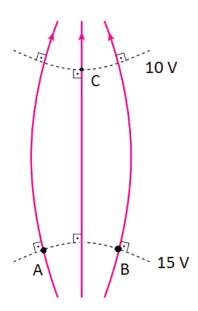

1. PUC-RJ 2012

Ao colocarmos duas cargas pontuais q1=5,0 μ C e q₂=2,0 μ C a uma distância d=30,0cm, realizamos trabalho. Determine a energia potencial eletrostática, em joules, deste sistema de cargas pontuais. Dado: k_0 =9x10⁹Nm²/C².

- **a.** 1
- **b.** 10
- c. 3.0×10^{-1}
- d. 2.0×10^{-5}
- e. 5.0×110^{-5}

2. UFRGS 2004

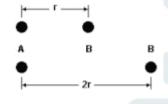
A figura a seguir representa a vista lateral de duas placas metálicas quadradas que, em um ambiente desumidificado, foram eletrizadas com cargas de mesmo valor e de sinais contrários. As placas estão separadas por uma distância d = 0,02 m, que é muito menor do que o comprimento de seus lados. Dessa forma, na região entre as placas, existe um campo elétrico praticamente uniforme, cuja intensidade é aproximadamente iguala 5x10³ N/C. Para se transferir uma carga elétrica positiva da placa negativamente carregada para a outra, é necessário realizar trabalho contra o campo elétrico. Esse trabalho é função da diferenca de potencial existente entre as placas.


Quais são, respectivamente, os valores aproximados da diferença de potencial entre as placas e do trabalho necessário para transferir uma carga elétrica de 3x10⁻³C da placa negativa para a positiva?

- **a.** 15V e 0,2J.
- **b.** 75V e O,2J.
- **c.** 75V e O,3J.
- **d.** 100V e 0.3J.
- e. 100V e 0,4J.

3. Stoodi

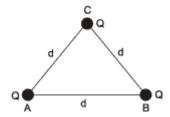
As linhas cheias representam algumas linhas de força de um campo eletrostático e, as tracejadas, as linhas equipotenciais. Uma partícula eletrizada com carga elétrica q = 2.10-6 C é transportada de A até B e de B até C. Qual o trabalho realizado pela força eletrostática nestes dois deslocamentos respectivamente?



- a. $0~e~1\cdot 10^{-5}J$
- b. $0~e~1\cdot 10^{-6}J$
- $\mathrm{c.}\,1J~e~1\cdot10^{-5}J$
- d. $10J\ e\ 1\cdot 10^{-6}J$
- e. $10J \ e \ 1 \cdot 10^{-5}J$

4. UFJF 2007

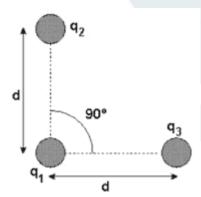
A figura a seguir mostra um sistema de duas partículas puntiformes A e B em repouso, com cargas elétricas iguais a Q, separadas por uma distância r. Sendo K, a constante eletrostática, pode-se afirmar que o módulo da variação da energia potencial da partícula B na presença da partícula A, quando sua distância é modificada para 2r. é:


- (KQ^2)
- b. (2r)

- $_{\mathrm{d.}}\frac{(KQ^2)}{(4r^2)}$

5. UPE 2011

Considere três cargas elétricas puntiformes, positivas e iguais a Q, colocadas no vácuo, fixas nos vértices A, B e C de um triângulo equilátero de lado d, de acordo com a figura a seguir



A energia potencial elétrica do par de cargas, disponibilizadas nos vértices A e B, é igual a 0,8 J. Nessas condições, é correto afirmar que a energia potencial elétrica do sistema constituído das três cargas, em joules, vale:

- **a.** 0,8
- **b.** 1,2
- **c.** 1,6
- **d.** 2,0
- **e.** 2,4

6. UNIFESP 2009

Considere a seguinte 'unidade' de medida: a intensidade da força eletrica entre duas cargas q, quando separadas por uma distância d, é F. Suponha em seguida que uma carga q₁ = q seja colocada frente a duas outras cargas, q₂ = 3q e q₃ = 4q, segundo a disposição mostrada na figura.

A intensidade da força elétrica resultante sobre a carga \mathbf{q}_{1} , devido às cargas \mathbf{q}_{2} e \mathbf{q}_{3} , será:

- **a.** 2F.
- **b.** 3F.
- c. 4F.
- **d.** 5F.
- **e.** 9F.

7. MACKENZIE 2010

Duas cargas elétricas puntiformes, q_1 =3,00 μ C e q_2 =4,00 μ C, encontram-se num local onde k=9•10⁹ Nm²/C². Suas respectivas posições são os vértices dos ângulos agudos de um triângulo retângulo isósceles, cujos catetos medem 3,00mm cada um. Ao colocar-se outra carga puntiforme, q_3 =1,00 μ C, no vértice do ângulo reto, esta adquire uma energia potencial elétrica, devido a presença de q_1 e q_2 igual a:

a. 9,0 J

b. 12,0 J

c. 21,0 J

d. 25,0 J

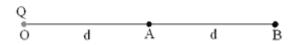
e. 50,0 J

8. UFPR 2012

Um próton movimenta-se em linha reta paralelamente às linhas de força de um campo elétrico uniforme, conforme mostrado na figura. Partindo do repouso no ponto 1 e somente sob ação da força elétrica, ele percorre uma distância de 0,6 m e passa pelo ponto 2. Entre os pontos 1 e 2 há uma diferença de potencial Δ V igual a 32 V. Considerando a massa do próton igual a 1,6 •10⁻²⁷kg e sua carga igual a 1,6•10⁻¹⁹C, assinale a alternativa que apresenta corretamente a velocidade do próton ao passar pelo ponto 2.

a. $2, 0 \cdot 10^4 \text{m/s}$

b. $4, 0 \cdot 10^4 \text{m/s}$


c. $8, 0 \cdot 10^4 \text{m/s}$

 $d.1, 6 \cdot 10^5 m/s$

e. $3, 2 \cdot 10^5 \text{m/s}$

9. Stoodi

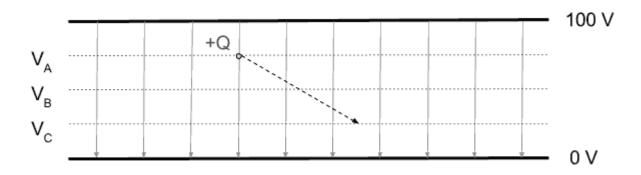
Considere uma carga puntiforme Q, positiva, fixa no ponto O, e os pontos A e B, como mostra na figura:

Sabe-se que os módulos do vetor campo elétrico e do potencial elétrico gerados pela carga Q no ponto A são respectivamente, E e V. Nessas condições, os módulos dessas grandezas no ponto B, são respectivamente:

a. 4 E e 2 V

b. 2 E e 4 V

c. E/2 e V/2


d. E/2 e V/4

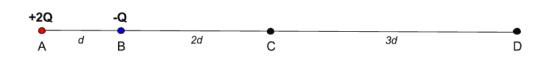
e. E/4 e V/2

10. Stoodi

Uma carga positiva puntiforme Q=3 μC é movida dentro de uma região de campo elétrico uniforme, como mostra a figura abaixo, indo do potencial V_A até V_C . Sabendo que as superfícies equipotenciais estão equidistantes, 1 m, entre si, qual o valor do trabalho realizado pela força elétrica?

$$_{\mathrm{a.}}\,6,0\cdot10^{-4}J$$

$$_{\rm b.}\,4,5\cdot 10^{-4}J$$

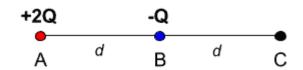

c.
$$3, 0 \cdot 10^{-4}J$$

d.
$$1, 5 \cdot 10^{-4} J$$

e. A força elétrica não realiza trabalho.

11. Stoodi

Duas cargas elétricas, pontuais carregadas com +2Q e -Q, estão situadas nos pontos A e B respectivamente, como ilustra a figura. A razão entre os potenciais elétricos nos pontos D e C, é:



- **a.** -15/12
- **b.** -4/15
- **c.** 1/15
- **d.** 12/15
- **e.** 42/15

12. Stoodi

Duas cargas pontuais estão dispostas sobre os pontos A e B conforme mostra a figura abaixo. Sabendo que o comprimento AB = BC = d, qual é o potencial elétrico no ponto C?

 $2k_0Q$

a. (

b. $\frac{k_0Q}{2d}$

c. ()

 $\frac{-k_0Q}{2}$

d. 2*d*

-2n0q

13. UFPEL 2007

De acordo com a Eletrostática e seus conhecimentos, é correto afirmar que:

a. a densidade de carga, nos cantos de uma caixa cúbica condutora, eletricamente carregada, é menor do que nos centros de suas faces.

b. duas cargas eletricas puntiformes estão separadas por uma certa distância. Para que a intensidade do potencial elétrico se anule num ponto do segmento de reta que as une, ambas deverão apresentar sinais iguais.

c. o campo elétrico criado por duas distribuições uniformes de carga, próximas e de sinais contrários, é uniforme, na região entre elas, se as cargas se encontram distribuídas sobre uma pequena esfera e uma placa adjacente.

d. uma esfera metálica eletricamente neutra, ao ser aproximada de um bastão de vidro positivamente carregado, sofre uma força de atração elétrica.

e. a Lei de Coulomb estabelece que a força elétrica entre duas cargas elétricas puntiformes é diretamente proporcional ao produto de suas massas e inversamente proporcional ao quadrado da distância entre elas.

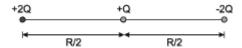
14. UPE 2013

Considere a Terra como uma esfera condutora, carregada uniformemente, cuja carga total é 6,0 μ C e a distância entre o centro da Terra e um ponto P na superfície da Lua é de aproximadamente 4x10⁸ m. A constante eletrostática no vácuo é de aproximadamente 9x10⁹ Nm²/C². É CORRETO afirmar que a ordem de grandeza do potencial elétrico nesse ponto P, na superfície da Lua vale, em volts:

a.
$$10^{-2}$$

b.
$$10^{-3}$$

$${\rm c.}\,10^{-4}$$


d.
$$10^{-5}$$

$$e.10^{-12}$$

15. UFRGS 2012

Considere que U é a energia potencial elétrica de duas partículas corn cargas +2Q e -2Q flxas a uma distância R uma da outra. Uma nova partícula de carga +Q é agregada a este sistema entre as duas partículas iniciais. conforme representado na figura a seguir.

A energia potencial elétrica desta nova configuração do sistema é:

- a. zero.
- **b.** U/4.
- **c.** U/2.
- d. U.
- e. 3U.

GABARITO: 1) c, 2) d, 3) a, 4) b, 5) e, 6) d, 7) c, 8) c, 9) e, 10) d, 11) d, 12) c, 13) d, 14) c, 15) d,