MILITARES

PLATAFORMA PROFESSOR BOARO

LISTA 5 – ELETROMAGNETISMO

Recado para quem gosta de resolver lendo em papel: não imprima esta lista, espere só um pouco! Ela deverá receber mais exercícios nos próximos dias!

EXC431. Mod6.Exc051. (Espcex (Aman)) Uma carga elétrica puntiforme, no interior de um campo magnético uniforme e constante, dependendo de suas condições cinemáticas, pode ficar sujeita à ação de uma força magnética. Sobre essa força pode-se afirmar que

- a) tem a mesma direção do campo magnético, se a carga elétrica tiver velocidade perpendicular a ele.
- b) é nula se a carga elétrica estiver em repouso.
- c) tem máxima intensidade se o campo magnético e a velocidade da carga elétrica forem paralelos.
- d) é nula se o campo magnético e a velocidade da carga elétrica forem perpendiculares.
- e) tem a mesma direção da velocidade da carga elétrica.

Resposta:

[B]

EXC432. Mod6.Exc052. (Eear) Uma partícula com carga elétrica igual a $3.2 \,\mu\text{C}$ e velocidade de $2 \cdot 10^4 \,\text{m/s}$ é lançada perpendicularmente a um campo magnético uniforme e sofre a ação de uma força magnética de intensidade igual a $1.6 \cdot 10^2 \,\text{N}$. Determine a intensidade do campo magnético (em Tesla) no qual a partícula foi lançada.

- a) $0.25 \cdot 10^3$
- b) $2.5 \cdot 10^3$
- c) $2,5 \cdot 10^4$
- d) 0,25·10⁶

Resposta:

[B]

EXC433. Mod6.Exc060. (Esc. Naval) Uma partícula localizada em um ponto P do vácuo, em uma região onde há um campo eletromagnético não uniforme, sofre a ação da força resultante Fe+Fm, em que Fe é a força elétrica e Fm é a força magnética.

Desprezando a força gravitacional, pode-se afirmar que a força resultante sobre a partícula será nula se

- a) a carga elétrica da partícula for nula.
- b) a velocidade da partícula for nula.

- c) as forças (Fe, Fm) tiverem o mesmo módulo, e a carga da partícula for negativa.
- d) as forças (Fe, Fm) tiverem a mesma direção, e a carga da partícula for positiva.
- e) no ponto P campos elétricos e magnéticos tiverem sentidos opostos.

[A]

EXC434. Mod6. Exc063. (Eear) Um corpúsculo de 10 g está eletrizado com carga de $20 \,\mu\text{C}$ e penetra perpendicularmente em um campo magnético uniforme e extenso de $400 \,\text{T}$ a uma velocidade de $500 \,\text{m/s}$, descrevendo uma trajetória circular. A força centrípeta (F_{cp}), em N, e o raio da trajetória (F_{t}), em m, são:

a)
$$F_{cp} = 1$$
; $r_t = 78$

b)
$$F_{CD} = 2$$
; $r_t = 156$

c)
$$F_{cp} = 3$$
; $r_t = 312$

d)
$$F_{cp} = 4$$
; $r_t = 625$

Resposta:

[D]

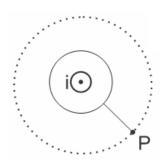
EXC435. Mod6.Exc084. (Espcex (Aman)) Sob a ação exclusiva de um campo magnético uniforme de intensidade $0.4\,\mathrm{T}$, um próton descreve um movimento circular uniforme de raio $10\,\mathrm{mm}$ em um plano perpendicular à direção deste campo. A razão entre a sua massa e a sua carga é de $10^{-8}\,\mathrm{kg/C}$. A velocidade com que o próton descreve este movimento é de:

- a) $4 \cdot 10^5 \text{ m/s}$
- b) $2 \cdot 10^5$ m/s
- c) $8 \cdot 10^4 \text{ m/s}$
- d) $6 \cdot 10^4 \text{ m/s}$
- e) $5 \cdot 10^3 \text{ m/s}$

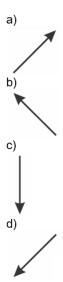
Resposta:

[A]

EXC436. Mod6.Exc022. (Eear) Uma espira circular com 10π cm de diâmetro, ao ser percorrida por uma corrente elétrica de 500 mA de intensidade, produz no seu centro um vetor campo magnético de intensidade igual a _____ $\cdot 10^{-6}$ T.

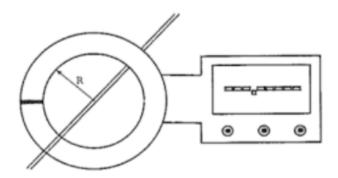

Obs. Utilize $\mu_0 = 4\pi \cdot 10^{-7} \ t \cdot m/A$

- a) 1
- b) 2
- c) 4
- d) 5


Resposta:

[B]

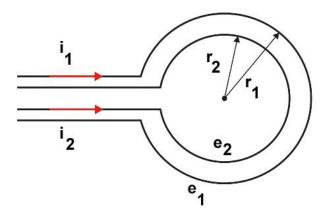
EXC437. Mod6.Exc024. (Eear) Um fio condutor é percorrido por uma corrente i como mostra a figura.


Próximo ao condutor existe um ponto P, também representado na figura. A opção que melhor representa o vetor campo magnético no ponto P é:

Resposta:

[A]

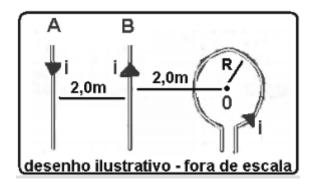
EXC438. Mod6.Exc031. (Esc. Naval) Analise a figura abaixo.


Um instrumento denominado amperímetro de alicate é capaz de medir a corrente elétrica em um ou mais condutores apenas os envolvendo com suas garras (ver figura). Quando essas são fechadas, o campo magnético produzido pelas correntes envolvidas pode ser medido por um sensor. Considere que dois condutores retilíneos, muito próximos um do outro atravessam o centro da área circular, de raio R, entre as garras do medidor. Sendo assim, o campo magnético medido pelo sensor será

- a) zero, se as correntes nos fios forem de mesmo módulo I e tiverem sentidos contrários.
- b) $\frac{\mu_0 I}{\pi R^2}$, se as correntes forem de mesmo módulo I e tiverem o mesmo sentido.
- c) $\frac{\mu_0 I}{2\pi R}$, se as correntes forem de mesmo módulo I e tiverem o mesmo sentido.
- d) $\frac{\mu_0 I}{4\pi R}$, se as correntes forem de mesmo módulo I e tiverem sentidos contrários.
- e) sempre zero.

Resposta:

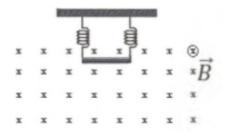
[A]


EXC439. Mod6.Exc036. (Esc. Naval) Na figura abaixo, e_1 e e_2 são duas espiras circulares, concêntricas e coplanares de raios $r_1 = 8.0$ m e $r_2 = 2.0$ m, respectivamente. A espira e_2 é percorrida por uma corrente $i_2 = 4.0$ A, no sentido anti-horário. Para que o vetor campo magnético resultante no centro das espiras seja nulo, a espira e_1 deve ser percorrida, no sentido horário, por uma corrente i_1 , cujo valor, em amperes, é de

- a) 4,0
- b) 8,0
- c) 12
- d) 16
- e) 20

[D]

EXC440. Mod6.Exc046. (Espcex (Aman)) Dois fios "A" e "B" retos, paralelos e extensos, estão separados por uma distância de 2 m. Uma espira circular de raio igual a $\pi/4$ m encontrase com seu centro "O" a uma distância de 2 m do fio "B", conforme desenho abaixo.


A espira e os fios são coplanares e se encontram no vácuo. Os fios "A" e "B" e a espira são percorridos por correntes elétricas de mesma intensidade i = 1 A com os sentidos representados no desenho. A intensidade do vetor indução magnética resultante originado pelas três correntes no centro "O" da espira é:

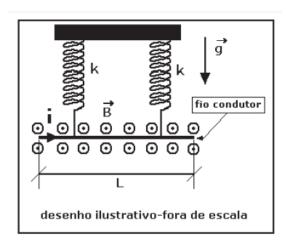
Dado: Permeabilidade magnética do vácuo: $\mu_0 = 4\pi \cdot 10^{-7} \, T \cdot m \, / \, A$

- a) $3.0 \cdot 10^{-7}$ T
- b) $4.5 \cdot 10^{-7}$ T
- c) $6.5 \cdot 10^{-7}$ T
- d) $7.5 \cdot 10^{-7}$ T
- e) $8.0 \cdot 10^{-7}$ T

[D]

EXC441. Mod6.Exc085. (Efomm) Um tenente da EFOMM construiu um dispositivo para o laboratório de Física da instituição. O dispositivo é mostrado na figura a seguir. Podemos observar que uma barra metálica, de 5 m de comprimento e 30 kg, está suspensa por duas molas condutoras de peso desprezível, de constante elástica 500 N/m e presas ao teto. As molas estão com uma deformação de 100 mm e a barra está imersa num campo magnético uniforme da intensidade 8,0 T.

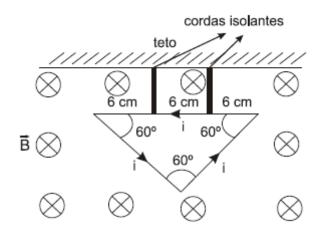
Determine a intensidade e o sentido da corrente elétrica real que se deve passar pela barra para que as molas não alterem a deformação.


- a) 2,5 A, esquerda
- b) 2,5 A, direita
- c) 5 A, esquerda
- d) 5 A, direita
- e) 10 A, direita

Resposta:

[C]

EXC442. Mod6.Exc086. (Espcex (Aman)) A figura abaixo representa um fio condutor homogêneo rígido, de comprimento L e massa M, que está em um local onde a aceleração da gravidade tem intensidade g. O fio é sustentado por duas molas ideais, iguais, isolantes e, cada uma, de constante elástica k. O fio condutor está imerso em um campo magnético uniforme de intensidade B, perpendicular ao plano da página e saindo dela, que age sobre o condutor, mas não sobre as molas.

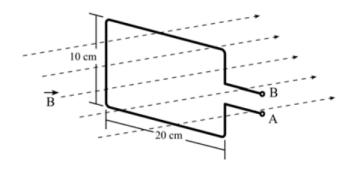

Uma corrente elétrica i passa pelo condutor e, após o equilíbrio do sistema, cada mola apresentará uma deformação de:

- a) $\frac{Mg + 2k}{Bil}$
- b) $\frac{\text{BiL}}{\text{Mg} + 2\text{k}}$
- c) $\frac{k}{2(Mg + BiL)}$
- d) $\frac{Mg + BiL}{2k}$
- $e) \ \frac{2k + BiL}{Mg}$

[D]

EXC443. Mod6.Exc088. (Espcex (Aman)) Em uma espira condutora triangular equilátera, rígida e homogênea, com lado medindo 18 cm e massa igual a 4,0 g, circula uma corrente elétrica i de 6,0 A, no sentido anti-horário. A espira está presa ao teto por duas cordas isolantes, ideais e de comprimentos iguais, de modo que todo conjunto fique em equilíbrio, num plano vertical. Na mesma região, existe um campo magnético uniforme de intensidade B = 0,05 T que atravessa perpendicularmente o plano da espira, conforme indicado no desenho abaixo.

Considerando a intensidade da aceleração da gravidade $\,g=10\,$ m / $\,s^2,\,$ a intensidade da força de tração em cada corda é de

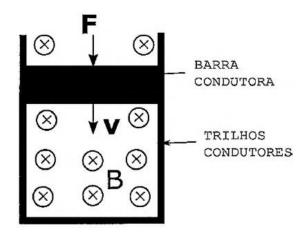

Dados: $\cos 60^{\circ} = 0,50$ $\sin 60^{\circ} = 0,87$

- a) 0,01 N
- b) 0,02 N
- c) 0,03 N
- d) 0,04 N
- e) 0,05 N

Resposta:

[B]

EXC444. Mod6.Exc113. (Eear) Uma espira retangular de $10 \text{ cm} \times 20 \text{ cm}$ foi posicionada e mantida imóvel de forma que um campo magnético uniforme, de intensidade B = 100 T, ficasse normal à área interna da espira, conforme figura a seguir.


Neste caso, o valor da Força Eletromotriz Induzida nos terminais A e B da espira vale _____ V.

- a) 0,00.
- b) 0,02.
- c) 0,20
- d) 2,00

Resposta:

[A]

EXC445. Mod6.Exc117. (Esc. Naval) Analise a figura a seguir.

Imersa numa região onde o campo magnético tem direção vertical e módulo B=6,0~T, uma barra condutora de um metro de comprimento, resistência elétrica $R=1,0~\Omega$ e massa m=0,2~kg desliza sem atrito apoiada sobre trilhos condutores em forma "U" dispostos horizontalmente, conforme indica a figura acima. Se uma força externa F mantém a velocidade da barra constante e de módulo v=2,0~m/s, qual o módulo da força F, em newtons?

- a) 6,0
- b) 18
- c) 36
- d) 48
- e) 72

Resposta:

[E]

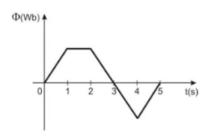
EXC446. Mod6.Exc125. (Efomm) Uma espira condutora retangular rígida move-se, com velocidade vetorial \vec{v} constante, totalmente imersa numa região na qual existe um campo de indução magnética \vec{B} , uniforme, constante no tempo, e perpendicular ao plano que contém tanto a espira como seu vetor velocidade. Observa-se que a corrente induzida na espira é nula. Podemos afirmar que tal fenômeno ocorre em razão de o

- a) fluxo de \vec{B} ser nulo através da espira.
- b) vetor \vec{B} ser uniforme e constante no tempo
- c) vetor \vec{B} ser perpendicular ao plano da espira.
- d) vetor \vec{B} ser perpendicular a \vec{v} .
- e) vetor \vec{v} ser constante.

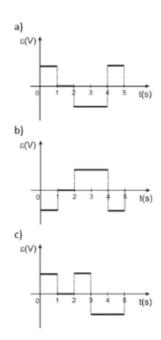
Resposta:

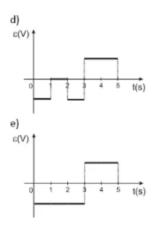
EXC447. Mod6.Exc127. (Efomm) Um fio de resistência $5\,\Omega$ e 2,4 m de comprimento forma um quadrado de 60 cm de lado. Esse quadrado é inserido por completo, com velocidade constante, durante 0,90 segundos em um campo magnético constante de 10,0 T (de forma que a área do quadrado seja perpendicular às linhas do campo magnético). A intensidade de corrente que se forma no fio é i_1 .

Outro fio reto de 2,0 m de comprimento possui uma intensidade de corrente i₂, quando imerso em um campo magnético constante de módulo 10,0 T. A força magnética que atua no fio possui módulo 8,0 N. A direção da força é perpendicular à do fio e à direção do campo magnético.


A razão entre os módulos de i₁ e i₂ é:

- a) 0,2
- b) 0,4
- c) 0,5
- d) 2,0
- e) 4,0


Resposta:


[D]

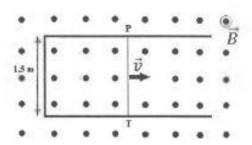
EXC448. Mod6.Exc140. (Esc. Naval) Analise a figura a seguir.

O gráfico da figura acima registra a variação do fluxo magnético, Φ , através de uma bobina ao longo de 5 segundos. Das opções a seguir, qual oferece o gráfico da f.e.m induzida, ϵ , em função do tempo?



[B]

EXC449. Mod6.Exc143. (Epcar (Afa)) A figura a seguir mostra um ímã oscilando próximo a uma espira circular, constituída de material condutor, ligada a uma lâmpada.


A resistência elétrica do conjunto espira, fios de ligação e lâmpada é igual a R e o ímã oscila em *MHS* com período igual a T. Nessas condições, o número de elétrons que atravessa o filamento da lâmpada, durante cada aproximação do ímã

- a) é diretamente proporcional a T.
- b) é diretamente proporcional a T^2 .
- c) é inversamente proporcional a T.
- d) não depende de T.

Resposta:

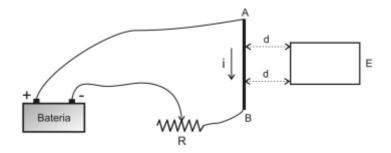
[D]

EXC450. Mod6.Exc145. (Efomm) Um condutor retilíneo PT, de resistência $R = 20,0~\Omega$, está em contato com um condutor de resistência desprezível e dobrado em forma de U, como indica a figura. O conjunto está imerso em um campo de indução magnética \vec{B} , uniforme, de intensidade 15,0 T, de modo que \vec{B} é ortogonal ao plano do circuito. Seu Demi, um operador, puxa o condutor PT, de modo que este se move com velocidade constante \vec{v} , como indica a figura, sendo v = 4,0~m/s.

Determine a forma eletromotriz induzida no circuito e o valor da força aplicada por seu Demi ao condutor PT.

- a) 45 V e 80,45 N
- b) 65 V e 90,10 N
- c) 80 V e 100,65 N
- d) 90 V e 101,25 N
- e) 100,85 V e 110,95 N

Resposta:


[D]

TEXTO PARA A PRÓXIMA QUESTÃO:

Nas questões a seguir, quando necessário, use:

- Aceleração da gravidade: g = 10 m/s²;
- Calor específico da água: c = 1,0 cal/g °C;
- sen $45^{\circ} = \cos 45^{\circ} = \sqrt{2}/2$.

EXC451. Mod6. Exc146. (Epcar (Afa)) Uma espira condutora E está em repouso próxima a um fio retilíneo longo AB de um circuito elétrico constituído de uma bateria e de um reostato R, onde flui uma corrente i, conforme ilustrado na figura abaixo.

Considerando exclusivamente os efeitos eletromagnéticos, pode-se afirmar que a espira será

- a) repelida pelo fio AB se a resistência elétrica do reostato aumentar.
- b) atraída pelo fio AB se a resistência elétrica do reostato aumentar.
- c) sempre atraída pelo fio AB independentemente de a resistência elétrica do reostato aumentar ou diminuir.
- d) deslocada paralelamente ao fio AB independentemente de a resistência elétrica do reostato aumentar ou diminuir.

Resposta:

[B]