MILITARES

PLATAFORMA PROFESSOR BOARO

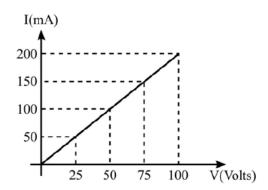
LISTA 4 - ELETRODINÂMICA

Recado para quem gosta de resolver lendo em papel: não imprima esta lista, espere só um pouco! Ela deverá receber mais exercícios nos próximos dias!

EXC311. Mod5.Exc086. (Espcex (Aman)) O disjuntor é um dispositivo de proteção dos circuitos elétricos. Ele desliga automaticamente e o circuito onde é empregado, quando a intensidade da corrente elétrica ultrapassa o limite especificado. Na cozinha de uma casa ligada à rede elétrica de 127 V, há três tomadas protegidas por um único disjuntor de 25 A, conforme o circuito elétrico representado, de forma simplificada, no desenho abaixo.

A tabela a seguir mostra a tensão e a potência dos aparelhos eletrodomésticos, nas condições de funcionamento normal, que serão utilizados nesta cozinha.

APARELHOS	forno de micro-ondas	lava-louça	geladeira	cafeteira	liquidificador
TENSÃO (V)	127	127	127	127	127
POTÊNCIA (W)	2000	1500	250	600	200

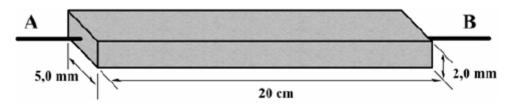

Cada tomada conectará somente um aparelho, dos cinco já citados acima. Considere que os fios condutores e as tomadas do circuito elétrico da cozinha são ideais. O disjuntor de 25 A será desarmado, desligando o circuito, se forem ligados simultaneamente:

- a) forno de micro-ondas, lava-louça e geladeira.
- b) geladeira, lava-louça e liquidificador.
- c) geladeira, forno de micro-ondas e liquidificador.
- d) geladeira, cafeteira e liquidificador.
- e) forno de micro-ondas, cafeteira e liquidificador.

Resposta:

[A]

EXC312. Mod5.Exc057. (Eear) O gráfico a seguir corresponde ao comportamento da corrente elétrica que percorre um condutor, em função da diferença de potencial a ele aplicada.

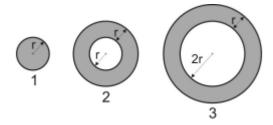

Sabendo-se que este condutor é constituído de um fio de 2 m de comprimento e de um material cuja resistividade, a $20\,^{\circ}$ C, vale $1,75\cdot10^{-6}\,\Omega\cdot\text{m}$, determine a área da seção transversal do fio e o valor da resistência elétrica desse condutor na referida temperatura.

- a) $0.7 \cdot 10^{-4} \text{cm}^2 \text{ e } 0.5 \Omega$
- b) $0.7 \cdot 10^{-4} \text{cm}^2 \text{ e } 500 \Omega$
- c) $0.83 \cdot 10^{-4} \text{ cm}^2 \text{ e } 12.5 \Omega$
- d) $0.83 \cdot 10^{-4} \text{ cm}^2 \text{ e } 500 \Omega$

Resposta:

[B]

EXC313. Mod5.Exc058. (Eear) Uma barra homogênea de grafite no formato de um paralelepípedo, com as dimensões indicadas na figura, é ligada a um circuito elétrico pelos condutores ideais A e B. Neste caso, a resistência elétrica entre os terminais A e B é de _____ ohms.



Considere:

- 1. a resistividade do grafite: $\rho = 75 \Omega \frac{\text{mm}^2}{\text{m}}$
- 2. a barra como um resistor ôhmico.
- a) 0,5
- b) 1,0
- c) 1,5
- d) 2,0

[C]

EXC314. Mod5.Exc078. (Epcar (Afa)) Três condutores cilíndricos 1, 2 e 3, de mesmo material e mesmo comprimento, sendo os condutores 2 e 3 ocos, têm suas seções retas apresentadas na figura a seguir.

A respeito das resistências elétricas R_1 , R_2 e R_3 , dos condutores 1, 2 e 3, respectivamente, pode-se afirmar que

- a) $R_3 = R_2 = R_1$
- b) $R_3 < R_2 < R_1$
- c) $R_3 = R_2 < R_1$
- d) $R_3 > R_2 > R_1$

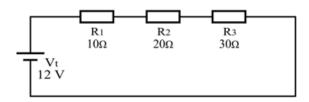
Resposta:

[B]

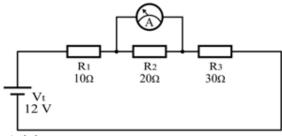
EXC315. Mod5.Exc085. (Espcex (Aman)) Um fio de cobre possui uma resistência R. Um outro fio de cobre, com o triplo do comprimento e a metade da área da seção transversal do fio anterior, terá uma resistência igual a:

- a) 2R/3
- b) 3R/2
- c) 2R
- d) 3R
- e) 6R

Resposta:


[E]

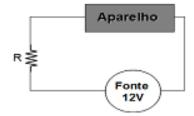
EXC316. Mod5.Exc089. (Esc. Naval) Um chuveiro elétrico opera em uma rede de 220 volts dissipando 7.600 J/s de calor em sua resistência. Se esse mesmo chuveiro fosse conectado a uma rede de 110 volts, a potência dissipada, em J/s, passará a ser de


- a) 5.700
- b) 3.800
- c) 2.533
- d) 1.900

[D]

EXC317. Mod5.Exc094. (Eear) Em uma aula de laboratório o professor montou um circuito com 3 resistores ôhmicos R_1, R_2 e R_3 associados a uma fonte de alimentação ideal (Vt) conforme o circuito abaixo. E solicitou ao aluno que, usando um amperímetro ideal, medisse o valor da intensidade de corrente elétrica que flui através de R_2 .

O aluno, porém, fez a ligação do amperímetro (A) da maneira indicada na figura a seguir. Com base nisso, assinale a alternativa que representa o valor indicado, em ampères, no amperímetro.

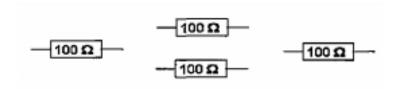


- a) 0,0
- b) 0,2
- c) 0,3
- d) 0,4

Resposta:

[C]

EXC318. Mod5.Exc102. (Eear) Um aparelho continha as seguintes especificações de trabalho: Entrada 9 V – 500 mA. A única fonte para ligar o aparelho era de 12 V. Um cidadão fez a seguinte ligação para não danificar o aparelho ligado à fonte:

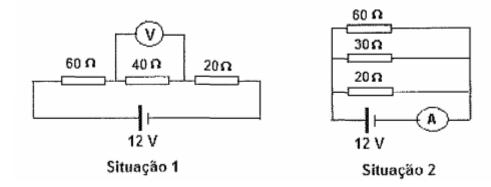

Considerando a corrente do circuito igual a 500 mA, qual deve ser o valor da resistência R, em Ω , para que o aparelho não seja danificado?

- a) 4
- b) 5
- c) 6
- d) 7

Resposta:

[C]

EXC319. Mod5.Exc109. (G1 - col. naval) Em uma aula prática, um grupo de alunos recebeu como tarefa a montagem de um dispositivo elétrico que fosse capaz de produzir a maior potência possível quando ligado a uma fonte de 125 V. Para isso, receberam 4 resistores iguais, conforme mostrado na figura a seguir.


Sendo assim, para cumprir essa atividade de forma correta, o grupo associou

- a) quatro resistores em série e obteve um dispositivo de 625 W.
- b) quatro resistores em paralelo e obteve um dispositivo de 625 W.
- c) três resistores em paralelo e obteve um dispositivo de 680 W.
- d) dois resistores em paralelo e obteve um dispositivo de 470 W.
- e) dois resistores em série e obteve um dispositivo de 470 W.

Resposta:

[B]

EXC320. Mod5.Exc126. (G1 - col. naval) Considere que um determinado estudante, utilizando resistores disponíveis no laboratório de sua escola, montou os circuitos apresentados abaixo:

Querendo fazer algumas medidas elétricas, usou um voltímetro (V) para medir a tensão e um amperímetro (A) para medir a intensidade da corrente elétrica. Considerando todos os elementos envolvidos como sendo ideais, os valores medidos pelo voltímetro (situação 1) e pelo amperímetro (situação 2) foram, respectivamente:

- a) 2V e 1,2A
- b) 4V e 1,2A
- c) 2V e 2,4A
- d) 4V e 2,4A
- e) 6V e 1,2A

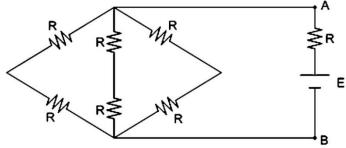
Resposta:

[B]

EXC321. Mod5.Exc132. (Especx (Aman)) Um circuito elétrico é constituído por um resistor de 4Ω e outro resistor de 2Ω . Esse circuito é submetido a uma diferença de potencial de 12 V e a corrente que passa pelos resistores é a mesma. A intensidade desta corrente é de:

- a) 8 A
- b) 6 A
- c) 3 A
- d) 2 A
- e) 1 A

Resposta:


[D]

EXC322. Mod5.Exc134. (Espcex (Aman)) O amperímetro é um instrumento utilizado para a medida de intensidade de corrente elétrica em um circuito constituído por geradores, receptores, resistores, etc. A maneira correta de conectar um amperímetro a um trecho do circuito no qual queremos determinar a intensidade da corrente é

- a) em série
- b) em paralelo
- c) na perpendicular
- d) em equivalente
- e) mista

Resposta:

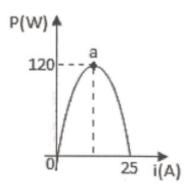
EXC323. Mod5.Exc138. (Especx (Aman)) No circuito elétrico desenhado abaixo, todos os resistores ôhmicos são iguais e têm resistência $R = 1,0 \Omega$. Ele é alimentado por uma fonte ideal de tensão contínua de E = 5,0 V. A diferença de potencial entre os pontos $A \in B$ é de:

Desenho ilustrativo fora de escala

- a) 1,0 V
- b) 2,0 V
- c) 2,5 V
- d) 3,0 V
- e) 3,3 V

Resposta:

[B]

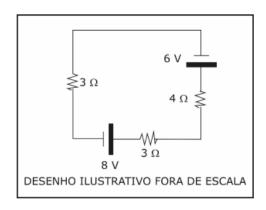

EXC324. Mod5.Exc161. (Espcex (Aman)) A pilha de uma lanterna possui uma força eletromotriz de 1,5 V e resistência interna de 0,05 Ω . O valor da tensão elétrica nos polos dessa pilha quando ela fornece uma corrente elétrica de 1,0 A a um resistor ôhmico é de

- a) 1,45 V
- b) 1,30 V
- c) 1,25 V
- d) 1,15 V
- e) 1,00 V

Resposta:

[A]

EXC325. Mod5.Exc192. (Efomm) Beto, um advogado interessado em eletricidade, num sábado ensolarado, resolveu montar um circuito elétrico para sua guitarra. Ele associou um gerador de FEM ϵ e resistência interna r em série com um resistor R variável. A potência dissipada no resistor R, em função da corrente i, é dada pelo gráfico mostrado na figura abaixo, onde o ponto a é o vértice da parábola.

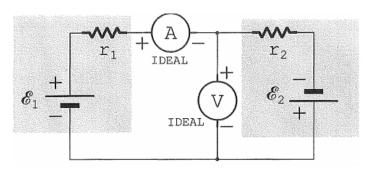

Os valores da resistência interna r e da força eletromotriz (FEM) do gerador são, respectivamente

- a) $4,40\cdot10^{-1} \Omega, 0,85\cdot10^{-1} V$
- b) $7,68 \cdot 10^{-1} \Omega, 1,92 \cdot 10^{1} V$
- c) $3,98 \cdot 10^{-1} \Omega$, $2,46 \cdot 10^{1} V$
- d) $8.80 \cdot 10^{-2} \Omega$, $2.20 \cdot 10^{0} V$
- e) $4.84 \cdot 10^{-2} \Omega, 3.42 \cdot 10^{2} V$

Resposta:

[B]

EXC326. Mod5.Exc191. (Espcex (Aman)) O desenho abaixo representa um circuito elétrico composto por resistores ôhmicos, um gerador ideal e um receptor ideal.

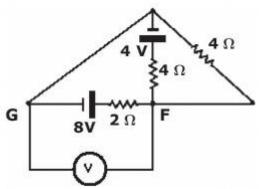


A potência elétrica dissipada no resistor de 4Ω do circuito é:

- a) 0,16 W
- b) 0,20 W
- c) 0,40 W
- d) 0,72 W
- e) 0,80 W

[A]

EXC327. Mod5.Exc195. (Esc. Naval) Analise a figura abaixo.


A figura acima mostra um circuito contendo dois geradores idênticos, sendo que cada um deles possui força eletromotriz de 10 V e resistência interna de 2,0 Ω . A corrente I, em amperes, medida pelo amperímetro ideal e a ddp, em volts, medida pelo voltímetro ideal, valem, respectivamente:

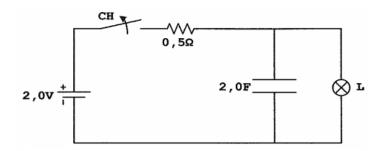
- a) zero e 2,5
- b) zero e 5,0
- c) 2,5 e zero
- d) 5,0 e zero
- e) zero e zero

Resposta:

[D]

EXC328. Mod5.Exc194. (Espcex (Aman)) O desenho abaixo representa um circuito elétrico composto por gerador, receptor, condutores, um voltímetro (V), todos ideais, e resistores ôhmicos.

Desenho Ilustrativo Fora de Escala

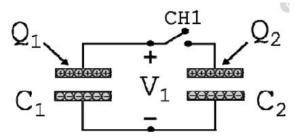

O valor da diferença de potencial (ddp), entre os pontos F e G do circuito, medida pelo voltímetro, é igual a

- a) 1,0 V
- b) 3,0 V
- c) 4,0 V
- d) 5,0 V
- e) 8,0 V

Resposta:

[D]

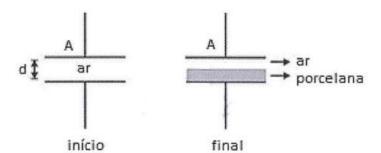
EXC329. Mod5.Exc197. (Esc. Naval) Observe a figura a seguir.


Até o instante da abertura da chave CH, o circuito representado na figura acima se encontrava em regime permanente. Desde o instante da abertura da chave até a lâmpada se apagar completamente, observa-se que a energia armazenada no capacitor de capacitância 2,0F, sofre uma variação de 0,25J. Considerando a lâmpada como uma resistência R, qual é o valor de R, em ohms?

- a) 1/2
- b) 1/3
- c) 1/4
- d) 1/5
- e) 1/6

Resposta:

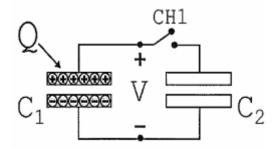
[E]


EXC330. Mod5.Exc028. (Efomm) Os capacitores planos C_1 e C_2 mostrados na figura têm a mesma distância d e o mesmo dielétrico (ar) entre suas placas. Suas cargas iniciais eram Q_1 e Q_2 , respectivamente, quando a chave CH1 foi fechada. Atingido o equilíbrio eletrostático, observou-se que a tensão V_1 mostrada na figura não sofreu nenhuma variação com o fechamento da chave. Podemos afirmar que os dois capacitores possuem

- a) a mesma energia potencial elétrica armazenada.
- b) a mesma carga elétrica positiva na placa superior.
- c) a mesma carga elétrica, em módulo, na placa superior.
- d) a mesma capacitância.
- e) o mesmo valor do campo elétrico uniforme presente entre as placas.

[E]

EXC331. Mod5.Exc032. (Efomm) Na figura a seguir, temos um capacitor de placas paralelas de área A separadas pela distância d. Inicialmente, o dielétrico entre as placas é o ar e a carga máxima suportada é Q_a . Para que esse capacitor suporte uma carga máxima Q_b , foi introduzida uma placa de porcelana de constante dielétrica k e espessura d/2. Considerando que seja mantida a diferença de potencial entre as placas, determine a razão entre as cargas Q_b e Q_a .



- a) $\frac{2k}{k+1}$
- b) $\frac{2k}{5k+3}$
- c) $\frac{2k\epsilon_0A}{d(k+1)}$
- d) $\frac{\kappa \epsilon_0 A}{dk}$
- e) $\frac{2k\varepsilon_0}{d(k+1)}$

Resposta:

[A]

EXC332. Mod5.Exc037. (Esc. Naval) Analise a figura abaixo.

O capacitor C_1 encontra-se inicialmente com uma tensão constante $\ V=4\ \ volts.$ Já o capacitor C_2 estava descarregado. Fechando-se a chave CH1, o sistema atinge o equilíbrio com uma tensão de $\frac{4}{3}$ volts e redução de $\frac{8}{3}$ joule da energia armazenada. A carga inicial Q, em coulombs, é igual a
a) $\frac{4}{3}$ b) $\frac{3}{2}$ c) $\frac{5}{3}$ d) 2
e) $\frac{7}{3}$

Resposta:

[D]