

9^a Olimpíada de Química do Rio de Janeiro – 2014 EM1 – 2^a Fase

ABQ RJ - Colégio Pedro II - CMRJ - IFRJ

9ª OLIMPÍADA DE QUÍMICA DO RIO DE JANEIRO – 2014

MODALIDADE EM1 – 2ª FASE

Leia atentamente as instruções abaixo:

- Esta prova destina-se exclusivamente aos alunos da 1^a série do ensino médio.
- A prova contém quatro questões discursivas, cada uma valendo 20 pontos.
- A prova tem um total de CINCO páginas, sendo a primeira folha a página de instruções.
- Resolva as questões na própria página e utilize o verso sempre que necessário.
 Caso necessite de mais de uma folha para uma mesma questão, solicite ao fiscal.
- NÃO utilize uma mesma folha para resolver mais de uma questão.
- ESCREVA seu NOME COMPLETO em TODAS as folhas.
- A duração da prova é de TRÊS horas.
- O uso de calculadoras comuns ou científicas é permitido. A consulta a outros materiais e o uso de aparelhos eletrônicos, como celulares ou tablets, e outros (mesmo como função de calculadora) estão proibidos.

Rio de Janeiro, 01 de novembro de 2014.

Realização:

Apoio:

9^a Olimpíada de Química do Rio de Janeiro – 2014 EM1 – 2^a Fase

ABQ RJ - Colégio Pedro II - CMRJ - IFRJ

NOME:				

TABELA PERIÓDICA DOS ELEMENTOS

1																	18
1 H	1																2 He
1,0	2											13	14	15	16	17	4,0
3	4	1				n° atômi	co					5	6	7	8	9	10
Li	Be					SÍMBO	LO					В	C	N	О	F	Ne
6,9	9,0					massa atôi	nica					10,8	12,0	14,0	16,0	19,0	20,2
11	12											13	14	15	16	17	18
Na	Mg											Αℓ	Si	P	S	Cl	Ar
23,0	24,3	3	4	5	6	7	8	9	10	11	12	27,0	28,1	31,0	32,0	35,5	39,9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,0	40,0	45,0	47,9	50,9	52,0	55,0	55,8	58,9	58,7	63,5	65,4	69,7	72,6	74,9	79,0	79,9	83,8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85,5	87,6	88,9	91,2	92,9	95,9	98	101,1	102,9	106,4	107,9	112,4	114,8	118,7	121,8	127,6	127,0	131,3
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	57 – 71	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tℓ	Pb	Bi	Po	At	Rn
132,9	137,3		178,5	181,0	183,8	186,2	190,2	192,2	195,1	197,0	200,6	204,4	207,2	209,0	209	210	222
87	88		104	105	106	107	108	109									
Fr	Ra	89 –103	Rf	Db	Sg	Bh	Hs	Mt									
223	226		261	262	263	262	265	266									
04:		57	58	59	60	61	62	63	64	65		67	60	69	70	71	ı
	e dos nídeos	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	66 Dy	Ho	68 Er	Tm	Yb	Lu	
Lama	macos	138.9	140.1	140.9	144.2	145	150.4	152.0	157.3	159.0	162.5	164.9	167.3	168.9	173.0	174,97	
C 4:	e dos	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
	e aos nídeos	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
. 10111		227	232,0	231.0	238.0	237	244	243	247	247	251	252	257	258	259	262	

DADOS: 760,0 mmHg = 1,000 atm $P \cdot V = n \cdot R \cdot T$ $R = 0,082 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ $T(K) = 273 + T(^{\circ}C)$

QUESTÃO 01

Durante muito tempo se acreditou que os gases nobres fossem elementos completamente inertes. No entanto, em 1960, após diversas tentativas frustradas, os primeiros compostos de gases nobres foram, enfim, sintetizados. O primeiro composto produzido foi o XePtF₆ e, alguns meses depois, vieram as sínteses do XeF₄ e XeF₂. Essas sínteses deram origem a "química dos gases nobres" e hoje são conhecidos diversos compostos de xenônio.

- A) Escreva as estruturas de Lewis para os compostos XeF_2 , XeO_3 , XeF_4 e $XeOF_4$. O arranjo espacial da molécula deve ser representado na estrutura. (12 pontos)
- B) Com base no Modelo da Repulsão dos Pares de Elétrons da Camada de Valência, estime o valor do ângulo observado entre as ligações no XeF₂. **Justifique sua estimativa. (4 pontos)**
- C) Com base no Modelo da Repulsão dos Pares de Elétrons da Camada de Valência, estime os valores dos ângulos observados entre as ligações no XeF_4 . **Justifique sua estimativa.** (4 pontos)

Apoio: CRQ – 3^a Região

(CD)

9^a Olimpíada de Química do Rio de Janeiro – 2014 EM1 – 2^a Fase

ABQ RJ - Colégio Pedro II - CMRJ - IFRJ

NOME:			
_			

QUESTÃO 02

Um veículo movido a hidrogênio é um veículo de combustível alternativo que utiliza hidrogênio molecular como fonte primária de energia para locomoção. Estes veículos utilizam geralmente o hidrogênio em um dos dois métodos: Combustão ou conversão da célula de combustível.

Na combustão, o hidrogênio se queima como no esquema de um motor de combustão interna, da mesma forma que a gasolina, ou outro combustível. Já através da conversão da célula de combustível, o hidrogênio se converte em eletricidade através de células de combustível que movem motores elétricos, nesse esquema a célula de combustível funciona como uma espécie de bateria elétrica.

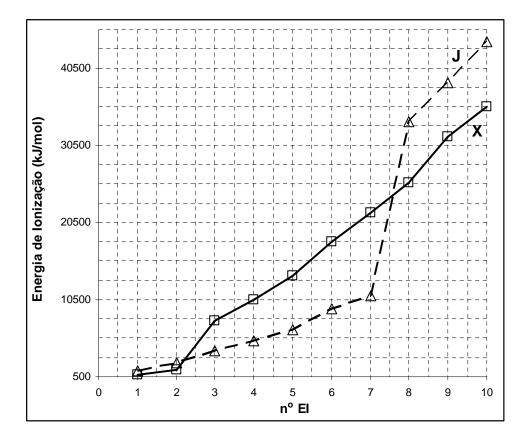
Veículos movidos com célula de combustível são considerados veículos com emissão zero de poluentes porque o único subproduto do hidrogênio consumido é a água, que também pode mover uma micro-turbina como as encontradas num carro á vapor.

(Texto extraído de: http://pt.wikipedia.org/wiki/Veículo_movido_a_hidrogênio)

Com base na reação de combustão do hidrogênio, responda:

- A) Qual é o volume necessário de hidrogênio gasoso, medido nas CNTP, para a produção de 1,204·10²⁵ moléculas de água? **(6 pontos)**
- B) Se todas as substâncias envolvidas no processo estão no estado gasoso, qual deve ser a pressão parcial de cada uma delas, em mmHg, admitindo que a pressão total do sistema é de 2,24 atm? (6 pontos)
- C) Se numa viagem um veículo movido a hidrogênio produzir 1,000 tonelada de água, qual foi o volume de gás oxigênio consumido no processo de combustão do gás hidrogênio, admitindo que as condições de pressão e temperatura do sistema fossem 1,250 atm e 35,00 °C, e que o rendimento do processo foi de 88,25 %? (8 pontos)

Apoio: CRQ – 3ª Região


9^a Olimpíada de Química do Rio de Janeiro – 2014 EM1 – 2^a Fase

ABQ RJ - Colégio Pedro II - CMRJ - IFRJ

NOME:				
•				

QUESTÃO 03

O gráfico abaixo mostra a variação dos valores de várias energias de ionização para dois elementos, **X** e **J**, do terceiro período da Tabela Periódica.

Baseado no gráfico acima e nas relações entre as propriedades periódicas, responda:

- A) Qual dos dois elementos tem o MAIOR raio atômico? Justifique sua resposta. (6 pontos)
- B) Qual dos dois elementos apresentará o <u>MAIOR</u> valor para a 1ª afinidade eletrônica? **Justifique sua resposta. (6 pontos)**
- C) Qual dos dois elementos apresentará o <u>MAIOR</u> valor para a 11ª energia de ionização? **Justifique sua resposta. (8 pontos)**

9

9^a Olimpíada de Química do Rio de Janeiro – 2014 EM1 – 2^a Fase

ABQ RJ - Colégio Pedro II - CMRJ - IFRJ

NOME:			

QUESTÃO 04

Três sólidos, as substâncias simples dos elementos **X**, **Y** e **Z**, foram queimados na presença de gás oxigênio em excesso. Com a queima, foram formados os óxidos com o maior estado de oxidação possível para cada um dos elementos. Após a queima, os produtos foram recolhidos em água e, depois, adicionou-se duas gotas do indicador azul de bromotimol. Os resultados estão resumidos na tabela abaixo:

Sólido	Adição de água	Adição de azul de bromotimol
X	Solução incolor	Amarelo
Y	Formação de precipitado branco.	Azul
Z	Solução incolor	Amarelo

Após esses resultados, uma nova queima foi realizada, mas ao invés de adicionar água, adicionou-se uma solução aquosa de hidróxido de sódio aos produtos. Após a observação, adicionou-se 1,0 mL de solução de nitrato de bário aos tubos. Os resultados estão resumidos na tabela abaixo:

Sólido	Adição de hidróxido de sódio	Adição de nitrato de bário
X	Solução incolor	Formação de precipitado branco.
Y	Formação de precipitado branco.	Nenhuma alteração foi observada.
Z	Solução incolor	Formação de precipitado branco.

Baseado apenas nesses resultados e sabendo que os sólidos são dos elementos carbono, enxofre e magnésio, um aluno concluiu que:

- (i) o sólido Y só poderia ser o magnésio;
- (ii) não é possível diferenciar os outros dois sólidos apenas com esses experimentos.
- A) Explique por que é possível identificar o sólido Y apenas com os resultados apresentados na primeira parte do experimento. (3 pontos)
- B) Identifique o precipitado branco formado com a adição de água no primeiro ensaio. Escreva a equação química balanceada da formação do sólido, indicando o estado físico de todas as substâncias. (2 pontos)

Para diferenciar os sólidos **X** e **Z**, um professor propôs um novo ensaio, que foi realizado pelo aluno. Após a adição de nitrato de bário, o precipitado formado foi separado por centrifugação. Aos sólidos, foram adicionados 3,0 mL de solução de ácido clorídrico. Com o resultado, o aluno conseguiu identificar cada um dos sólidos.

- C) Explique por que é possível identificar os sólidos com a adição da solução de ácido clorídrico aos precipitados formados após a adição de nitrato de bário. (10 pontos)
- D) Apresente todas as equações químicas, devidamente balanceadas, que ocorrem durante o experimento se o sólido inicial é do elemento carbono. **(5 pontos)**

Apoio: CRQ – 3ª Região