altura aumente de 0,5 m para 1,5 m?
- B) Suponha que outro arbusto, nessa mesma fase de desenvolvimento, tem sua altura expressa pela função composta g(t) = h(3t + 2). Verifique que a diferença g(t) - h(t) é uma constante, isto é, não depende de t.

SECÃO ENEM

01. (Enem) Um engenheiro projetou um automóvel cujos vidros das portas dianteiras foram desenhados de forma que suas bordas superiores fossem representadas pela curva de equação y = log(x), conforme a figura.



A forma do vidro foi concebida de modo que o eixo x sempre divida ao meio a altura h do vidro e a base do vidro seja paralela ao eixo x. Obedecendo a essas condições, o engenheiro determinou uma expressão que fornece a altura h do vidro em função da medida n de sua base, em metros.

A expressão algébrica que determina a altura do vidro é:

$$A)\quad log\bigg(\frac{n+\sqrt{n^2+4}}{2}\bigg)-log\bigg(\frac{n-\sqrt{n^2+4}}{2}\bigg)$$

B)
$$\log\left(1+\frac{n}{2}\right)-\log\left(1-\frac{n}{2}\right)$$

C)
$$\log\left(1+\frac{n}{2}\right)+\log\left(1-\frac{n}{2}\right)$$

D)
$$log\left(\frac{n+\sqrt{n^2+4}}{2}\right)$$

E)
$$2 \log \left(\frac{n + \sqrt{n^2 + 4}}{2} \right)$$

02. (Enem) A Escala de Magnitude de Momento (abreviada com MMS e denotada como M_w), introduzida, em 1979, por Thomas Haks e Hiroo Kanamori, substituiu a escala de Richter para medir a magnitude dos terremotos em termos de energia liberada. Menos conhecida pelo público, a MMS é, no entanto, a escala usada para estimar as magnitudes de todos os grandes terremotos da atualidade. Assim como a escala Richter, a MMS é uma escala logarítmica. M_w e M_o se relacionam pela fórmula:

$$M_{W} = -10.7 + \frac{2}{3} \log_{10} (M_{0})$$

Onde M_o é o momento sísmico (usualmente estimado a partir dos registros de movimento da superfície, através dos sismogramas), cuja unidade é o dina.cm.

O terremoto de Kobe, acontecido no dia 17 de janeiro de 1995, foi um dos terremotos que causaram maior impacto no Japão e na comunidade científica internacional. Teve magnitude $M_w = 7.3$.

> U.S. GEOLOGICAL SURVEY. Historic Earthquakes. Disponível em: http://earthquake.usgs.gov">. Acesso em: 01 maio 2010 (Adaptação).

U.S. GEOLOGICAL SURVEY. USGS Earthquake Magnitude Policy. Disponível em: http://earthquake.usgs.gov">.

Acesso em: 01 maio 2010 (Adaptação).

Mostrando que é possível determinar a medida por meio de conhecimentos matemáticos, qual foi o momento sísmico Mo do terremoto de Kobe (em dina.cm)?

- A) 10^{-5,10}
- C) $10^{12,00}$

- B) 10^{-0,73}
- D) 10^{21,65}
- 03. Uma das grandezas relacionadas ao som é a sua altura A, medida em decibéis (dB). A altura de um som está relacionada com a sua intensidade I, medida em watts por metro quadrado, através da função:

$$A(I) = 10.\log\left(\frac{I}{I_0}\right),$$
constants que vale 10^{-12} W

sendo I_0 uma constante que vale 10^{-12} $\frac{W}{m^2}$

Sabe-se que as intensidades sonoras aproximadas de um carro e de um avião a jato são iguais a $10^{-4} \frac{W}{m^2}$ e

 $10^2 \frac{W}{m^2}$, respectivamente. Portanto, pode-se afirmar que a razão entre as alturas dos sons produzidos pelo avião e pelo carro, nessa ordem, é igual a

- A) 1,75.
- C) 1,95.
- E) 2,35.

- B) 1,85.
- D) 2,05.

SEÇÃO FUVEST/UNICAMP/UNESP

GABARITO	Meu aproveitamento		
Aprendizagem	Acertei	Errei	
Propostos	Acertei	□ 12. E □ 13. B □ 14. E □ 15. A □ 16. B	
Seção Enem	Acertei	O3. A	
Total dos meus acertos: de%			