Miller

PRIMEIRA LEI DE MENDEL

A reunião das conclusões obtidas por Mendel é conhecida como a **1ª Lei de Mendel** ou Lei da Pureza dos Gametas:

"As características são condicionadas por pares de fatores, que se separam na formação dos gametas, de tal modo que os gametas são sempre puros".

A 1ª Lei de Mendel rege os casos de monoibridismo, situação em que, em um cruzamento, apenas uma característica está sendo acompanhada.

Analisando-se o resultado de um cruzamento, pode-se determinar quais são os possíveis genótipos que aparecem na descendência. O método habitualmente empregado é o **quadrado de Punnett**, popularmente conhecido como "jogo da velha".

Na linha vertical, são colocados os gametas que podem ser gerados por um dos ancestrais, e na horizontal, colocam-se os gametas do outro ancestral.

Seguem agora os cruzamentos possíveis, de acordo com a 1ª Lei de Mendel, considerando A o alelo dominante, responsável pela cor amarela das ervilhas, e a o alelo recessivo, responsável pela cor verde:

Cruzando-se os indivíduos puros da geração P (AA x aa), obteremos o seguinte resultado em F2:

Gametas	Α	Α
а	Aa	Aa
а	Aa	Aa

Do cruzamento entre indivíduos parentais, podemos determinar que 100% dos descendentes têm genótipo Aa e, portanto, fenotipicamente com ervilhas amarelas.

 Cruzando-se os híbridos formados em F1 (Aa x Aa), obteremos o seguinte resultado em F2:

Gametas	А	а
А	AA	Aa
а	Aa	аа

O genótipo se apresentou do seguinte modo: 25% AA, 50% Aa e 25% aa, sendo o fenótipo de 75% sementes amarelas e 25% sementes verdes ou 3 amarelas : 1 verde.

Seguem os outros cruzamentos básicos de acordo com a lei do Monoibridismo:

Gametas	Α	Α	
А	AA	AA	
Α	AA	АА	

Genótipo = 100% AA

Fenótipo = 100% sementes amarelas

Gametas	Α	Α
Α	AA	AA
а	Aa	Aa

Genótipo = 50% AA e 50% Aa

Fenótipo = 100% sementes amarelas

Gametas	Α	а
а	Aa	aa
а	Aa	aa

Genótipo = 50% Aa e 50% aa

Fenótipo = 50% sementes amarelas e 50% sementes verdes

Gametas	а	а
а	aa	аа
а	aa	aa

Genótipo = 100% aa

Fenótipo = 100% sementes verdes

A seguir, está uma tabela que mostra alguns focos dos estudos de Mendel, indicando quais as características dominantes e quais as recessivas.

Caractere	Característica Dominante	Característica Recessiva	Geração F₂ dominante: recessivo	Proporção
Cor da flor	Roxa >	Branca	705:224	3,15:1
Posição da flor	Axial	Terminal	651:207	3,14:1
Cor da semente	Amarela >	Verde	6,022:2,001	3,01:1
Formato da semente	Redonda >	Enrugada	5,474:1,850	2,96:1
Formato da vagem	Inflada	Constrita	882:299	2,95:1
Cor da vagem	Verde	Amarela	428:152	2,82:1
Comprimento do caule	Alto	Anão	787:277	2,84:1

PROBABILIDADE APLICADA À GENÉTICA

Acredita-se que um dos motivos para as ideias de Mendel permanecerem incompreendidas durante mais de 3 décadas foi o raciocínio matemático que continham. Mendel partiu do princípio que a formação dos gametas seguia as leis da probabilidade.

A probabilidade é a chance que um evento tem de ocorrer, entre dois ou mais eventos possíveis. Por exemplo, ao lançarmos uma moeda, qual a chance dela cair com a face "cara" voltada para cima? E em um baralho de 52 cartas, qual a chance de ser sorteada uma carta do naipe de espadas?

Na genética, podemos ter dois tipos de eventos: Aleatórios ou Independentes.

São denominados eventos aleatórios (do latim alea, sorte) porque cada um deles tem a mesma chance de ocorrer em relação a seus respectivos eventos alternativos. A formação de um determinado tipo de gameta, com um outro alelo de um par de genes, também é um evento aleatório. Um indivíduo heterozigoto Aa tem a mesma probabilidade de formar gametas portadores do alelo A do que de formar gametas com o alelo a (½ A: ½ a).

Quando a ocorrência de um evento não afeta a probabilidade de ocorrência de um outro, fala-se em eventos independentes. Por exemplo, imagine um casal que já teve dois filhos homens; qual a probabilidade que uma terceira criança seja do sexo feminino? Uma vez que a formação de cada filho é um evento independente, a chance de nascer uma menina, supondo que homens e mulheres nasçam com a mesma frequência, é $\frac{1}{2}$ ou 50%, como em qualquer nascimento.

ANOTAÇÕES		