




LANÇAMENTOS HORIZONTAL E OBLÍQUO

**EXERCÍCIOS** 



## Atencão

Observação: O material de apoio foi construído para as aulas de lançamento horizontal (aula 08) e lançamento oblíguo (aula 09). A aula 09 só será disponibilizada na semana 05. Estudante, na semana 04, realize os exercícios só de lançamento horizontal e na semana 05 realize os exercício de lancamento oblíguo.

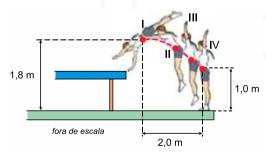
LANÇAMENTO OBLÍQUO

1. (Enem 2022) Em um dia de calor intenso, dois colegas estão a brincar com a água da mangueira. Um deles quer saber até que altura o jato de água alcança, a partir da saída de água, quando a mangueira está posicionada totalmente na direção vertical. O outro colega propõe então o seguinte experimento: eles posicionarem a saída de água da mangueira na direção horizontal, a 1 m de altura em relação ao chão, e então medirem a distância horizontal entre a mangueira e o local onde a água atinge o chão. A medida dessa distância foi de 3 m, e a partir disso eles calcularam o alcance vertical do jato de água. Considere a aceleração da gravidade de 10 m s<sup>-2</sup>.

O resultado que eles obtiveram foi de

a) 1,50 m.

c) 4,00 m.


e) 5,00 m.

b) 2,25 m.

d) 4,50 m.

### LANÇAMENTO HORIZONTAL

2. (Unesp 2022) ) Em treinamento para uma prova de trave olímpica, uma atleta faz uma saída do aparelho, representada em quatro imagens numeradas de I a IV, em que o ponto vermelho representa o centro de massa do corpo da atleta. A imagem I representa o instante em que a atleta perde contato com a trave, quando seu centro de massa apresenta velocidade horizontal v0. A imagem IV representa o instante em que ela toca o solo.

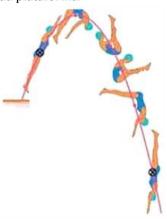


(https://docplayer.com.br. Adaptado.)

Considerando que nesse movimento somente a força peso atua sobre a atleta e adotando  $g = 10 \frac{m}{c^2}$ , o valor de  $v_0$  é

a) 6,0 m/s.

c) 5,0 m/s.


e) 4,0 m/s.

b) 3,0 m/s.

d) 2,0 m/s.

### LANÇAMENTO OBLÍQUO

3. (Fcmscsp 2022) Como mostra a imagem, em uma competição de saltos ornamentais, uma atleta salta de uma plataforma e realiza movimentos de rotação. Porém, seu centro de massa, sob ação exclusiva da gravidade, descreve uma trajetória parabólica, após ter sido lançado obliquamente da plataforma.

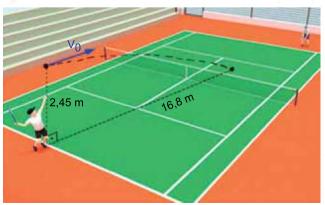


(https://sites.google.com. Adaptado.)

Considere que a aceleração gravitacional seja igual a  $10^{\frac{m}{a^2}}$ que no momento em que a atleta saltou para cima seu centro de massa estava a 11 m da superfície da água e que o centro de massa da saltadora chegou à água 2,0 s após o salto. A componente vertical da velocidade do centro de massa dessa atleta no momento em que ela deixou a plataforma era

a) 4.5 m/s.

c) 0.5 m/s.


e) 8,5 m/s.

b) 1,5 m/s.

d) 2,5 m/s.

### LANÇAMENTO HORIZONTAL

4. (Albert Einstein - Medicina 2021) Em uma aula de tênis, um aprendiz, quando foi sacar, lançou a bola verticalmente para cima e a golpeou com a raquete exatamente no instante em que ela parou no ponto mais alto, a 2,45 m de altura em relação ao piso da quadra. Imediatamente após esse movimento, a bola partiu com uma velocidade inicial horizontal  $V_0$  e tocou o solo a 16,8 m de distância da vertical que passava pelo ponto de partida.



(https://free3d.com. Adaptado.)



Adotando-se  $g=10 \frac{m}{s^2}$ , desprezando-se a resistência do ar e a rotação da bola ao longo de seu trajeto, o módulo de quando a bola perdeu contato com a raquete foi de

a)20 m/s

c)22 m/s

e)26 m/s

b)24 m/s

d)28 m/s

# LANÇAMENTO HORIZONTAL 5. (Pucgo Medicina 2021) Leia atentamente o texto a

seguir:

Na última semana, o governo enviou aeronaves para lançar mais de duas toneladas de cenouras e batatas-doces nos locais atingidos pelo fogo.

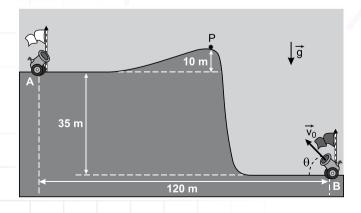
Sydney - As autoridades da Austrália estão utilizando aeronaves de pequeno porte para fazer o lançamento de milhares de quilos de tubérculos para animais famintos, como resultado da destruição de seu habitat pelos incêndios que assolam o país desde setembro do ano passado. [...].

(Disponível em: https://exame.com/mundo/com-aviao-australialanca-alimentos-para-animais-afetados-por-incendi s/, Acesso em: 12 out.

Desprezando a interferência do ar, considere que, no momento do lançamento dos tubérculos, o avião, utilizado na Austrália, está a 245 m de altura em relação ao solo e com velocidade horizontal de 180 km/h.

Adotando g = 10 m/s2, assinale a única alternativa que corretamente indica a distância horizontal percorrida pelos alimentos entre o instante de lançamento e a chegada ao solo:

a) 190 m.


c) 350 m.

b) 240 m.

d) 410 m.

## LANÇAMENTO OBLÍQUO

6. (Enem 2021) A figura foi extraída de um antigo jogo para computadores, chamado Bang! Bang!



No jogo, dois competidores controlam os canhões A e B, disparando balas alternadamente com o objetivo de atingir o canhão do adversário; para isso, atribuem valores estimados para o módulo da velocidade inicial de disparo  $(|\vec{v}_0|)$  e para o ângulo de disparo  $(\theta)$ .

Em determinado momento de uma partida, o competidor B deve disparar; ele sabe que a bala disparada anteriormente,  $\theta$ =53°, passou tangenciando o ponto P.

No jogo, |g| é igual a 10 m/s2. Considere sen 5 3°=0,8, cos 5 3°=0,6 e desprezível a ação de forças dissipativas.

Disponível em: http://mebdownloads.butzke.net.br. Acesso em: 18 abr. 2015 (adaptado).

Com base nas distâncias dadas e mantendo o último ângulo de disparo, qual deveria ser, aproximadamente, o menor valor de  $|\vec{v}_0|$  que permitiria ao disparo efetuado pelo canhão B atingir o canhão A?

a) 30 m/s.

c) 40 m/s.

e) 50 m/s.

b) 35 m/s.

d) 45 m/s.

### LANÇAMENTO HORIZONTAL

7. (G1 - cotil 2020) Muitos historiadores acreditam que a zarabatana foi um instrumento desenvolvido pelos índios da América do Sul para cacar aves e animais rasteiros. Essa arma se utiliza de pequenos dardos pontiagudos com veneno, que são lançados a altas velocidades apenas com um forte sopro. Em geral, um índio de 1,8 m de altura consegue lançar um dardo com 12 m de alcance.

Desprezando os atritos com o ar, usando  $g = 10 \frac{m}{c^2}$  e considerando que o tempo desse tipo de movimento é o mesmo de uma queda livre, o valor aproximado da velocidade de lançamento horizontal do dardo é de:

a)6,6 km/h

c)72,0 km/h

b)20,0 km/h

d)90,0 km/h

### LANÇAMENTO HORIZONTAL

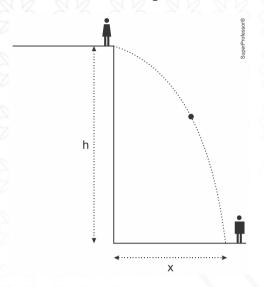
8. (G1 - cftmg 2020) Um avião está levando suprimentos para pessoas que se encontram ilhadas numa determinada região. Ele está voando horizontalmente a uma altitude de 720 m acima do solo e com uma velocidade constante de 80 m/s. Uma pessoa no interior do avião é encarregada de soltar a caixa de suprimentos, em um determinado momento, para que ela caia junto às pessoas.

Desprezando a resistência do ar e considerando a aceleração da gravidade igual a 10 m/s<sup>2</sup>, a que distância horizontal das pessoas, em metros, deverá ser solta a caixa?

a)80

c)960

b)720


d)1.200

### LANÇAMENTO HORIZONTAL

9. (Pucri 2020) Da borda de um precipício, Clara chuta uma pedrinha, que sai com velocidade que é horizontal de 10m/s. Lá embaixo no solo, Henrique vê que a pedrinha cai



a uma distância x da base do precipício que é a metade da sua altura h, como mostrado na figura.



Desprezando a resistência do ar, qual é a altura h, em metros?

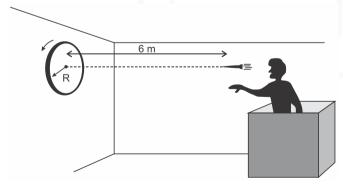
#### Dado

aceleração da gravidade = 10 m/s2

a) 10

c) 40

e) 100


b) 20

d) 80

### LANÇAMENTO HORIZONTAL

**10.** (Acafe 2020) Em um parque de diversões, João tenta ganhar um prêmio no jogo dos dardos. Para isso, deve acertar um ponto situado na periferia do disco do alvo. O disco gira em MCU com a velocidade de 4,5 m/s e possui um raio de 45 cm.

João lança o dardo horizontalmente na direção do centro do alvo, distante 6 m, quando o ponto está passando na extremidade superior do disco, como mostra a figura abaixo.



Com base no exposto, marque a alternativa que indica o módulo da velocidade de lançamento horizontal do dardo, em m/s, para que João acerte o ponto na extremidade inferior do disco do alvo.

a)35

c)25

b)30

d)20

### LANÇAMENTO HORIZONTAL

11. (Ufjf-pism 1 2019) Ao localizar refugiados em um local plano no deserto, o governo de um país do Oriente Médio resolve utilizar um avião para lançar alimentos e outros itens de primeira necessidade, dada a impossibilidade de outros meios de transporte chegar rapidamente ao local. Um equipamento do avião permite ao piloto registrar o gráfico da variação da altura com o tempo de queda do pacote que contém o material de ajuda humanitária.

Observe o gráfico mostrado na Figura, e considere que em t=0 s o pacote se desprende do avião. Para o pacote poder cair o mais próximo possível dos refugiados, é razoável afirmar que (despreze a resistência do ar e considere a aceleração da gravidade  $g=10~\frac{m}{c^2}$ ):

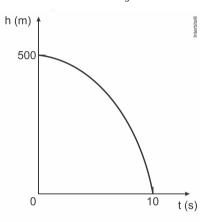



Figura - Gráfico da altura (h) do pacote em função do tempo de queda (t)

- a) O piloto lançou o pacote a 500 metros de altura, exatamente acima do local onde se encontravam os refugiados.
- b) O piloto lançou o pacote a 500 metros de altura, um pouco antes do local onde se encontravam os refugiados.
- c) O piloto lançou o pacote a 500 metros de altura, um pouco depois do local onde se encontravam os refugiados.
- d) O piloto lançou o pacote um pouco antes do local onde se encontravam os refugiados, e este chega ao solo com velocidade de  $50\,$  m/s.
- e) O piloto lançou o pacote exatamente acima do local onde se encontravam os refugiados, e este chega ao solo com velocidade de 50 m/s.

### LANÇAMENTO OBLÍQUO

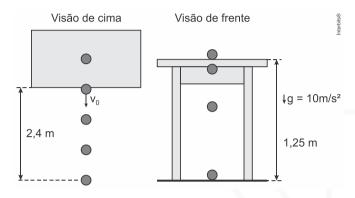
**12.** (**Puccamp 2018**) Um objeto foi lançado obliquamente a partir de uma superfície plana e horizontal de modo que o valor da componente vertical de sua velocidade inicial era e o da componente horizontal era  $v_{0y} = 30 \frac{m}{s}$  Considerando a aceleração gravitacional igual a  $10 \text{ m/s}^2$ 

Considerando a aceleração gravitacional igual a 10 m/s<sup>2</sup> e desprezando a resistência do ar, o alcance horizontal do objeto foi

a) 12 m.

c) 48 m.

e) 240 m.


b) 24 m.

d) 78 m.



### LANÇAMENTO HORIZONTAL

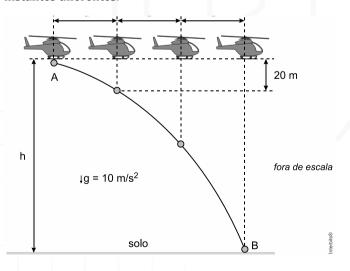
13. (Famerp 2017) Uma bola rola sobre uma bancada horizontal e a abandona, com velocidade V 0, caindo até o chão. As figuras representam a visão de cima e a visão de frente desse movimento, mostrando a bola em instantes diferentes durante sua queda, até o momento em que ela toca o solo.



Desprezando a resistência do ar e considerando as informações das figuras, o módulo de Vo é igual a

a) 2,4 m/s.

c) 1,2 m/s.


e) 3,6 m/s.

b) 0,6 m/s.

d) 4,8 m/s.

### LANÇAMENTO HORIZONTAL

(Famema 2017) Um helicóptero sobrevoa horizontalmente o solo com velocidade constante e, no ponto A, abandona um objeto de dimensões desprezíveis que, a partir desse instante, cai sob ação exclusiva da força peso e toca o solo plano e horizontal no ponto B. Na figura, o helicóptero e o objeto são representados em quatro instantes diferentes.



Considerando as informações fornecidas, é correto afirmar que a altura h de sobrevoo desse helicóptero é igual a

a) 200 m.

c) 240 m.

e) 180 m.

b) 220 m.

d) 160 m.

## LANÇAMENTO OBLÍQUO

15. (Mackenzie 2017) Um míssil AX100 é lançado obliquamente, com velocidade de 800 m/s, formando um ângulo de 30,0° com a direção horizontal. No mesmo instante, de um ponto situado a 12,0 km do ponto de lançamento do míssil, no mesmo plano horizontal, é lançado um projétil caça míssil, verticalmente para cima, com o objetivo de interceptar o míssil AX100. A velocidade inicial de lançamento do projétil caça míssil, para ocorrer a interceptação desejada, é de

960 m/s

c) 400 m/s

e) 900 m/s

b) 480 m/s

d) 500 m/s

### Gabarito:

2:[C] 10:[D] 12:[C] 14: [E] [0]:6 [B] :₽ 3: [A] 8: [C] 13: [D] 12: [C] 7: [C] Z: [C] [0]:911:[B] 1: [B]

### Anotações